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Figure S1. H3K79me2 ChIP-qPCR results showing decrease in H3K79me2 in various mutants used in 

this study. Six independent experiments are shown; the IP efficiency varies between the experiments, 

which is expected. Tested gene names are shown on the X axes, “P” after the gene name indicating 

the promoter region and “ex” indicating an exon region. The Y axis shows the ratio between the mean 

H3K79me2 ChIP-qPCR signal and the mean H3 ChIP-qPCR signal (from three technical replicates). 

The ChIP signals were computed as a “% of input”. Note the background signal in dot-1.1(knu339); 

ced-3(n1286) in experiment #4, consistent with our published western blot data [1]. The H3K79me2 

levels at the pdk-1 promoter in zfp-1(ok554), which is used for H3K9me2 ChIP-seq here, were assayed 

in five experiments shown and are ~50% reduced compared to wild type, consistent with our 

published work [2]. The results with dot-1.1(gk520244) and zfp-1(gk960739) alleles used in gonad 

migration experiments are shown in experiment #2 and experiment #5, respectively; note reduced 

H3K79me2 at the unc-6 gene in zfp-1(gk960739) in experiment #5.  
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Figure S2. Deletion of DOT-1.1 does not disrupt preferential positioning of H3K9me2 at autosome 

arms. (a) Heatmaps showing coverage of H3K9me2 along the C. elegans chromosomes for each mutant 

analyzed. Input-normalized coverage (see Materials and Methods) was calculated for each of the 

10,000 bp bins spanning each chromosome, and each bin was assigned a chromosome domain 

(chromosome domain coordinates are from [3]). (b) Cumulative distribution of the fold change (log2) 

of H3K9me2 ChIP-seq RPKM value (input-normalized) at the autosome arms between each mutant 

replicate and the average value in the corresponding background strain. Two-sample Kolmogorov-

Smirnov (for cumulative distribution plots) and Wilcoxon rank sum (for boxplots) tests were 

performed to compare the cumulative changes between genomic bins located in chromosome arms 

and those in non-overlapping genomic bins spanning the genome. Statistical significance (p-values 

ranging between < 2.2 × 10−16 and 3.041 × 10−14) was found for all the mutant replicates analyzed. 
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Figure S3. UCSC genome browser screenshots of H3K9me2 distribution along the six C. elegans 

chromosomes (not quantitative). ATAC-seq peaks: [4]. ZFP-1 peaks: modENCODE data, GEO 

submission GSE50301. H3K9me2 coverage tracks: our data. 

  

 

Figure S4. Global increase of H3K9me2 upon DOT-1.1 deletion at distal ATAC-seq peaks. Cumulative 

distribution of the fold change (log2) of H3K9me2 ChIP-seq RPKM value (input-normalized) at distal 

ATAC-seq peaks [4] between each mutant replicate and the average value in a background strain. 

Two-sample Kolmogorov-Smirnov (for cumulative distribution plots) and Wilcoxon rank sum (for 

boxplots) tests were performed to compare the cumulative changes between the distal ATAC-seq 

peaks and those in non-overlapping genomic bins spanning the genome. Statistical significance (p-

values ranging between < 2.2 × 10−16 and 0.001017) was found for all dot-1.1; ced-3, rde-1; dot-1.1 and 

rde-4; dot-1.1 mutant replicates analyzed, as well as for the zfp-1 mutant, with the exception of one of 

the replicates (Wilcoxon p-value = 0.2521). 

(a)  
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Figure S5. Deletion of DOT-1.1 leads to global increase in H3K9me2 at enhancers predicted by 

chromatin signatures. Shown are cumulative distribution plots and boxplots representing the fold 

change (log2) of H3K9me2 ChIP-seq RPKM value (input-normalized) at intragenic (a) and distal (b) 

enhancer domains [5] between each mutant replicate and the average value in the background strain. 

Two-sample Kolmogorov-Smirnov (for cumulative distribution plots) and Wilcoxon rank sum (for 

boxplots) tests were performed to compare the cumulative changes between enhancer domains and 

those in non-overlapping genomic bins spanning the genome. Statistical significance (p-values 

ranging between < 2.2 × 10−16 and 0.0072) was found for all dot-1.1; ced-3, rde-1; dot-1.1 and rde-4; dot-

1.1 mutant replicates analyzed, as well as for the zfp-1 mutant for intragenic enhancers, with the 

exception of one of the replicates (Wilcoxon p-value = 0.1447). The Venn diagrams show that the dot-

1.1; ced-3 mutant has more intragenic (c) and distal (d) enhancers overlapping with H3K9me2 peaks 

(observed in both replicates, see Materials and Methods) than the background strain (ced-3 mutant). 

Numbers inside the circles designate enhancers overlapping with H3K9me2 peaks in either strain 

alone (left-most and right-most numbers) or in both strains (middle). Numbers outside the circles 

representing enhancers not overlapping with H3K9me2 peaks in any strain. 
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Figure S6. Examples of genomic loci containing developmental genes that gain H3K9me2 in the 

absence of DOT-1.1 (UCSC genome browser screenshots). (a) The ~60kb genomic region on ChrX 

containing many enhancers, including in the intron of the sdpn-1 gene. (b) The egl-30 locus bound by 

ZFP-1/DOT-1.1. ATAC-seq peaks: [4]. ZFP-1 peaks: modENCODE data, GEO submission GSE50301. 

H3K9me2 coverage tracks: our data. DOT-1.1 ChIP-chip signal: modENCODE data, GEO submission 

GSE37488. 
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Figure S7. Deletion of DOT-1.1 leads to global increase in H3K9me2 at repeats. Shown are cumulative 

distribution plots and boxplots representing the fold change (log2) of H3K9me2 ChIP-seq RPKM 

value (input-normalized) at genomic repeats [6] between each mutant replicate and the average value 

in the background strain. Two-sample Kolmogorov-Smirnov (for cumulative distribution plots) and 

Wilcoxon rank sum (for boxplots) tests were performed to compare the cumulative changes between 

genomic repeat regions and those in non-overlapping genomic bins spanning the genome. Statistical 

significance (p-values < 2.2 × 10−16) was found for all dot-1.1; ced-3 and rde-1; dot-1.1 mutant replicates 

analyzed.  

 
(a) 

 
(b) 

 

 

 

 

Figure S8. Boxplots showing cumulative changes in the fold change (log2) of H3K9me2 ChIP-seq 

RPKM value (input-normalized) at repeats [6] (a) and ALG-3/4 targets [7] (b) between the rde-1; dot-

1.1 and rde-4; dot-1.1 mutants and the average value in the dot-1.1; ced-3 mutant. Wilcoxon rank sum 

tests were performed to compare the changes between either repeats or ALG-3/4 targets and those in 

non-overlapping genomic bins spanning the genome. Statistical significance (p-values ranging 

between < 2.2 × 10−16 and 3.47 × 10−12) was found for all rde-1; dot-1.1 and rde-4; dot-1.1 mutant replicates 

analyzed. 
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Figure S9. Deletion of DOT-1.1 does not significantly disrupt global H3K9me2 at ERGO-1 and RRF-

3 targets. Shown are cumulative distribution plots and boxplots representing the fold change (log2) 

of H3K9me2 ChIP-seq RPKM value (input-normalized) at ERGO-1 and RRF-3 targets [8] between 

each mutant replicate and the average value in the background strain. Two-sample Kolmogorov-

Smirnov (for cumulative distribution plots) and Wilcoxon rank sum (for boxplots) tests were 

performed to compare the cumulative changes between ERGO-1 and RRF-3 targets and those in non-

overlapping genomic bins spanning the genome. Statistical significance (p-values < 0.002309) was 

observed only for the rde-4; dot-1.1 mutant.  

(a) 
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Figure S10. Examples of ALG-3/4 target genes that show RDE-1/4-dependent gain of H3K9me2 in the 

absence of DOT-1.1 (UCSC genome browser screenshots) (a) The vig-1 gene contains intragenic 

enhancers. (b) The M117.4 gene is bound by DOT-1.1 in the embryo. ATAC-seq peaks: [4]. ZFP-1 

peaks: modENCODE data, GEO submission GSE50301. H3K9me2 coverage tracks: our data. DOT-1.1 

ChIP-chip signal: modENCODE data, GEO submission GSE37488. 
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