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Abstract: Cystic Fibrosis (CF) is caused by >2000 mutations in the CF transmembrane conductance 

regulator (CFTR) gene, but one mutation—F508del—occurs in ~80% of patients worldwide. Besides 

its main function as an anion channel, the CFTR protein has been implicated in epithelial 

differentiation, tissue regeneration, and, when dysfunctional, cancer. However, the mechanisms 

that regulate such relationships are not fully elucidated. Krüppel-like factors (KLFs) are a family of 

transcription factors (TFs) playing central roles in development, stem cell differentiation, and 

proliferation. Herein, we hypothesized that these TFs might have an impact on CFTR expression 

and function, being its missing link to differentiation. Our results indicate that KLF4 (but not KLF2 

nor KLF5) is upregulated in CF vs. non-CF cells and that it negatively regulates wt-CFTR expression 

and function. Of note, F508del–CFTR expressing cells are insensitive to KLF4 modulation. Next, we 

investigated which KLF4-related pathways have an effect on CFTR. Our data also show that KLF4 

modulates wt-CFTR (but not F508del–CFTR) via both the serine/threonine kinase AKT1 (AKT) and 

glycogen synthase kinase 3 beta (GSK3β) signaling. While AKT acts positively, GSK3β is a negative 

regulator of CFTR. This crosstalk between wt-CFTR and KLF4 via AKT/ GSK3β signaling, which is 

disrupted in CF, constitutes a novel mechanism linking CFTR to the epithelial differentiation. 
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1. Introduction 

Cystic Fibrosis (CF) is the most common lethal genetic disease among Caucasians, with a 

variable geographic prevalence of 1:2500–6000 in Europe, according to the European Cystic Fibrosis 

Society registry [1]. Over 2000 mutations in the gene encoding the CF transmembrane conductance 

regulator (CFTR) protein have so far been reported, but the deletion of the phenylalanine at the 

position 508 (F508del) is by far the most common one, present in at least one allele in ~80% of 

individuals with CF worldwide. The F508del mutation impairs CFTR protein folding and plasma 

membrane (PM) trafficking, causing CFTR retention at the level of the endoplasmic reticulum (ER), 

with only a minimal fraction reaching the PM [2] with decreased function and stability. The 

association of CFTR to epithelial differentiation has been described in several studies (reviewed 

recently in [3]). 

Being CFTR a chloride/bicarbonate channel, it is not expected to be a direct regulator of 

differentiation and epithelial regeneration. Therefore, such a role possibly relies on its 
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positive/negative effect on transcriptional factors (TFs) that act at the nuclear level to regulate 

proliferation and differentiation [4]. Moreover, it was also established that CFTR expression is heavily 

dependent on a variety of transcriptional factors (TFs) and miRNAs [5]. Among candidate TFs that 

could link CFTR to epithelial differentiation are the Krüppel-like factors (KLF’s) family members, in 

particular KLF’s 2, 4, and 5, which are known to regulate those processes [6]. Indeed, one study 

coupled the regulation of CFTR to KLF4 through a common regulator—miR-145 [7]. Moreover, KLF4 

is induced transiently in response to wounding, and this phenomenon is absent in CF airway cells 

[8]. In parallel, genomic analyses of open chromatin in human tracheal epithelial cells revealed that 

KLF5 is part of a transcriptional network that represses CFTR gene expression [9,10] and such 

analyses predicted that in human intestinal organoids, KLF4 was among the top genes expected to 

be expressed at high levels, followed by CFTR [11]. Remarkably, another study reported that KLF2 is 

increased by 2.5-fold in CF mouse pre-adipocytes, precluding their differentiation [12], and yet 

another described that KLF2 expression is lost in CF cells [13]. Moreover, KLF2 has been identified 

as playing a role in the inflammatory process with a possible impact within the CF context [14]. 

Altogether, the above studies led us to investigate whether those three KLF family members 

have an impact on CFTR expression and function. 

Our data show that among these, only KLF4 is upregulated in CF vs. non-CF cells in human 

respiratory epithelial cells. Functional studies show that overexpressing KLF4 has a negative impact 

on wt-CFTR expression and function, but F508del–CFTR expressing cells are insensitive to KLF4 

modulation. In an attempt to investigate the possible pathways linking KLFs to CFTR in both CF and 

non-CF contexts, we investigated how KLF4-related serine/threonine kinase 1 (AKT) and glycogen 

synthase kinase 3 beta (GSK3β) pathways affect CFTR. Our data reveal that, while KLF4 modulates 

CFTR via AKT signaling, GSK3β negative impact on CFTR is somewhat independent of KLF4. 

This crosstalk between wt-CFTR and KLF4 via AKT signaling, which is disrupted in CF, 

constitutes a novel mechanism linking CFTR to the epithelial differentiation. 

2. Materials and Methods 

Detailed descriptions of the methods can be found in the Appendix A. 

2.1. Human Lungs 

Explanted human lungs (wt and F508del-CFTR homozygous) were collected as before [15] and 

following approval by the hospital Ethics Committee (Ethical code number EK-300/15, date of 

approval March 4th, 2015). 

2.2. Chemicals, Antibodies, and Primers 

Lists of primary and secondary antibodies used in both Immunofluorescence (IF) and Western 

Blot (WB) are in Supplementary Tables S1 and S2, respectively. Sequences for primers used in qRT-

PCR are in Table S3. siRNAs used are listed in Supplementary Table S4 and inhibitors in 

Supplementary Table S5. 

2.3. Cell Lines 

CF-relevant immortalized bronchial epithelial cell lines, CFBE41o- (Cystic Fibrosis bronchial 

epithelial) cells, stably overexpressing wt- and F508del–CFTR [16], were used in this work and grown 

as previously described [17]. To achieve polarization, cells were seeded on collagen IV pre-coated 

transwell permeable supports. On the following day, media was changed from 10% to 2% (v/v) FBS 

to promote differentiation/polarization. The transepithelial electrical resistance (TEER) was 

measured regularly. The KLF4 knockout cell lines generated by the CRISPR-Cas9 technique were 

grown under the same conditions as the other CFBE cells. 

For siRNA transfection, cells were transfected in suspension in 24-well plates 24 h after being 

split. Transfection mixture using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) was prepared, 

containing 50 nM of siRNA (Supplementary Table S4), according to the manufacturer’s instructions. 
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After transfection, cells were grown in FBS-free media. After 24 h, the media was changed to Eagle’s 

Minimum Essential Medium (EMEM) supplemented with 5% FBS (v/v). Seventy-two hours after 

transfection, cells were harvested. The respective negative controls were used. 

Suspension transfection of CFBE41o- cells with plasmids containing GFP tagged KLF4 (or GFP 

as negative control) was performed in 24 well-plates 24 h after being split, following the 

manufacturer’s instructions. Twenty-four hours later, the media was changed to EMEM 

supplemented with 10% (v/v) FBS. Forty-eight hours post-transfection, the protein extraction was 

performed. KLF4-GFP used was from Origene (RG206691; Rockville, MD, USA), and the Green 

Fluorescent Protein (GFP)control used was pEGFP-C2 from Clontech (Mountain View, CA, USA). 

2.4. KLF4-KO Cells Generation Using CRISPR/Cas9 

The Cas9 plasmid was obtained from Addgene (pCas9_GFP, #44719). pCas9_GFP was used with 

two guide RNAs (1. 5′-GGGGCGGCCGGGAAGCACTG-3′), 2. 5′- GAAACCTTACCACTGTGACT-

3′) targeting the genomic region of KLF4, constructed using Invitrogen’s GeneArt® Gene synthesis 

system. The knockout of KLF4 was carried out using the CRISPR/Cas9 system as previously 

described [18] using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) for cell transfection. For 

clone selection, a plasmid containing the hygromycin resistance gene was co-transfected. Cell clones 

were isolated using clonal discs. Once expanded, genomic DNA from each clone was isolated and 

amplified by PCR with primers recognizing sequences covering the gRNA targeted region. PCR 

products were sequenced to identify KLF4-KO clones, which were also confirmed by WB using KLF4 

antibody for detection. 

2.5. RT-qPCR 

RT-qPCR was performed as previously described [19]. A list of primers is available in the 

Supplementary Data. 

2.6. Biochemical Assays 

For co-immunoprecipitation, we used a previously described protocol [20]. Western blot 

analysis of cell lysates was also previously described [21]. Lists of primary and secondary antibodies 

used are in Supplementary Tables S1 and S2. 

2.7. Immunofluorescence Staining (IF) 

The IF protocol used has been previously described [19]. Lists of primary and secondary 

antibodies used are in Supplementary Tables S1 and S2. 

2.8. Ussing Chamber Experiments 

CFBE cells polarized for 7 days were mounted into a micro-Ussing chamber and analyzed under 

open-circuit conditions at 37 °C, as previously described [19]. 

2.9. Patch-Clamp 

For patch-clamping, cells were grown on coverslips and transfected with KLF4-GFP and GFP 

only as control. The GFP signal allowed the detection of transfected cells. After 48–72 h, the cells were 

used for patch-clamp recordings in whole-cell configuration, as described before [22]. 

2.10. Statistical Analyses 

Data are always presented as mean ± SEM. The Student’s t-test for unpaired samples was used 

for statistical analyses. Prism 6 software (GraphPad, Inc., San Diego, CA, USA) was used for graph 

design and statistical analyses. Significant differences were defined for p ≤ 0.05 and marked with an 

asterisk. Other trends or tests may be stated in the legend. N = 3 unless stated otherwise in the figure 

or in its legend. 
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3. Results 

3.1. KLF4 is Upregulated in CF Native Human Lung and Cell Lines vs. Non-CF 

To unravel the interplay between the three KLF family members under study (KLF2, 4, and 5) 

and CFTR in the context of CF, mRNA expression levels of these KLFs were quantified in native 

human lung specimens from individuals with CF and healthy controls. Data in Figure 1A show that 

KLF4 expression levels were significantly upregulated (by 2.5-fold) in CF compared to control tissue, 

whereas no alteration was observed for KLF2 or KLF5 expression levels. 

We then evaluated the expression of KLFs in CFBE cells expressing wt- and F508del–CFTR at 

both RNA and protein levels (Figure 1B,C). In agreement with the data from native lung tissue, both 

KLF4 mRNA (Figure 1B) and protein (Figure 1C) were found to be significantly upregulated in 

F508del– vs. wt-CFTR expressing cells, being the levels of KLF4 protein increased by ~5-fold in CF 

vs. control cells. Immunofluorescence (IF) data, while also confirming higher expression levels of 

KLF4 in CF vs. control cells, also evidenced that this TF had an almost exclusive nuclear localization 

in CF cells (Figure 1D). Interestingly, as cell confluency increased, we observed that KLF4 levels 

steadily increased, coupled with a progressive decrease in the levels of CFTR (Supplementary Figure 

S1). 

 

Figure 1. Krüppel-like factor 4 (KLF4) is upregulated in Cystic Fibrosis (CF) native human lung and 

cell lines. (A) KLF2, KLF4, and KLF5 mRNA levels were assessed by RT-qPCR in samples retrieved 

from lung explant specimens from individuals with CF heterozygous for F508del– CF transmembrane 

conductance regulator (CFTR) or non-CF controls (n = 4, unpaired t-test, p-value = 0.02). (B) KLF2, 

KLF4, and KLF5 mRNA levels in CFBE cells expressing wt- or F508del–CFTR assessed by RT-qPCR 

(n = 3, unpaired t-test, p < 0.05). (C) Representative WB (left) of KLF4 expression in wt- and F508del–

CFTR CFBE cells, using Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) as loading control 

and (right) quantification of data in (A) in arbitrary units (A.U.) shown as relative expression vs. 

loading control (n = 3, unpaired t-test, p < 0.05). (D) Representative immunofluorescence staining (IF) 

images showing KLF4 staining (red, left panels) in wt- and F508del–CFTR expressing CFBE cells, 

nuclei staining (blue, middle panels) merged images (right panel). Quantification of data below (n = 

4, unpaired t-test, p < 0.05). 
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3.2. KLF4 Downregulation Promotes Expression of wt-CFTR But Not of F508del–CFTR 

To determine whether there was a causal relationship between the observed differences in KLF4 

and CFTR expression levels, we then assessed the impact of knocking-down (KD)/out (KO) KLF4 on 

CFTR expression and function. WB analyses of wt- and F508del–CFTR after KLF4 KD, show distinct 

effects on wt- and F508del-CFTR: while a dramatic increase resulted in total wt-CFTR levels, no 

change was observed in F508del-CFTR expression (Figure 2A). 

To evaluate possible synergies among KLFs, we then carried out a series of experiments to assess 

CFTR expression upon KD of KLF2, KLF4, and KLF5 alone or combined (Supplementary Figure S2). 

Data demonstrated that only KLF4 KD (but neither KD of KLF2 nor KLF5) altered wt-CFTR 

expression. Noticeably, KD KLF2/5 on top of KLF4 KD seemed to counteract the enhancing effect of 

KLF KD on CFTR expression by significantly decreasing CFTR levels. 

For further validation of the KLF4 effects on CFTR expression, we then evaluated CFTR protein 

levels in newly generated KLF4 knockout (KLF4-KO) cell lines (clone validation in Supplementary 

Figure S3). Consistent with KLF4 KD data, KLF4-KO resulted in significantly higher levels of wt-

CFTR, but no marked alteration of F508del-CFTR (Figure 2B). Somewhat surprisingly, the increase in 

CFTR expression resulting from KLF4-KO did not produce a significant effect on CFTR function as 

analyzed in a Ussing chamber (Figure 2C). 

 

Figure 2. KLF4 knock-down/-out upregulates wt- but not F508del–CFTR. (A) Representative WB of 

KLF4 and CFTR expression in CFBE cells expressing wt- or F508del–CFTR and transfected with either 

siKLF4 or negative control (NC). Calnexin was used as loading control. Data are normalized to 

loading control and showed as arbitrary units (A.U.) (n = 3, unpaired t-test, p < 0.05). (B) 

Representative WB of KLF4 and CFTR expression in wt- and F508del–CFTR CFBE cells and their 

respective KLF4 KO (KLF4−/−). Calnexin was used as loading control. Data are normalized to loading 

control and showed as arbitrary units (A. U.) (n = 4, unpaired t-test, p < 0.05). (C) Ussing chamber 

experiments comparing wt-CFTR cells and their KLF4 KO counterparts. Comparable resistances were 

observed (wt-CFTR cells = 1400 ohm.cm2 and wt-CFTR KLF4 KO cells = 1280 ohm.cm2) (n = 3, 

unpaired t-test, p < 0.05). 
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3.3. KLF4 Overexpression Decreases Expression and Function of wt-CFTR 

To further explore the possible KLF4–CFTR functional relationship, we assessed how KLF4 

overexpression affected CFTR expression and function. To this end, we transfected KLF4-GFP or GFP 

cDNA containing vectors into CFBE cells expressing either wt- or F508del–CFTR. WB data in Figure 

3A show that KLF4 overexpression led to a significant decrease in wt-CFTR expression, while no 

significant impact was observed for F508del–CFTR. 

To determine whether KLF4 overexpression also had an impact on wt-CFTR function, we 

performed patch-clamp experiments (Figure 3B). Data show that although basal currents were not 

affected by KLF4 overexpression, CFTR currents resulting from IBMX/Forskolin stimulation were 

significantly lower under KLF4 overexpression in comparison to GFP-transfected cells. By 

determining the I/V curve under stimulating conditions, a difference in outward currents (Cl- influx) 

at voltage steps 60, 80, and 100 was also observed, being consistently lower in KLF4 overexpressing 

vs. control cells. 

 

Figure 3. KLF4 overexpression caused a downregulation of wt-CFTR expression and function. (A) 

Transfection with KLF4-GFP was performed, and the effects of KLF4 overexpression on CFTR 

expression were assessed by WB. Representative WB of KLF4 and CFTR expression in wt- and 

F508del–CFTR CFBE cells transfected with either negative control (+GFP) or KLF4-GFP (+KLF4-GFP). 

Beta-tubulin was used as loading control. Data are normalized to loading control and shown as 

relative expression (vs. wt-CFTR (+GFP)). (n = 3, unpaired t-test, p < 0.05). (B) CFTR chloride currents 

in CFBE wt cells transfected with GFP (wt) or KLF4-GFP (+KLF4). On the left, current–voltage 

relationship obtained in CFBE wt-CFTR and CFBE wt-CFTR + KLF4, and effects of IBMX/Fsk (center) 

and CFTRinh172 (lower). On the right, analysis of CFTR current density (upper) and membrane 

voltage (lower) before (con), and after application of IBMX/Fsk and CFTRinh172. 
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3.4. Characterization of KLF4–CFTR Pathway Crosstalk 

Since CFTR is an apical PM protein and KLF4 has mostly a nuclear localization, it is not likely 

that a direct physical interaction occurs between these two proteins. Still, co-immunoprecipitation 

(co-IP) was performed to investigate this possibility, and, as expected, it showed no evidence of a 

CFTR–KLF4 interaction (Supplementary Figure S4). 

We thus searched in the proximal CFTR and KLF4 networks for the existence of overlapping 

pathways. This bioinformatic analysis revealed that epidermal growth factor receptor (EGFR)–AKT 

and β-catenin (CTNNB) signaling actually link both networks (Supplementary Figure S5), evidencing 

four common key nodes, namely: AKT (serine/threonine kinase 1, also PKB), EGFR (epidermal 

growth factor receptor), β-catenin (β-cat), and GSK3β (glycogen synthase kinase 3 beta). 

Accordingly, next, we investigated these four key proteins (AKT, EGFR, β-cat, and GSK3β) in 

CFBE cells expressing wt- or F508del–CFTR as well as their modulation through KLF4 (Figure 4). 

AKT was investigated in its phosphorylated (active) form (pAKT). Our results showed that pAKT 

was downregulated (Figure 4A), and GSK3β was upregulated (Figure 4B) in F508del– vs. wt–CFTR 

expressing CFBE cells, while the levels of EGFR and β-cat were slightly, albeit not significantly, lower 

in CF cells (Figure 4A,B, respectively). 

To determine the KFL4-dependence of these effects, we investigated these four proteins in KLF4-

KO cells expressing wt- or F508del–CFTR (Figure 4). Our data showed that in the absence of KLF4, 

levels of pAKT, EGFR, and GSK3β (but not β-cat) dramatically increased in both wt- and F508del–

CFTR cells. Regarding the differences in CF vs. non-CF cells, while the trend was maintained (lower 

AKT and EGFR and higher GSK3β in CF cells), only EGFR levels were significantly different between 

wt- and F508del–CFTR KLF4-KO cells. For GSK3β we noted the appearance of a second band, which 

was particularly increased in F508del–CFTR KLF4-KO cells (Figure 4B). 

 

Figure 4. Marked alterations in epidermal growth factor receptor/phosphorylated serine/threonine 

kinase 1 (EGFR/pAKT) and glycogen synthase kinase 3 beta (GSK3β) signaling pathways were 

observed. (A,B) Representative WB of (A) EGFR and pAKT, (B) beta-catenin and GSK3β expression 

in wt- and F508del–CFTR CFBE and their respective KLF4 knockouts. Calnexin was used as loading 

control. Data are normalized to loading control and showed as arbitrary units below (A.U.) (n = 3, 

unpaired t-test, p < 0.05). 

We then tested how modulation of these pathways and their KLF4-dependency affects CFTR 

expression. To this end, first, we blocked AKT using the chemical inhibitor MK-2206 [23]. Our data 

from AKT inhibition in wt- and F508del–CFTR expressing cells led to differential effects, both 

significant (Figure 5): levels of wt-CFTR decreased (Figure 5A), while those of F508del–CFTR 

(immature form, band B) increased (Figure 5B). Noticeably, by assessing the processing of wt-CFTR 

(as measured by band C/total CFTR), a decrease in processing of ~10% was found under AKTinh. This 

is suggestive that besides processing itself, other processes, such as recycling, degradation, and PM 
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stability, may be affected by AKT inhibition. In parallel, we observed that under MK-2206, KLF4 

levels increased in both wt-CFTR (Figure 5A) and CF cells (Figure 5B). These data suggest that, while 

KLF4 can be the cause of wt-CFTR downregulation, its effect is not exerted on F508del–CFTR, as 

above (Figure 2A,B). 

Next, we blocked GSK3β with chemical inhibitor TWS119 [24]. In contrast to AKT inhibition, 

GSK3β inhibition caused the same effect in wt- and F508del–CFTR expressing CFBE cells, leading to 

increased levels of both normal (Figure 5A) and mutant CFTR (Figure 5B). In parallel, there was no 

significant change in KLF4 levels in both cell types (Figure 5A,B). 

To address whether those observed differences were KLF4-dependent, we then tested the effects 

of these two chemical inhibitors in KLF4-KO cells expressing either wt- or F508del–CFTR (Figure 5C). 

Data show that AKT inhibitor no longer decreased wt-CFTR expression in KLF4-KO cells (Figure 5C, 

left). Similarly, GSK3β inhibitor no longer increased wt-CFTR expression in KLF4-KO cells (Figure 

5C, left). These results confirm that the AKT and GSK3β effects on wt-CFTR are KLF4-dependent. 

In contrast, the previously observed increases in F508del–CFTR cells under either AKT or GSK3β 

inhibitors were still present even in the absence of KLF4 (Figure 5C, right), confirming that KLF4 

effects are not exerted on F508del–CFTR. 

 

Figure 5. AKT inhibition impacts negatively on wt-CFTR expression and positively on F508del–CFTR, 

while GSK3β inhibition impacts positively on both wt- and F508del–CFTR. Representative WB of 

CFTR and KLF4 expression in wt- (A) and F508del–CFTR CFBE (B) and their respective KO 

counterparts (C) under DMSO or the inhibitors treatments. Calnexin was used as loading control. 

Data are normalized to loading control and showed as relative expression (vs. DMSO) (n = 3, unpaired 

t-test, p < 0.05). 
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4. Discussion 

Besides its function as a chloride/bicarbonate channel, CFTR has also been implicated in 

epithelial differentiation and regeneration [3], being, however, unclear how this occurs 

mechanistically. Here, we investigated whether the Krüppel-like factors (KLFs), a family of 

evolutionary conserved zinc finger transcription factors that regulate a variety of biological processes 

including proliferation, differentiation, and apoptosis [6], have an impact on CFTR expression and 

function. Among these TFs, we selected KLF2, KLF4, and KLF5 because of previous reports relating 

these TFs to CFTR [7–14] and for their reported role on differentiation [6]. 

Our data indicated that among the three KLFs tested, only KLF4 is altered (upregulated) in CF, 

both in lung tissue and in CF cell lines vs. controls. Furthermore, downregulation of the three KLF’s 

showed that only KLF4 KD by itself was able to exert a significant decrease in wt-CFTR (but not 

F508del) expression, indicating a specific impact of KLF4 on normal CFTR. However, we also 

observed that different KD combinations (namely siKLF2/siKLF4, siKLF4/siKLF5, and 

siKLF2/siKLF4/siKLF5) promoted a significant decrease in CFTR expression. This may indicate that 

there is some compensatory mechanism between KLFs, as well as some degree of redundancy. In 

fact, KLF2 and KLF4 partial redundancy has been previously reported [25], although our data did 

not confirm this. However, KLF5 and KLF2 concomitant knockdown display no major impact on wt-

CFTR levels, suggesting that KLF5 or KLF2 KD require KLF4 repression to produce the observed wt-

CFTR downregulation. Interestingly, previous studies have indicated KLF5 as a repressor of CFTR 

[10], an effect that we could not observe here. Since KLF4 and KLF5 regulate each other [26], it is 

possible that the observed effect results from the interplay of these two TFs. 

Moreover, our data also showed that KLF4 modulation impacts CFTR expression levels and 

activity. The KLF4 KD/KO experiments lead to increased levels of wt-CFTR. However, this was not 

accompanied by a corresponding increase in CFTR activity as assessed by Ussing chamber 

experiments, which we attribute to a technical limitation possibly because CFTR levels activity 

measured were already close to their maximum. It is also possible that Fsk-stimulated activity of wt-

CFTR can still be maximally activated, namely by phosphorylation [27,28]. Thus, depending on the 

phosphorylation state of the cell, there is still room to maximize Fsk-stimulated activity of wt-CFTR 

further. However, in converse experiments (i.e., under KLF4 overexpression), we did observe a 

marked decrease both in the wt-CFTR expression and activity. This is further validated by our 

confluency assays, in which increased levels of confluency were coupled to increased KLF4 and 

decreased wt-CFTR expression. 

Interestingly, the concept that KLF4 activity is highly context-dependent [29] also emerges from 

our data. In fact, F508del–CFTR CFBE cells appeared to be refractory to KLF4 modulation since the 

ability of the latter to negatively regulate CFTR was lost. It is possible that the intrinsic instability of 

F508del-CFTR protein [30] could mask the enhancement of immature F508del–CFTR protein by 

KLF4. In parallel, since it is established that F508del- and wt-CFTR have different interactomes [31–

35], F508del–CFTR as an immature/unstable protein does not establish the required interactions for 

KLF4 to exert its signaling as an F508del–CFTR modulator. Moreover, alterations in intracellular pH 

caused by defective CFTR may also have an impact on the signaling exerted by KLF4 [36] In fact, 

KLF4 KD/KO and overexpression experiments showed no major impact on F508del–CFTR 

expression. Dysfunctional KLF4 in CF cells may be the cause of its observed overexpression in CF, 

possibly via compensatory mechanisms. 

We speculate that this may be due to the fact that CF cells display a partial EMT/cancer-like 

phenotype [3], which leads to altered signaling pathways, namely those linking KLF4 to CFTR. 

Indeed, KLF4 regulates gene expression through transcriptional activation or repression via either 

DNA binding or protein-to-protein interactions, and thus the outcome of KLF4-mediated regulation 

largely depends on the cellular context, e.g., the presence of oncogenic drivers among other factors 

[29]. 

The negative regulation of wt-CFTR (but not F508del–CFTR) by KLF4 led us to consider that 

KLF4 may play a particularly interesting role in non-CF cells and prompted further mechanistic 

investigation. 



Cells 2020, 9, 1607 10 of 18 

 

Although the CFTR gene possesses several major enhancer/promoter regions potentially 

binding several TFs [37], KLF4 (nor KLF2, KLF5) is not predicted to bind these regions. In fact, CFTR 

is not among its KLF4-transcribed genes [25]. We also did not find a direct interaction between these 

two proteins. Therefore, the KLF4-CFTR crosstalk must be mediated by signaling pathways and/or 

interactors. 

Bioinformatic network analysis suggested two plausible pathways linking KLF4 and CFTR, 

namely those involving GSK3β/β-catenin and EGFR/AKT. 

Our data indicated that pAKT is downregulated, and GSK3β is upregulated in F508del–CFTR 

CFBE cells, while EGFR and total β-cat levels are unchanged. Although observed in previous studies, 

our data did not indicate alterations in the β-catenin signaling in the CF context. We speculate that 

this may be due to the fact that those studies used different cell models/organisms [36,38–40]. It is 

also possible that the levels of active β-catenin were altered because we only measured total β-catenin. 

Interestingly, GSK3β upregulation in CF cells occurred with the concomitant appearance of a second 

band, which may correspond to an isoform implicated in other diseases [41]. Moreover, our results 

also indicated that KLF4 appears to act as a repressor of pAKT, EGFR, and GSK3β (but not β-cat), as 

in KLF4-KO cells there was a marked increase in the levels of these proteins. To pinpoint the effects 

of AKT and GSK3β on CFTR, we chemically inhibited these two proteins. Under AKT inhibition (MK-

2206), we observed a differential effect on wt- and F508del–CFTR again: while wt-CFTR levels 

markedly decreased, those of F508del–CFTR significantly increased. Interestingly, KLF4 levels 

increased in the wt-CFTR expressing cells but remained unchanged in CF cells. 

Altogether, these data strongly suggest that the effect of AKT on wt-CFTR is mediated by KLF4 

(Figure 6, left): when AKT was present, KLF4 levels were kept low, and wt-CFTR was normally 

expressed. However, upon AKT inhibition, KLF4 was derepressed, downregulating CFTR. In 

contrast, AKT seems to act as an active repressor of F508del–CFTR regardless of KLF4 (Figure 6, 

right). Indeed, despite the increase in KLF4 by AKT inhibition, F508del–CFTR was still upregulated. 

This effect of AKT modulation on F508del–CFTR has been previously shown [42]. Moreover, another 

study targeting the PI3K/Akt/mTOR signaling pathway in CF also showed that inhibition of AKT 

using MK-2206 increased stability and expression of mutant CFTR and that this effect may possibly 

be mediated by BAG3 [23]. Another interesting report established the connection between AKT and 

CFTR through ezrin [43], a known stabilizer of CFTR at the PM [44]. 

The data shown here for KLF4-KO cells, showing that the AKT inhibitor no longer affected wt-

CFTR but still affected F508del–CFTR, imply that the AKT signaling impact on wt-CFTR is KLF4-

dependent, but this dependency is lost in CF cells (Figure 6). Noteworthy, KLF4 may have opposing 

effects on AKT activity, depending on the malignancy levels [45]. This finding may be relevant for 

the present data if we consider that CF cells display a more cancer-like phenotype [3]. 

Using the GSK3β inhibitor, we observed an increase in both wt- and F508del–CFTR expression, 

but with no change in KLF4 levels. Other authors found that GSK3β inhibition rescues F508del–CFTR 

[46], a finding that we did not detect here, despite the increased levels of band B in F508del–CFTR. 

Our data suggest that GSK3β acts as a repressor of CFTR (both normal and mutant) and that this 

effect is not KLF4-independent in wt-CFTR cells, while this seems to be the case in F508del–CFTR 

cells. However, in KLF4-KO cells, the effect disappeared on wt-CFTR (while remaining on F508del–

CFTR), leading us to envisage that GSK3β is also impacted by KLF4, but not vice-versa (Figure 6). 

Interestingly, KLF4 is a known promotor of Cadherin 3 (CDH3), and GSK3β is a downstream effector 

of CHD3 [47]. Accordingly, it is plausible that GSK3β levels are affected by KLF4 but not the opposite. 

In certain particular contexts, such as differentiation, however, GSK3β is required for transient KLF4 

expression [48]. For β-catenin, described as a positive regulator of CFTR [38], we could not find a 

dependence on KLF4 for its effects on CFTR. One possibility is that NF-kB is a mediator of this process 

[40]. 

Taking our data globally, we propose that AKT is a positive regulator of wt-CFTR, dependent 

on KLF4 and that KLF4 may negatively affect wt-CFTR via Akt repression (Figure 6). Possible 

mediators of this pathway include Hsp90, Ezrin, and BAG3. However, KLF4 has this regulatory role 

disrupted towards mutant CFTR. 
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GSK3β, in turn, is a negative regulator of CFTR (both wt and mutant), but only dependent on 

KLF4 in non-CF cells (Figure 6). Multiple connections between KLF4, AKT, and GSK3β are possible. 

 

Figure 6. KLF4 acts as a negative regulator of wt-CFTR but has its function disrupted in the F508del–

CFTR cells. Our data suggest that the AKT pathway is a positive regulator of wt-CFTR while being a 

negative regulator of F508del–CFTR in a way that is possibly at least partially mediated by KLF4, 

which in turn seems to be negatively regulated by AKT signaling in wt-CFTR cells. GSK3β, on the 

other hand, seems to be a negative regulator of CFTR, which is KLF4-dependent in wt-CFTR and 

KLF4-independent in F508del–CFTR expressing cells. 

Altogether, these data show that KLF4 acts as a negative regulator of wt-CFTR expression and 

function, but its effects are not exerted on F508del–CFTR. This may be due to the fact that CF cells 

display a partial EMT/cancer-like phenotype [3] and that CFTR has been proposed to act as a tumor 

suppressor [49]. This should lead to altered signaling pathways, namely those linking KLF4 to CFTR. 

Thus, further studies are required to unravel the interplay between these factors and CFTR 

completely. 

By establishing a relationship between CFTR and the AKT/GSK3β pathways and KLF4, all 

related to differentiation, this work also opens new avenues for CF therapy. Since our data suggest 

that targeting AKT and GSK3β may increase levels of immature F508del–CFTR, this may be a way to 

enhance the effect of other therapies, i.e., corrector drugs, that rescue F508del–CFTR. Noticeably, the 

therapeutic potential of several inhibitors of the AKT and GSK3β signaling pathways have been 

extensively studied in the context of cancer [50,51]. Interestingly, individuals with CF were also 

shown to have an increased risk of cancer [52–54]. So, these may be safe options worth exploring in 

further detail. Moreover, considering KLF4, a key factor in differentiation [26], modulation of its 

downstream effectors may be a way to partially correct the underlying differentiation defect observed 

in CF [55]. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Confluency 

levels influence the expression of CFTR and KLF4. Figure S2: Different combinations of siRNAs for KLF2, KLF4 

and KLF5 were tested. Figure S3: KLF4 KO validation. Figure S4: Co-immunoprecipitation. Figure S5: Major 

signaling pathways connecting CFTR to KLF4. Table S1: Primary antibodies used. Table S2: Secondary 

antibodies used. Table S3: Description of the primers used in qRT-PCR and for gDNA amplification for KLF4 

KO validation through genomic sequencing. Table S4: Description of the siRNAs used. Table S5: Description of 

the used inhibitors. 
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Appendix A. Extended Methodology 

Appendix A.1. Cell Lines and Growth Conditions 

CF-relevant immortalized bronchial epithelial cell lines, CFBE41o- (Cystic Fibrosis bronchial 

epithelial) cells, stably overexpressing wt- and F508del–CFTR, were used in this work. CFBE cells 

were grown in minimum essential medium Eagle (MEM) with Earl salts and L-glutamine (10-010-

CVR; Corning, NY, USA) supplemented with 10% (v/v) Fetal bovine serum (FBS) (10270; Gibco, 

Waltham, MA, USA) and puromycin (P8833; Sigma–Aldrich, Taufkirchen, Germany) at 2.5 μg/mL 

for selection. To achieve polarization, cells were seeded on collagen IV pre-coated Transwell 

permeable supports at a density of 1.25, 2.5, or 10 × 105 cells, depending on the diameter of the filter 

(6.5 mm, 12 mm, or 24 mm insert, 3470, 3460, and 3450, respectively, Corning, NY, USA). On the 

following day, media was changed from 10% to 2% (v/v) FBS to promote differentiation/polarization. 

The transepithelial electrical resistance (TEER) was measured regularly. The KLF4 knockout cell lines 

generated by the CRISPR-Cas9 technique were grown under the same conditions as the other CFBE 

cells. All cells were grown at 37 °C, 5% CO2. 

Appendix A.2. Treatment with Compounds 

CFBE cells were seeded (100,000 cells) in a P-24 well plate and allowed to grow until fully 

confluent (24 h). Then, they were treated with AKT inhibitor MK-2206 (S1078; Selleckchem, Houston, 

TX, USA) and GSK3beta inhibitor TWS119 (S1590; Selleckchem, Houston, TX, USA) for 48 h at a 

working concentration of 1 μM. Inhibitors were diluted in DMSO at a stock concentration of 40 mM, 

and DMSO was, therefore, used as a negative control. 

Appendix A.3. siRNA Transfection 

For siRNA transfection, 75,000 cells were transfected in suspension in 24-well plates 24 h after 

being split. Transfection mixture using Lipofectamine 2000 (1 mg/mL, #11668019; Invitrogen, 

Carlsbad, CA, USA) was prepared, containing 50 nM of siRNA (Table S 4) and 3 ng Lipofectamine to 

a final volume of 400 μL OptiMEM:EMEM (1:3), according to the manufacturer’s instructions. After 

transfection, cells were grown in FBS-free media. After 24 h, the media was changed to MEM 

supplemented with 5% FBS (v/v). Seventy-two hours after transfection, cells were harvested. The 

respective negative controls were used (Ambion, Austin, TX, USA or Dharmacon, Lafayette, CO, 

USA). 
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Appendix A.4. cDNA Transfection 

Suspension transfection of CFBE wt-and F508del–CFTR cells with plasmids containing GFP 

tagged KLF4 (or GFP for negative control) was performed in 24 well-plates 24 h after being split. Two 

transfection mixtures were prepared, one with 3 ng Lipofectamine® 2000 (1 mg/mL, #11668019; 

Invitrogen, Carlsbad, CA, USA) in 50 μL of OptiMEM and one with 1500 ng cDNA in 50 μL of 

OptiMEM, according to the manufacturer instructions. These two were allowed to incubate for 20 

min and then added dropwise to the well containing 300 μL of minimum essential medium Eagle 

(EMEM), 2% FBS, and 75,000 cells in suspension. Twenty-four hours later, media was changed to 

EMEM supplemented with 10% (v/v) FBS. Forty-eight hours post transfection, the protein extraction 

was performed. KLF4-GFP used was from Origene (RG206691; Rockville, MD, USA), and the GFP 

control used was pEGFP-C2 from Clontech (Mountain View, CA, USA. 

Appendix A.5. KLF4 KO Cell Generation 

The Cas9 plasmid was obtained from Addgene (pCas9_GFP, #44719). pCas9_GFP was used with 

two guide RNAs (1. 5′-GGGGCGGCCGGGAAGCACTG-3′), 2. 5′- GAAACCTTACCACTGTGACT-

3′) targeting the genomic region of KLF4, constructed using the Invitrogen’s GeneArt® Gene synthesis 

system. The knockout of KLF4 was carried out using the CRISPR/Cas9 system, as previously 

described [18], using Lipofectamine 2000 (Invitrogen, Carlsbad, USA) for cell transfection. For clone 

selection, a plasmid containing the hygromycin resistance gene was co-transfected. Cell clones were 

isolated using clonal discs. Once expanded, genomic DNA from each clone was isolated and 

amplified by PCR with primers recognizing sequences covering the gRNA targeted regions. PCR 

products were sequenced to identify KLF4 KO clones, which were also confirmed by WB using KLF4 

antibody for detection. 

Appendix A.6. RNA Extraction, Reverse Transcription, and RT-qPCR 

Total RNA was extracted from human CF (F508del/F508del) and non CF lung samples using the 

Direct-zol RNA Miniprep Plus kit (Zymo Research, Irvine, CA, USA), and reverse transcription of 

cDNA was then performed using 100 ng of each RNA sample, M-MuLV Reverse Transcriptase 

(NZYtech, Lisbon, Portugal), and random primers. A similar protocol was used for CFBE cells, using 

for RNA extraction the NZY total RNA isolation kit (MB13402; NZYtech, Lisbon, Portugal), according 

to the protocol provided. 

Then, a mix containing forward and reverse primers, cDNA (5 ng), and 1× Evagreen SsoFast 

PCR reagent (172-5204; Bio-Rad, Hercules, CA, USA) was used along with a Bio-Rad CFX96 system. 

Bio-Rad CFX Manager 2.0 software (1845000; Bio-Rad, Hercules, CA, USA) was used for analysis. A 

standard cycle protocol was used for PCR amplification (1 min at 95 °C followed by 40 cycles of 10 

sec at 95 °C and 30 sec at 60 °C). 

Technical duplicates were used in amplification, melt curves were examined to confirm the 

amplification of specific products, and negative controls were confirmed to be free of amplification 

after 40 PCR cycles. Mean relative levels of expression were calculated for the target genes using the 

DDCT method, where Fold Change = 2(−ΔΔCT), using mean levels of expression in non CF samples 

as the baseline (or wt-CFTR cells). 

Appendix A.7. Protein Extraction 

For protein extraction cells were washed three times with 1× PBS and lysed in 1× sample buffer 

(SB) (2× SB –Tris-HCl (Sigma, Taufkirchen, Germany) 62.5 mM, pH 6.8, SDS 3% (15553; Gibco, 

Waltham, MA, USA), glycerol 20% (92025; Sigma, Taufkirchen, Germany), Bromophenol Blue 0.02% 

(w/v), DTT 100 mM (Sigma, Taufkirchen, Germany) supplemented with protease inhibitor cocktail 

(11697498001; Roche, Mannheim, Germany), 25 U Benzonase (#E1014-25G; Sigma-Aldrich, 

Taufkirchen, Germany) and 3.125 mM of MgCl2 (Merck, 105833). Lysates were prepared by repeated 

pipetting and then collected. 
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Appendix A.8. Protein Quantification Assay 

The Bio-rad protein assay (5000006; Bio-Rad, Hercules, CA, USA) was used to quantify protein 

extracts. This method is based on the Bradford method. Briefly, the reagent was diluted in water 

(20:80) a curve was made using different concentrations of the BSA standard (Bio-Rad, Hercules, CA, 

USA), applying 0–20 μL of the standard into 1000–980 μL of the reagent. Ten microliters of the 

samples were applied in 990 μL of the reagent. All of these were incubated for 5 min at RT and 

assessed in a spectrophotometer by measuring the absorbance at 595 nm. Standards were used to 

create a linear standard curve and the concentration of the samples calculated by plotting the results 

against the standard curve. 

Appendix A.9. Western Blot 

Twenty-five to forty micrograms of protein were loaded onto polyacrylamide gels (4% for 

stacking and 7% or 10% for resolving gels) to perform SDS/PAGE. Transfer onto polyvinylidene 

difluoride (PVDF) membranes (IPVH00010; Merck Millipore, Burlington, MA, USA) was performed 

using a wet-transfer system. The membranes were blocked for 1 h with 5% (w/v) non-fat milk (NFM) 

in PBS supplemented with Tween 20 (BP337-100; Fisher Scientific, Hampton, NH, USA). This was 

followed by incubation with the primary antibody overnight at 4 °C, with gentle shaking. 

Horseradish peroxidase (HRP)-conjugated secondary antibodies were applied for 1 h at RT. All the 

antibodies were diluted in the blocking solution. Membrane luminescence was detected on a 

Chemidoc XRS+ system (170-8265; Bio-Rad, Hercules, CA, USA). Quantification of band intensity 

was performed using the Image Lab software (170-9690; Bio-Rad, Hercules, CA, USA), which 

integrates peak area. All measurements were normalized against loading controls (calnexin-Clnx, 

vinculin, tubulin, or GAPDH). A list of primary and secondary antibodies can be found in 

Supplementary Table S1 and S2. 

Appendix A.10. Co-Immunoprecipitation 

CFBE wt-CFTR and F508del–CFTR cells were lysed at 4 °C with PD buffer (50 mM Tris-HCl, 0.1 

mM NaCl, 1% (v/v) NP40, 10% (v/v) glycerol, pH 7.5) supplemented with protease inhibitor cocktail 

(Roche, Mannheim, Germany). Lysates were centrifuged. Pellets were discarded, and the 

supernatants were pre-cleared through incubation with Protein-G agarose beads (Invitrogen, 

Carlsbad, CA, USA). The supernatants were then incubated overnight with the appropriate antibody, 

either anti-CFTR or anti-KLF4, at 4 °C. For control reactions, no antibody was added. Beads were 

washed three times with wash buffer (Tris-HCl 0.1 M, NaCl 0.3 mM, Triton X-100 1% (v/v), pH 7.5), 

followed by elution with 1× sample buffer and further separation on SDS-PAGE and Western blot 

analysis. 

Appendix A.11. Immunofluorescence Assay 

CFBE cells were grown in glass coverslips and then fixed with PFA (104003; Merck Millipore, 

Burlington, MA, USA) 4% (v/v), permeabilized with triton X-100 (17-1315-01; Amersham Biosciences, 

Little Chalfont, UK) 0.5% (v/v), and blocked with bovine serum albumin (BSA) 1% (w/v). Cells were 

then incubated for 2 h with the primary antibody at room temperature, after which a mix of the 

secondary antibodies and nuclear dye (4 μg/mL, Methyl Green, Sigma–Aldrich, 67060 or Hoechst 

33258 (1 μg/mL, 94403; Sigma–Aldrich, Taufkirchen, Germany) was applied for 1 h at RT. Coverslips 

were then mounted in a mix of N-propylgallate (P3130; Sigma–Aldrich, Taufkirchen, Germany) and 

glycerol for microscopy (104,095; Merck, Darmstadt, Germany). Imaging was performed with a Leica 

6500B microscope. Software used for the acquisition was Leica’s LAS x, and image processing was 

performed on ImageJ FIJI. 

Appendix A.12. Ussing Chamber Experiments 

CFBE cells polarized (as measured by a TEER > 500 ohm.cm2) for 7 days were mounted into a 

micro-Ussing chamber and analyzed under open-circuit conditions at 37 °C. Apical and basolateral 
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sides were continuously perfused with ringer solutions containing 30 and 145 mM Cl—

concentrations (pH 7.4), respectively. After an equilibrium period, 30 μM amiloride (A7410; Sigma–

Aldrich, Taufkirchen, Germany) was added apically to block ENaC. Subsequently, the cyclic 

adenosine 3′-5′ monophosphate (cAMP) agonist, Forskolin (Fsk- 2 μM), the CFTR potentiator Gen (50 

μM), and the CFTR channel blocker Inh172 (30 μM) were added sequentially. Values for 

transepithelial voltages (Vte) were referenced to the basal surface of the epithelium. Transepithelial 

resistance (Rte) was determined by applying short current pulses (1 s) of 0.5 μA (5-s period). The 

equivalent short circuit (Ieq-sc) was calculated according to Ohm’s law (Ieq-sc = Vte/Rte). 

Appendix A.13. Patch-Clamp 

For patch-clamping, cells were grown on coverslips and transfected with KLF4-GFP and GFP 

plasmid only as control. The GFP signal allowed the detection of transfected cells. After 48–72 h, the 

cells were used for measurements. Mounted in a perfused bath on the stage of an inverted 

microscope, the cells were perfused continuously and held at 37 °C via a water tubing system. Patch-

clamp recordings were performed in whole-cell configuration. A glass microelectrode was filled with 

an intracellular cell-like solution and attached to the cell surface, which led to a high resistance seal 

formed between the pipette and the cell when applying a slight negative pressure. To achieve the 

whole-cell configuration, the patch was disrupted by a hard suction, and whole-cell currents were 

measured using a computer-controlled amplifier, which was connected to the microelectrode. 

Membrane voltages (Vm) from -100 to 100 mV were clamped in 20 mV steps. 

Appendix A.14. Statistical Analyses 

Data are always presented as mean ± SEM. The Student’s t-test for unpaired samples was used 

for statistical analyses. Prism 6 software (GraphPad, Inc., San Diego, CA, USA) was used for graph 

design and statistical analyses. Significant differences were defined for p ≤ 0.05 and marked with an 

asterisk. Other trends or tests may be stated in the legend. N = 3 unless stated otherwise in the figure 

or in its legend. On Western blots, all images compared come from the same blot. 
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