Table S1: Proteins, peptides and genomes from various organisms and their respective accession numbers used in comparison with CTXLP cysteine-rich motif.

Protein/Peptide	Organism	Uniprot Accession #
Conotoxins	Conus species	conus name:conotoxinª
Viral conotoxin-like proteins	NPV	nuclear polyhedrosis virus toxin ^b
Guanxitoxin-2	Spider	P84837.1
Guanxitoxin-1D	Spider	P84836.1
Hainantoxin-I	Spider	D2Y1X6.1
Hainantoxin-III	Spider	D2Y1X9.1
Hainantoxin-IV	Spider	1NIY_A
Hainantoxin-V	Spider	P60975.1
Hanatoxin-1	Spider	P56852.1
Hanatoxin-2	Spider	P56853.1
Sgtx	Spider	1LA4_A
Grammotoxin	Spider	P60590.2
Huwentoxin-I	Spider	P56676.2
Huwentoxin-X	Spider	P68424.2
Agouti-related peptide	Human	O00253.1
Agouti-signalling protein	Human	1Y7K_A
VEGF-A	Human	P15692.2
VEGF-B	Human	P49765.2
VEGF-C	Human	CAA63907.1
VEGF-D	Human	BAA24264.1
VEGF-E	Human	ABA00650.1
VEGF-F	Snake	1WQ8_A
Placental Growth Factor	Human	AAH07789.1
Tat	HIV-1	CCD30501.1
Tat	HIV-2	AAA76845.1
Tax	HTLV-1	BAD95659.1
Tax	HTLV-2	AFC76143.1
Tax	HTLV-3	Q0R5R1.1
Envelope	HTLV-4	CAA29690.1
Envelope	Jaagsiekte Sheep Retrovirus	AAK38688.1
Genome		NCBI Accession #
HIV-1		NC_001802.1
HIV-2		NC_001722.1
HTLV-1		NC_001436.1
HTLV-2		NC_001488
HTLV-3		EU649782
HTLV-4		X06391
MMTV		NC_001503
ERVW		NM_001130925.2
ERVW		NM_014590.3
Genome		Repbase Accession #
ERVH		HERVH
ERVK (HLM-2)		HERVK
ERVW		HERV17
Genome		HIV Sequence Database

170 representative HIV strains	https://www.hiv.lanl.gov/content/
	sequence/NEWALIGN/align.html

^a Uniprot: https://www.uniprot.org/uniprot/?query=conus+name%3Aconotoxin&sort=score

^b Uniprot: https://www.uniprot.org/uniprot/?query=nuclear+polyhedrosis+virus+toxin&sort=score

Table S2: ERVK HML-2 insertions in humans and their chromosomal location examined for an intact Rec and/or CTXLP ORF, along with any known disease associations.

Accession number	Genomic location	ERVK insertion	Intact Rec?	Intact Conotoxin?
JN675007	1p31.1	ERVK-1 ^a _HML-2_1p31.1_75842771	No	Yes
JN675010	1p36.21b	ERVK-76 ^b _HML-2_1p36.21b_13458305	No	No
JN675011	1p36.21c	ERVK-76 ^b _HML-2_1p36.21c_13678850	No	No
JN675013	1q23.3	ERVK-18ª_HML-2_1q23.3_160660575	No	Yes
JN675014	1q22	ERVK-7ª_HML-2_1q22_ 155596457	No	Yes
JN675015	1q24.1	ERVK-12 ^b _HML-2_1q24.1_166574603	No	No
JN675016	1q32.2	ERVK_HML-2_1q32.2_207808457	No	No
JN675018	2q21.1	ERVK_HML-2_2q21.1_130719538	No	Yes
JN675019	3p12.3	ERVK_HML-2_3p12.3_75600465	No	No
JN675020	3p25.3	ERVK-2 ^{a,b} _HML-2_3p25.3_9889346	No	No
JN675021	3q12.3	ERVK-5 ^a _HML-2_3q12.3_101410737	No	Yes
JN675022	3q13.2	ERVK-3ª_HML-2_3q13.2_112743479	No	Yes
JN675023	3q21.2	ERVK-4 ^a _HML-2_3q21.2_125609302	No	Yes
JN675025	3q27.2	ERVK-11 ^a _HML-2_3q27.2_185280336	No	Yes
JN675026	4p16.1a	ERVK-17 ^b _HML-2_4p16.1a_9123515	No	No
JN675027	4p16.1b	ERVK-50cb_HML-2_4p16.1b_9659588	No	No
JN675029	4p16.3b	ERVK-7 ^b _HML-2_4p16.3b_3980069	No	No
JN675030	4q13.2	ERVK_HML-2_4q13.2_463709	No	No
JN675032	4q32.3	ERVK-13 ^a _HML-2_4q32.3_5916840	No	No
JN675034	5p12	ERVK_HML-2_5p12_46000159	No	No
JN675035	5p13.3	ERVK-104 ^b _HML-2_5p13.3_30487114	No	Yes
JN675036	5q33.2	ERVK-18bb_HML-2_5q33.2_154016502	No	No
JN675037	5q33.3	ERVK-10 ª_HML-2_5q33.3_156084717	No	Yes
JN675039	6p21.1	ERVK-OLD35587b_HML-2_6p22.1_42861409	No	No
JN675040	6p22.1	ERVK-69_HML-2_6p22.128650367	No	No
JN675041	6q14.1	ERVK-9ª_HML-2_6q14.1_78427019	Yes	Yes
JN675043	7p22.1a	ERVK-14 ^a _HML-2_4622057	Yes	Yes
JN675044	7p22.1b	ERVK-14 ^a _HML-2_4630561	Yes	Yes
JN675049	8p23.1a	ERVK-8ª_HML-2_8p23.1a _7355397	No	Yes
JN675050	8p23.1b	ERVK-27 ^b _HML-2_8p23.1b_8054700	No	No
JN675051	8p23.1c	ERVK_HML-2_8p23.1_12073970	No	No
JN675052	8p23.1d	ERVKOLD130352 ^b _HML-	No	No
		2_8p23.1d_12316492 1		
JN675053	8q11.1	ERVK-70 ^b _HML-2_8q11.1_47175650	No	No
JN675057	9q34.11	ERVK-31 ^b _HML-2_9q34.11_131612515	No	No
JN675058	10p12.1	ERVK-103 ^b _HML-2_10p12.1_27182399	No	Yes
JN675059	10p14	ERVK-16 ^a _HML-2_10p14_6867109	No	No

JN675060	10q24.2	ERVK-17 ^a _HML-2_10q24.2_101580569	No	No
JN675061	11p15.4	ERVK3-4 ^a _HML-2_11p15.4_3468656	No	No
JN675062	11q12.1	ERVK_HML-2_11q12.1_58767448	No	No
JN675063	11q12.3	ERVK-OLDAC004127 ^b _HML-2_11q12.3_	No	No
		62135963		
JN675064	11q22.1	ERVK-25ª_HML-2_11q22.1_ 101565794	Yes	Yes
JN675065	11q23.3	ERVK-20ª_HML-2_ 11q23.3_118591724	No	Yes
JN675066	12p11.1	ERVK-50E ^b _HML-2_12p11.1_34772555	No	No
JN675067	12q13.2	ERVK_HML-2_12q13.2_55727215	No	Yes
JN675068	12q14.1	ERVK-21 ^b _HML-2_12q14.1_ 58721242	No	Yes
JN675073	15q25.2	ERVK_HML-2_15q25.2_84829020	No	No
JN675074	16p11.2	ERVK_HML-2_16p11.2_34231474	No	Yes
JN675075	17p13.1	ERVK_HML-2_17p13.1_7960357	No	No
JN675076	19p12a	ERVK52 ^b _HML-2_ 19p12a _20387400	No	No
JN675077	19p12b	ERVK113 ^b _HML-2_19p12b_21841536	Yes	Yes
JN675077 JN675078	19p12b 19p12c	ERVK113 ^b _HML-2_19p12b_21841536 ERVK51 ^b _HML-2_19p12c_22757824	Yes No	Yes Yes
JN675077 JN675078 JN675080	19p12b 19p12c 19q11	ERVK113b_HML-2_19p12b_21841536 ERVK51b_HML-2_19p12c_22757824 ERVK-19b_HML-2_19q11_228128498	Yes No Yes	Yes Yes No
JN675077 JN675078 JN675080 JN675081	19p12b 19p12c 19q11 19q13.12a	ERVK113b_HML-2_19p12b_21841536 ERVK51b_HML-2_19p12c_22757824 ERVK-19b_HML-2_19q11_228128498 ERVK_HML-2_19q13.12a_36063207	Yes No Yes No	Yes Yes No No
JN675077 JN675078 JN675080 JN675081 JN675082	19p12b 19p12c 19q11 19q13.12a 19q13.12b	ERVK113b_HML-2_19p12b_21841536 ERVK51b_HML-2_19p12c_22757824 ERVK-19b_HML-2_19q11_228128498 ERVK_HML-2_19q13.12a_36063207 ERVKOLD12309_HML-	Yes No Yes No No	Yes Yes No No No
JN675077 JN675078 JN675080 JN675081 JN675082	19p12b 19p12c 19q11 19q13.12a 19q13.12b	ERVK113b_HML-2_19p12b_21841536 ERVK51b_HML-2_19p12c_22757824 ERVK-19b_HML-2_19q11_228128498 ERVK_HML-2_19q13.12a_36063207 ERVKOLD12309_HML- 2_19q13.12b_37597549	Yes No Yes No No	Yes Yes No No No
JN675077 JN675078 JN675080 JN675081 JN675082 JN675083	19p12b 19p12c 19q11 19q13.12a 19q13.12b 19q13.41	ERVK113b_HML-2_19p12b_21841536 ERVK51b_HML-2_19p12c_22757824 ERVK-19b_HML-2_19q11_228128498 ERVK_HML-2_19q13.12a_36063207 ERVKOLD12309_HML- 2_19q13.12b_37597549 ERVK3-6a_HML-2_19q13.41_53248274	Yes No Yes No No No	Yes Yes No No No
JN675077 JN675078 JN675080 JN675081 JN675082 JN675083 JN675084	19p12b 19p12c 19q11 19q13.12a 19q13.12b 19q13.41 19q13.42	ERVK113b_HML-2_19p12b_21841536 ERVK51b_HML-2_19p12c_22757824 ERVK-19b_HML-2_19q11_228128498 ERVK_HML-2_19q13.12a_36063207 ERVKOLD12309_HML- 2_19q13.12b_37597549 ERVK3-6a_HML-2_19q13.41_53248274 LTR13b_HML-2_19q13.42_53862348	Yes No Yes No No No	Yes Yes No No No No
JN675077 JN675078 JN675080 JN675081 JN675082 JN675083 JN675084 JN675085	19p12b 19p12c 19q11 19q13.12a 19q13.12b 19q13.41 19q13.42 20q11.22	ERVK113b_HML-2_19p12b_21841536 ERVK51b_HML-2_19p12c_22757824 ERVK-19b_HML-2_19q11_228128498 ERVK_HML-2_19q13.12a_36063207 ERVKOLD12309_HML- 2_19q13.12b_37597549 ERVK3-6a_HML-2_19q13.41_53248274 LTR13b_HML-2_19q13.42_53862348 ERVK59b_HML-2_20q11.22_32714750	Yes No Yes No No No No	Yes Yes No No No No Yes
JN675077 JN675078 JN675080 JN675081 JN675082 JN675083 JN675084 JN675085 JN675086	19p12b 19p12c 19q11 19q13.12a 19q13.12b 19q13.41 19q13.42 20q11.22 21q21.1	ERVK113b_HML-2_19p12b_21841536 ERVK51b_HML-2_19p12c_22757824 ERVK-19b_HML-2_19q11_228128498 ERVK_HML-2_19q13.12a_36063207 ERVKOLD12309_HML- 2_19q13.12b_37597549 ERVK3-6a_HML-2_19q13.41_53248274 LTR13b_HML-2_19q13.42_53862348 ERVK59b_HML-2_20q11.22_32714750 ERVK-23a_HML-2_21q21.1_19933916	Yes No Yes No No No No No	Yes Yes No No No Yes Yes
JN675077 JN675078 JN675080 JN675081 JN675082 JN675083 JN675084 JN675085 JN675086 JN675087	19p12b 19p12c 19q11 19q13.12a 19q13.12b 19q13.41 19q13.42 20q11.22 21q21.1 22q11.21	ERVK113b_HML-2_19p12b_21841536 ERVK51b_HML-2_19p112c_22757824 ERVK-19b_HML-2_19q11_228128498 ERVK_HML-2_19q13.12a_36063207 ERVKOLD12309_HML- 2_19q13.12b_37597549 ERVK3-6a_HML-2_19q13.41_53248274 LTR13b_HML-2_19q13.42_53862348 ERVK59b_HML-2_20q11.22_32714750 ERVK-23a_HML-2_21q21.1_19933916 ERVK-24a_HML-2_22q11.21_18926187	Yes No Yes No No No No No No	Yes Yes No No No Yes Yes Yes
JN675077 JN675078 JN675080 JN675081 JN675082 JN675083 JN675084 JN675085 JN675086 JN675087 JN675088	19p12b 19p12c 19q11 19q13.12a 19q13.12b 19q13.41 19q13.42 20q11.22 21q21.1 22q11.21 22q11.23	ERVK113b_HML-2_19p12b_21841536 ERVK51b_HML-2_19p12c_22757824 ERVK-19b_HML-2_19q11_228128498 ERVK_HML-2_19q13.12a_36063207 ERVKOLD12309_HML- 2_19q13.12b_37597549 ERVK3-6a_HML-2_19q13.41_53248274 LTR13b_HML-2_19q13.42_53862348 ERVK59b_HML-2_20q11.22_32714750 ERVK-23a_HML-2_21q21.1_19933916 ERVK-24a_HML-2_22q11.21_18926187 ERVK-KOLD345b_HML-	Yes No Yes No No No No No No No No	Yes No No No No Yes Yes Yes No No
JN675077 JN675080 JN675081 JN675082 JN675083 JN675083 JN675084 JN675085 JN675086 JN675087 JN675088	19p12b 19p12c 19q11 19q13.12a 19q13.12b 19q13.41 19q13.42 20q11.22 21q21.1 22q11.21 22q11.23	ERVK113b_HML-2_19p12b_21841536 ERVK51b_HML-2_19p12c_22757824 ERVK-19b_HML-2_19q11_228128498 ERVK_HML-2_19q13.12a_36063207 ERVKOLD12309_HML- 2_19q13.12b_37597549 ERVK3-6a_HML-2_19q13.41_53248274 LTR13b_HML-2_19q13.42_53862348 ERVK59b_HML-2_20q11.22_32714750 ERVK-23a_HML-2_21q21.1_19933916 ERVK-24a_HML-2_22q11.21_18926187 ERVK-KOLD345b_HML-2_22q11.21_323879930	Yes No Yes No No No No No No No	Yes No No No No Yes Yes Yes No No
JN675077 JN675078 JN675080 JN675081 JN675082 JN675083 JN675084 JN675085 JN675086 JN675087 JN675088 JN675088	19p12b 19p12c 19q11 19q13.12a 19q13.12b 19q13.41 19q13.42 20q11.22 21q21.1 22q11.21 22q11.23 Xq11.1	ERVK113b_HML-2_19p12b_21841536 ERVK51b_HML-2_19p12c_22757824 ERVK-19b_HML-2_19q11_228128498 ERVK_HML-2_19q13.12a_36063207 ERVKOLD12309_HML- 2_19q13.12b_37597549 ERVK3-6a_HML-2_19q13.41_53248274 LTR13b_HML-2_19q13.42_53862348 ERVK59b_HML-2_20q11.22_32714750 ERVK-23a_HML-2_21q21.1_19933916 ERVK-KOLD345b_HML-2_22q11.21_18926187 ERVK-KOLD345b_HML-2_23714750	Yes No Yes No No No No No No No No No	Yes No No No No Yes Yes Yes No

Disease associations: MS (yellow,) MS (No CTXLP; pale yellow), Cancer (Green), Cancer (No CTXLP; dark green), Schizophrenia (blue).

a) Mayer, J., Blomberg, J., & Seal, R. L. (2011). A revised nomenclature for transcribed human endogenous retroviral loci. Mobile DNA, 2(1), 7.

b) Subramanian, R. P., Wildschutte, J. H., Russo, C., & Coffin, J. M. (2011). Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology, 8(1), 90.

Case	Diagnosis	Cause of death	Tissue	Age	Gender	PMI	Tissue	WB	Confocal
						(hours)	bank		
	ALS	ALS	BA6	67	F	12 5	NBB		
2712	TILO	1120	CC	07	1	12.0	1 (DD	•	
	ALS	ALS	BA6,	76	F	8.6	NBB	•	
2776		(PBP)	CC						
	ALS	ALS	BA4,	58	F	15.1	NBB	•	•
			BA6,						
4501			CC						
	ALS	ALS	BA6,	61	F	7.5	NBB	•	•
4739	41.0		CC	10			NEE		
	ALS	ALS	BA6,	40	М	15.6	NBB	•	•
4755			LC,						
4755									
			DA4, ΒΔ6						
4766	ALS	ALS	CC	82	F	12.1	NBB	•	•
			LC						
	ALS	ALS, HT,	BA6,	69	М	13.2	NBB	•	
5187		CUTI	CC					•	
	ALS	ALS	BA4,	50	М	21	NBB	•	•
			BA6,						
5212			CC						
	ALS	ALS	BA4,	59	М	12.5	NBB	•	•
			BA6,						
5215			CC						
	ALS	ALS	BA4,	53	М	16.8	NBB	•	•
			BA6,						
5216			CC	(2)		1	I Z A DT		
	ALS	ALS (HR, RF)	BA4,	62	М	1.66	VABT	•	•
100024			DA6,						
100034	ALS	ALS (RF)	CC	50	М	5	VABT	•	
110007	ALS	ALS (RF)	CC	80	М	1 25	VABT	_	
11000/	ALS	ALS	BA4	84	M	3.58	VABT		
	1120	1120	BA6,	01		0.00	VIIDI	•	•
110009			CC						
	ALS	ALS	BA4,	83	М	2.5	VABT	•	•
			BA6,						
			CC,						
110011			LC						
	ALS	ALS	BA4,	85	М	2.5	VABT	•	
110036			BA6						

Table S3: Demographics of patients and tissue sample source.

	ALS	ALS	BA4,	58	F	1	VABT	٠	
120011			DA6, CC						
120011	ALS	ALS	BA4,	83	М	0.25	VABT	•	•
			BA6,					-	
			CC,						
120018			LC						
100001	ALS	ALS (RF)	BA4,	70	М	0.5	VABT	•	
120021	Normal	COPD	BA6	00	М	17.0	NIDD		
3221	Normal	COPD	DA4, BA6	90	IVI	17.8	INDD	•	•
3298	Normal	Hypoxia	BA6	79	М	20	NBB	•	
5270		Heart attack.	BA4.		-	-		-	
3359	Normal	stroke	BA6	86	М	14.5	NBB		•
3371	Normal	LC	BA6	52	М	16	NBB	•	•
3504	Normal	Normal aging	BA6	80	М	11	NBB	•	
	Normal	Cardiomyopathy	BA4,	76	М	11	NBB	•	•
3565			BA6						
4294	Normal	PC, HT	BA6	80	М	19.2	NBB	•	•
4307	Normal	SC, Rn F, COPD,	BA4,	84	М	11.8	NBB		•
1007		DB, HT	BA6			11.0			-
4514	Normal	LC, COPD	BA6	66	М	17.3	NBB	•	
1660	Normal	PC, DB, HT	BA4,	73	F	18.5	NBB	٠	•
4660	Normal	Normalaging	BA6	67	м	22	NIDD		
5452	Normai	Normai aging	LC	07	1 v1	23	INDD	•	•
5572	Normal	Normal aging	CC	70	F	24	NBB	•	
5611	Normal	Normal aging	CC	50	F	15	NBB	•	
5011	Normal	Normal aging	CC,	59	М	10	NBB	•	•
5617			LC					•	•
5628	Normal	Normal aging	CC	54	F	27	NBB	•	
5656	Normal	Normal aging	CC	51	F	21	NBB	•	•
5762	Normal	Normal aging	CC	39	F	19	NBB	•	
	Normal	DADL	CC,	81	F	4	VABT	•	•
100012			LC						
		PE	BA4,	67	М	2.75	VABT	•	•
	Normal		BA6,						
110005			LC						
110003	Normal	CS		71	М	2.42	VABT		•
110023			LC		-1-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Brain bank NBB: Neurobiobank

VABT: Veterans affairs biorepository tissues

Disease

ALS: Amyotrophic lateral sclerosis COPD: Chronic obstructive pulmonary disease CS: Cardiogenic shock CUTI: Chronic urinary tract infection DADL: Diffuse alveolar damage of the lungs DB: Diabetes HT: Hypertension HF: Heart failure LC: Lung cancer PBP: Progressive bulbar palsy PC: Pancreatic cancer PE: Pulmonary edema RF: Respiratory failure Rn F: Renal failure SC: Stomach cancer

Tissue

BA4: Brodmann area 4 motor cortex BA6: Brodmann area 6 prefrontal cortex CC: Cervical spinal cord LC: Lumbar spinal cord

Other

WB: Western blot PMI: post-mortem interval

Primary antibody	Source	Product	Host
		number	
β-actin	ThermoFisher	MA5-15739	Mouse
	Scienctific, Rockford,		monoclonal
	IL, USA		
β-actin	Abcam, Cambridge,	ab13822	Chicken
	MA, USA		polyclonal
Active and pro-Caspase-3	Abcam, Cambridge,	ab1355	Mouse
(31A1067)	MA, USA		monoclonal
CX3CL1	Abcam, Cambridge,	ab89229	Mouse
	MA, USA		monoclonal
Endogenous Retrovirus-K,	Custom	Custom	Rabbit
Human Conotoxin-like			polyclonal
Protein (serum)			
Endogenous Retrovirus-K,	Custom	Custom	Rabbit
Human Conotoxin-like			polyclonal
Protein (affinity purified)			
Endogenous Retrovirus-K,	LifeSpan BioSciences,	LS-C65286	Mouse
Human Envelope Protein	Inc.		monoclonal
Endogenous Retrovirus-K,	Abnova	H00002087-	Mouse
Human Reverse		A01	polyclonal
Transcriptase			
MAP2	Novus Biologicals,	NB300-213	Chicken
	Littleton, CO		polyclonal
MLKL (3B2)	Santa Cruz	sc-293201	Mouse
	Biotechnology,		monoclonal
	Dallas, TX		
Myelin associated	Millipore, Temecula,	MAB1567	Mouse
glycoprotein (clone 513)	CA		monoclonal
Myelin basic protein	Millipore, Temecula,	AB9348	Chicken
	CA		polyclonal
N-type Ca++ CP α 1B (A-2)	Santa Cruz	sc-377489	Mouse
[Cav2.2]	Biotechnology,		monoclonal
	Dallas, TX		
NF-кВ р65	Abcam, Cambridge,	ab243	Sheep
	MA		polyclonal
Nogo-A (aa566-748)	Novus Biologicals,	AF3515	Sheep
	Oakville, ON		polyclonal
Olig-1	Millipore, Temecula,	MAB5540	Mouse
	CA		monoclonal
TCF-4 (clone 6H5-3)	Millipore, Temecula,	05-511	Mouse
	CA		monoclonal
βIII tubulin	Abcam, Cambridge,	ab41489	Chicken
	MA		polyclonal

Table S4: Primary and secondary antibodies used.

Secondary antibody	Source	Product	Host
ALEXA FLUOR 488 Goat	Life Technologies,	A11017	Goat
anti-mouse IgG	Inc., Burlington, ON	-	
ALEXA FLUOR 594 Goat	Life Technologies,	A11020	Goat
anti-mouse IgG	Inc., Burlington, ON		
ALEXA FLUOR 647 Goat	Life Technologies,	A21237	Goat
anti-mouse IgG	Inc., Burlington, ON		
ALEXA FLUOR 488 Goat	Life Technologies,	A11070	Goat
anti-rabbit IgG	Inc., Burlington, ON		
ALEXA FLUOR 594 Goat	Life Technologies,	A11072	Goat
anti-rabbit IgG	Inc., Burlington, ON		
ALEXA FLUOR 647 Goat	Life Technologies,	A21246	Goat
anti-rabbit IgG	Inc., Burlington, ON		
ALEXA FLUOR 594	Life Technologies,	A11016	Donkey
Donkey anti-sheep IgG	Inc., Burlington, ON		
ALEXA FLUOR 488 Goat	Life Technologies,	A11039	Goat
anti-chicken IgG	Inc., Burlington, ON		
ALEXA FLUOR 647 Goat	Life Technologies,	A21449	Goat
anti-chicken IgG	Inc., Burlington, ON		
ALEXA FLUOR 647	Life Technologies,	A11007	Donkey
Donkey anti-rat IgG	Inc., Burlington, ON		
Goat anti-rabbit (H+L)	Biorad	#170-6515	Goat
HRP Conjugate			
Goat anti-mouse (H+L)	Biorad	#170-6516	Goat
HRP Conjugate			

Figure S1: ERVK CTXLP and its similarity with *Conus*-derived conotoxins. (A) Schematic representation of CTXLP and amino acid sequence similarities found using NCBI-CDD and Pfam databases. The SU subunit of CTXLP is blue and the omega conotoxin domain is in red. The wider portions of the diagram represent the ordered regions of the proteins and the narrow region represents the disordered region as predicted by Eukaryotic Linear Motif (ELM) resource [1]. (**B**) Predicted inhibitor cysteine knot fold of ERVK CTXLP cysteine-rich peptide. Disulfide bonds connect cysteine 1 to cysteine 4, cysteine 2 to cysteine 5, and cysteine 3 to cysteine 6, resulting in an inhibitor cysteine knot fold. (**C**) Alignment of ERVK CTXLP and representative O-conotoxin sequences with identity scores above 40%, from cone snail species *Conus victoriae, Conus pennaceus, Conus marmoreus* and *Conus textile.* Note the conservation of the characteristic C-C-CC-C knottin folding motif [2].

30 Ċ а S CCS C ċ G F A Consensus Sequence Logo Identity 10 SDYGINCSHSYGCCSRSC IALFCSVSKLC ERVK CTXLP Ċ tr A0A1V1FMG3 A0A1V1FMG3_NPVAP SSSS AAAAA **KKKKK** YYYYY L FFFFF tr A8C6C4 A8C6C4_NPVAP L tr A9YMX2 A9YMX2_9BBAC tr A0A0B4UM78 A0A0B4UM78_9ABAC tr D3YGV0 D3YGV0_9ABAC L tr Q8QLC7 Q8QLC7_9ABAC tr A0A0M3WQZ9 A0A0M3WQZ9_9BACU D A YYY F tr R4ZEY6 R4ZEY6 9POXV A F A κ tr A0A126FC80 A0A126FC80_9ABAC YYYYYYYYY FFF A0EYV0 A0EYV0_9ABAC A tr tr |Q0N447 |Q0N447_9ABAC A tr | D7F5S1 | D7F5S1_9ABAC tr | Q2NP33 | Q2NP33_NPVHC tr | S5MKZ5 | S5MKZ5_9ABAC sp | O10286 | CXOL2_NPVOP AA FFFFFFF A A tr | A0A0N6WJG8 | A0A0N6WJG8_9ABAC tr | B7SUF7 | B7SUF7_9ABAC tr | Q8JM47 | Q8JM47_9ABAC tr | D4N2A0 | D4N2A0_9ABAC A A A A F Y tr | Q9YMH9|Q9YMH9_NPVLD tr | A0A1B1V5J8|A0A1B1V5J8_9ABAC D F A F S5N371 S5N371_9ABAC A tr tr R4ZGI6 R4ZGI6_9POXV A F tr R4ZDM0 R4ZDM0_CBEPV A tr R4ZE65 R4ZE65_9POXV tr Q4KT06 Q4KT06_9ABAC tr T1QGA8 T1QGA8_9ABAC A FFFF A A tr A0A1C8ZXU4 A0A1C8ZXU4 9ABAC tr A0A0B4ZWB3 A0A0B4ZWB3 9ABAC A FFF A tr | B0FDP5 | B0FDP5_9ABAC A tr | A0A1B1MQY2 | A0A1B1MQY2_NPVLD sp | 010367 | CXOL1_NPVOP A F tr | A0A0N7D837 | A0A0N7D837_9ABAC F tr 089743 089743_NPVBS F A0A1B1MQR6 A0A1B1MQR6_NPVLD F tr tr Q7TLN0 Q7TLN0_NPVCF tr S5N9H8 S5N9H8_NPVCF н F s н F tr | B6S2E9 | B6S2E9_9ABAC tr | Q80LL0 | Q80LL0_NPVAH F A A F tr A0A126FCD3 A0A126FCD3_9ABAC н F A0A0M3WN55 A0A0M3WN55_9BACU н tr tr | B0FDX4 | B0FDX4 | 9ABAC tr | Q5Y4P1 | Q5Y4P1 | NPVAP tr | D3YGV1 | D3YGV1 | 9ABAC tr | Q2NP55 | Q2NP55 | NPVHC н н F н F н F F sp|P41416|CXOL_NPVAC н tr | H6UPN5 | H6UPN5_9ABAC tr | A0A097PV01 | A0A097PV01_NPVAC tr | Q0GYM0 | Q0GYM0_9ABAC н F н F н tr S5N3Y0 S5N3Y0 9ABAC н F

Figure S2: ERVK CTXLP similarity with NPV conotoxin-like proteins. (**A**) Alignment and sequence logo of endogenous retrovirus K-113 conotoxin-like protein (ERVK-113 CTXLP) cysteine-rich motif and Nuclear Polyhedrosis Virus (NPV) conotoxin-like protein sequences. Sequences were aligned, and sequence logo was assessed using Geneious Prime software. Note the conserved C-G-NC-SY-CCS-C-ALF-C sequence logo in these viral conotoxin-like proteins. (**B** and **C**) Aligned overlap of the predicted backbone (**B**) and peptide (**C**) structures of viral conotoxin-like protein backbones from ERVK-113 and *Ecotropis obliqua* NPV. Knotter1D3D was used to predict the structures of putative ERVK-113 CTXLP domain (blue) and *Ecotropis obliqua* NPV CTXLP domain (red). Structure alignment is based on sequence alignment and was prepared using UCSF Chimera software [3].

a	1000 T		N	S IŞ	GIS	Ĩ	SPSK	Č.	GR	KII	ap	40	HN	LYL	· K	P-1-W	ajk
	1 18 1 m 77	A DESCRIPTION OF A DESC	NAME OF ADDRESS OF TAXABLE	-			of the second second						-				
	1 10.1422	I WALLET TO BE	SPICIS	COMPX	OCC S S S S	IALE	C D V D D I	8.1		* * *		5.5.5					
	2 2:2021.1	IQRIMFYFNC	SDYUIN	CSHSY	OCCSES	TALF	CSVGKI	C -			* * /		- +				* * *
	3 1:1p31.1	IQKIHFYFNO	SDYGIN	CSHSY	GCCSES	IAFF	CSVSEI	С-			- + -			+			
	4 1:3q21.2	IQKIHFYFNO	SDYEIN	CSHSY	GCCSRS	IALF	CSVSKI	С.									
	5 1.alt	IOKIHFYFNO	SDYGIN	CSHSY	GCCSMT	LALF	FSVSXL	c.							4.4		2.4.4
	6 1:19a11	LOKIHEVENS	SDYGIN	CSHSY	OCCSES	TALF	CEVERI	C-									
	7 1/21/21 1	TORINEVENC	SDVDTN	CERSY	OCC SES	TATE	COVERT	8						0.00		0.01	1000
	8 1-2+12.2	100100000000000000000000000000000000000	S D V G T M	~ e 10 e v	ACCG 24	1	C	2									
	9. 1-1022.2		2 2 2 2 2 2 2		RCCC C	1 1 1 1		2									
	10 1-1423-3	· · · · · · · · · · · · · · · · · · ·	S MA C I M		0000			20			1.1.1						
	10 1.11023.3	- WALLET TO BE	SPICE	CEREX	uccuss	TALE	CENCER	8.0		* * *	1.7.1	1.50	100	C. S. S.		100	2.2.5
	11 1:19p12	IQRIMFYFNC	SDYGIN	CSHSY	OCCORS (VALE	CSVSKI	C -						+	+ -		
	12 1:12p11.1	IQKVHFVFNO	SDYGIN	CSHSY	GCCGES	IALF	CSDSKI	Y -							+ -		
	13 1:19p13.3	IOKIHFYFN	SDYGIN	CSHSY	GCCSES	TALF	CSVGXI	LM	1 G K	K 1 1	DD.	GI	HN	LVI	1 K	N W?	Q:1 K
	14 1:20g11.22		SDYGIN	CSHSY	OCCO SC	TALF	CSDSTL	C -									
	15 1:11012.3	LOKIDEVENC	SDYGIN	CSHSY	GECGSS	IVLE	CSDSET	C -									

b

Orthologous ERVK fragments identified by BLAST

1227

H. sapiens P. troglodytes G. gorilla C. atys H. sopiens 7358 6060 5853 2585 P. troglodytes 6060 7389 5812 2581 G. gorillo 5853 5812 6504 2562 2585 2581 2565 7411 C. otys

Number of PF08087" and PF13804" Loci by Specie	Number of	PF08087*	and	PF13804*	Loci	by	Specie
--	-----------	----------	-----	----------	------	----	--------

Species	CTXLP	Env
H. sopiens	28	383
P. troglodytes	33	402
G. gorilla	39	318
C. atys	31	379

С

d

e

Representative Sequences from Each Species gorilla mangabey chimpanzee 13529 human

526948 IQKIHFYFNCSDYGINCSHSYGCCGRSCIALFCSVGKLC 1353842 IQKIHFYFNCSDYGINCSHSYSLCGRSCIALFCSDSKLC IQKIHFYFNCSDYGINCSHSYGCCGRSCIALFCSVSKLC IQKIHFYFNCSDYGINCSHSYGCCSRSCIALFCSVGKLC

CTXLP human 3q13.2 human_3q12.3 human_19p12 Envelope human 11q12.3 gorilla_3q13.2 gorilla_3q12.3 gorilla 19p12 gorilla_19p13.3 gorilla_11q12.3 human_11q12.3 gorilla_11q12.3 gorilla_19p13.3 human_19p12 human_3q13.2 human_3q12.3 gorilla_3q13.2 gorilla_19p12 gorilla 3q12.3 0.0 0.4 0.8 1.0 20 20 30 38 OKIHFYFNCSDYGINCSHSYGCCSRSCIALFCSMSKIIC Consensus still a Sequence Logo Identity 1. ERVK 113 CTXLP 2. ERVK Con CTXLP QKTHFYFNCSDYGINCSHSYGCCSRSCIANFCSMSKUC QKIHFYFNCSDYGINCSHSYGCCSRSCIANFCSMSKUC

Page | 13

Figure S3: ERVK CTXLP variants in humans, primates and murine model. (A) CTXLP variants in the humans, based on genome build GRCh38. In the alignment above, we see that the first variant is the most common, with 16 copies (representing ERVK-3, -7, -8, -9, -10, -11, -14, -14(b) -21, -24, -25, -103, -104 and -113), followed by the second with 2 (ERVK-5 & -20). All the following ones are present as unique copies. The last three sequences with a deletion or a mutated cysteine residue are likely to be non-functional. (B) ERVK proviruses are not human specific, and several ERVK insertions are shared with other primates [4], as indicated by the number of ERVK, CTXLP (PF08087) and Env (PF13804) positive loci in primates. (C) Examination of CTXLP encoding loci in three non-human primate genomes, Pan troglodytes (Common chimpanzee), Gorilla gorilla gorilla (Western lowland gorilla), and Cercocebus atys (Sooty Mangabey), as well as humans reveals orthologous loci and conservation of the Toxin 18 cysteine motif (yellow). The name of each sequence is the retroelement identification number of the locus encoding it. Representative sequences from each from each primate species highlights the degree of conservation in the Toxin 18 cysteine motif. Some CTXLP-encoding loci, such as ERVK-18 and ERVK-20, have orthologues in non-human primates, suggesting that CTXLP is an evolutionarily conserved protein of ERVK. (D) Different mutational patterns between orthologues and paralogues of ERVK env genes. Represented is a combined set of heatmaps generated by superheat from frames 0 (CTXLP) and 1 (Envelope) of the human and gorilla orthologues ORFs, which where both are positive for Toxin_18 positive (CTXLP). The sequences which are orthologues are indicated by black squares in the center of each space (paralogues do not have black squares). Blue is an ω (dN/dS ratio) less than 1, indicating purifying selection and similarity between the sequences. Yellow is an ω more than 1, indicating diversifying selection and dissimilarity between the sequences. Grey indicates that ω could not be computed (in all cases dS = 0, indicating no synonymous differences between the two sequences). Sequences which are identical along the diagonal are blacked out. The cytological bands are based on the human genome, with gorilla designations indicating their respective human orthologue/paralogue coordinate. There exists both orthologous (sequences shared by a common ancestor) and paralogous (sequences derived from an ancestral gene/virus) ERVK insertions in humans and gorilla. When comparing the evolutionary pressures on the ERVK SU (reference reading frame) versus CTXLP (-1 reading frame)

sequences, there is more conservation of the CTXLP domain between human-gorilla orthologues than for paralogues in humans, as compared with the SU reading frame. Despite this evidence for diversifying selection of CTXLP sequences in humans, CTXLP domains from all primates maintain a strong degree of conservation of the core cysteine-rich motif (panel c). (E) Alignment of ERVK113 CTXLP sequence and the ERVK Consensus sequence found in the ERVK envelope transgenic mice[5]. Note the similarity and retention of key cysteine motif.

Figure S4: Validation of the custom ERVK CTXLP antibody used in this study. (A) Three identical soluble (lysis buffer extracted) and insoluble (RIPA-extracted) SVGA lysate western blots were incubated with custom rabbit ERVK CTXLP antibody in the presence of purified CTXLP blocking peptide at 0, 10 and 100 μ g/mL This peptide was the immunogen used in the generation of the CTXLP-specific polyclonal sera. High dose CTXLP peptide competitively blocked the custom antibody detection of the major 90 kDa form of CTXLP in the cell lysates. (B) Matched NCCIT WCE and IP fractions (as described in A) were blotted for CTXLP and Env surface unit (SU) expression. Note that similar bands contain both CTXLP (red arrows) and SU (green arrows) epitopes, suggesting the generation of unmodified SU-CTXLP fusion protein isoforms at 29 and 51 kDa, and potentially larger post-translationally modified forms between 90 -110 kDa. (C) Human autopsied tissue from a patient with ALS was stained using a commercial MAP-2 antibody in conjunction with either rabbit pre-immune serum or anti-CTXLP serum collected 90 days post immunization against the ERVK CTXLP core cysteine-rich peptide. The rabbit immunization protocol for generation of a polyclonal antibody against the ERVK CTXLP domain yields specific and consistent tissue staining patterning, unlike the pre-immune sera. A no primary antibody control depicts the background level of fluorescence in each channel. DAPI staining indicates the presence of cell nuclei within tissues. (D-F) CTXLP exposure enhances cleaved caspase-3 levels in SVGA cells, indicative of cellular apoptosis. SVGA cells were transfected with empty vector and lipofectamine LTX (control) or a pcDNA3.1 CTXLP-expressing vector (t-CTXLP). At 24 h, live cell images were taken using EVOS microscope (panel D-F). CTXLP-transfection markedly enhanced cellular cleaved capase-3 levels after 24 hours (panel D, n = 3, *p < 0.001). Alternatively, cells were treated with CTXLP proteins isolated from ERVKproducing NCCIT cells via immunoprecipitation (E–F). Our overlay model simulates conditions wherein CTXLP would enter the cell from the outside and possibly exert its effects by binding to cell surface receptors (such as voltage-gated calcium channels (VGCCs), as do conotoxins [6]). SVGA cells were cultured with 5 µl of immunoprecipitation (IP) buffer or CTXLP-IP fraction (overlaid, o-CTXLP) (panel E, 250–500 cells per trial, n = 3, *p < 0.05). Cells treated with extracted CTXLP also had increased caspase-3 cleavage as compared to control cells, demonstrating that CTXLP was toxic to astrocytes even at vanishingly low protein concentrations. The percentage of

positive cells was determined by quantification of the number of cells displaying cleaved caspase-3 over total cells in micrographs. Representative images are shown (panel F). Together, this suggests that exposure to extracellular CTXLP and/or cellular production of CTXLP in vivo may be toxic to cells.

Figure S5: ERVK CTXLP can localize to different cellular compartments, particularly in cancer cells. (**A**) Cancer cells express greater levels of CTXLP as compared to non-cancer cells. Prototypic cell lines for teratocarcinoma (NCCIT) and breast cancer (T47D) were examined for CTXLP expression as compared to astrocytic SVGA cells using confocal microscopy. No antibody negative control is to show that specificity of CTXLP (red) staining requires an antibody targeting ERVK CTXLP. Nuclei are shown in blue using a DAPI stain. (**B**) Human cells lines vary in their expression and cellular localization of CTXLP protein, based on cancer status. ERVK-producing NCCIT cells, in the absence of stimuli, were subject to cytoplasmic (C), nuclear (N) and chromatin (Chr) cell fractionation. NCCIT cells exhibited CTXLP protein expression in all cell lysate fractions, but a clear enrichment of large isoforms of CTXLP (90-110 kDa) in the chromatin fraction (*n* = 4). (**C**) CTXLP expression (blue bars) normalized to β-actin loading control. Enhanced CTXLP expression in noted is several cancer types, including T cell lymphoma, epithelioid carcinoma, neuroepithelioma and prostate cancer.

Figure S6: ERVK CTXLP is enhanced in the motor cortex of patients with ALS and associated with necroptosis. (A) ERVK CTXLP levels are enhanced in motor cortex brain tissues of patients with ALS, as measured by confocal microscopy. Representative 40x confocal micrographs of ERVK CTXLP (red), MLKL (necroptosis marker, green) and neuronal MAP2 expression (grey) in Brodmann area 4 (BA4, panel A) primary motor cortex tissue of a NN control (n = 5) and patient with ALS (n = 5). DAPI stain depicts nuclei. Arrow indicates predominantly nuclear CTXLP staining in NN control, in contrast to both nuclear and cytoplasmic CTXLP staining in ALS neurons. (B) Violin plots of staining quantification of DAPI, CTXLP and MLKL in NN and ALS cohorts for BA4 tissue. (C) Violin plots of protein puncta quantification of CTXLP and MLKL in NN and ALS cohorts for BA4 tissue. Statistical test with unpaired two-tailed t-tests, (** p < 0.01, **** p < 0.001, black bars are medians).

Figure S7: Identification of transcripts encoding ERVK CTXLP and Env in human disease states. (A) Per-Locus Differential ERVK Expression. RNA-Seq datasets in the Sequence Read Archive (SRA) used for the analysis of ERVK expression for Amyotrophic Lateral Sclerosis (ALS) was SRP064478. ERVK CTXLP encoding transcripts and CTXLP protein are present in ALS. Reanalysis of RNAseq data[7] in control (right) and sporadic ALS (left) spinal cords for expression of disrupted non-coding (black), Env+/CTXLP- (blue) and Env+/CTXLP+ (red) env transcripts. ERVK loci with very low expression are excluded; only loci with a median expression greater than 0 and a mean expression greater than 0.1 are plotted. A lack of differential total ERVK env RNA expression in controls versus the ALS cohort was observed for both canonical env transcripts and CTXLP-encoding env transcripts. Principle component analysis (PCA) reveals ALS patient clustering in terms of CTXLP⁺ transcript expression, with most frequently expressed CTXLP encoding loci indicated. Thus, specific CTXLP loci may drive the expression of CTXLP protein in ALS. (B) Representative illustration of CTXLP proteinopathy (white arrow) in ALS motor cortex layer V (panel B). CTXLP+ pyramidal neurons exhibit enhanced MAP2 staining in the axonal hillock, indicative of degeneration. In panel C, evidence of the presence of CTXLP+MAP2⁻ cells with astrocytic morphology in ALS are indicated by stars.

Figure S8: ERVK CTXLP protein expression is associated with demyelinated lesions in spinal cord tissues from patients with ALS. (A) Depiction of motor tracts in cervical spinal cord and lumbar spinal cord (adapted from ibiblio.org). (B) ERVK CTXLP levels are enhanced in autopsy cervical spinal cord tissues from patients with ALS, as measured by light and confocal microscopy. Representative 10x confocal micrographs of ERVK CTXLP expression in ex vivo cervical (CC) spinal cord of a neuro-normal control (NN, n = 5) and patients with ALS (n = 5). Solochrome cyanine (SC) stain (purple) with eosin counterstain (pink) depicts tissue myelination; pale lesions appear in ALS tissues. These lesioned areas exhibited increased CTXLP protein expression (red). Oligodendrocyte precursor marker TCF4 is in green. DAPI stain depicts cellular nuclei. Note: CTXLP expression occurs in either lateral and/or anterior cortical spinal tracts (indicated by white circles).

Figure S9: Nogo-A expression in CTXLP+ oligodendrocyte precursors may limit spinal cord remyelination in ALS. (A) Nogo-A levels are enhanced in autopsy spinal cord tissues of patients with ALS, as observed upon western blot analysis quantification of neuro-normal (NN) controls (n = 10) and ALS (n = 19) cervical spinal cord specimens. Statistical test with unpaired two-tailed t-tests, (* p < 0.05, black bars are medians). (B) ERVK CTXLP+ oligodendrocyte precursors either express myelin inhibitory protein Nogo-A (Figure 7), or lie in close proximity to Nogo-A positive cells in spinal cord tissues of patients with ALS (panel b). Human ex vivo cervical spinal cord tissues were stained for ERVK CTXLP (red), TCF4 (green), Nogo-A (grey) and nuclei (blue) in NN controls (n = 5) and patients with ALS (n = 5). Image merging for CTXLP and TCF4 indicate that oligodendrocyte precursors express CTXLP in ALS. White stars indicate areas that are magnified to depict overlapping protein expression in CTXLP+ rings.

SUPPLEMENTARY METHODS

Bioinformatics

Open reading frames (ORFs) in the ERVK genome were predicted on both the sense and antisense strands using CLCbio software. Any amino acid-encoding codon was accepted as an ORF start, although each ended with a stop codon. All ORFs identified were searched using NCBI Conserved domains

(https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) and PFAM

(https://pfam.xfam.org/). ERVK Env-encoding RNA was inserted into RNAfold software to predict RNA secondary structure (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). The likelihood that these ERVK RNA secondary structures represent an internal ribosome entry site (IRES) was determined using IRES prediction software called IRESite (http://iresite.org/IRESite_web.php) and reported as a similarity with known cellular and viral IRES 2D structures. The ERVK conotoxin-like protein (CTXLP) domain was compared to inhibitor cystine knot (ICK) proteins and other cysteine-rich proteins (Table S1) using Geneious Prime software[8]. Tertiary structure prediction of the ERVK113 CTXLP domain was performed using Knotter 1D3D software. The structure alignment is based on ERVK CTXLP and nuclear polyhedrosis virus (NPV) CTXLP sequence alignment and was prepared using UCSF Chimera software [3]. Prediction of DNA binding was performed using DNABind software (http://dnabind.szialab.org/). Prediction parameters were as follows: false-positive rate of 6%, expected sensitivity of 58.7%, expected Matthews correlation coefficient of 0.55, the score threshold is set to 1.577 (threshold probability of 0.8288). The identification of CTXLP variants in humans was based on genome build GRCh38. Translated open reading frames longer than 59 bp identified in human ERVK loci annotated by RepeatMasker were searched for PF08087 by HMMER. The matching sequences were clustered using cd-hit.

RNA seq analysis

To evaluate the significance of CTXLP in disease, we evaluated the expression of CTXLP encoding ERVK loci in publicly available RNA-Seq datasets in the Sequence Read Archive (SRA) (Figure S6). These loci were identified by searching the SRA by disease affiliation and then evaluating each potential study based on sample size, tissue, and sequencing quality. Preference was given to studies with large sample sizes, autologous controls, ex vivo disease-relevant tissue, and high sequencing quality. Paired-end reads were preferred to single-end. We focused on studies with fewer measures selecting for particular RNA subpopulations, which could have depleted ERVK RNA from the input. Using the Compute Canada cluster Orcinus, FASTQ files for each run from each study were downloaded from the SRA using fastq-dump, trimming positions for each study were chosen based on examining the output of FastQC, and reads were then mapped to an unmasked copy of hg38 obtained from UCSC using bowtie2. Expression of ERVK loci was measured using samtools view to count reads aligning to each locus, with expression data interpreted using EdgeR. Principle component analysis (PCA) was used to map the clustering of transcript expression in different clinical groups.

Orthologues and paralogues analysis

The most recent genomic assembly for each primate species was searched for CTXLP in the same manner as the human genome. panTro5 and gorGor5 were retrieved from UCSC, and Caty_1.0 was retrieved from NCBI. Chimpanzee ERVK insertions were identified using UCSC table panTro5.nestedRepeats, but no such table exists for the Gorilla or Sooty Mangabey. Gorilla and Mangabey ERVK were identified directly from RepeatMasker output. To reduce the number of small ERV fragments to be BLASTed and to increase the accuracy of orthology predictions by including flanking genomic regions, the loci annotated in RepeatMasker were extended by 1000 bp to either side and then any less than 10 bp apart were merged. MUSCLE alignments of tBLASTx results from loci in

humans, chimpanzee, gorilla, and mangabey where an orthologue in at least one species encodes a Toxin_18+ ORF are reported. Orthology was determined by pairwise best BLAST matches of whole retroelement entries and their flanking 1,000 bp, which mostly correspond to entire ERVs, but which sometimes were fragments. Three and four-way orthology was determined from pairwise orthology. A Heatmap was generated by superheat from frames 0 (CTXLP) and 1 (Envelope) of the human and gorilla orthologs ORFs, which were both positive for Toxin_18 (CTXLP).

Ethics statement

All research involving human autopsy tissue was approved by the University of Winnipeg Human Research Ethics Board under protocol HE-#791 (protocol approval 24 January 2012). Anonymized autopsy ALS (n = 19) and neuro-normal control (n = 18) tissue specimens obtained the NIH NeuroBioBank (USA, were from VA https://neurobiobank.nih.gov/) and Brain bank (USA, https://www.research.va.gov/programs/specimen_biobanking.cfm).

Diagnosis and demographics of patient samples

Pathologic examination was used to confirm the clinical diagnosis of ALS. The postmortem interval of all patients was <24 h. **Table S3** indicates the individual patient diagnosis, location of brain tissue sampling, age, gender, and post-mortem interval (PMI in hours) of the samples used in this study. The brain regions analyzed were the motor cortex (Brodmann areas, BA4 & BA6) and cervical and lumbar spinal cord (CC, LC).

Immunohistochemistry of autopsy tissue

To determine the extent of ERVK CTXLP and cellular target expression patterns in the CNS of ALS patients, immunohistochemistry was performed to detect the levels and localization of these target proteins in autopsy human cortical brain tissue, as previously

described [9]. Primary antibodies used are described in **Table S4.** Tissues were also counterstained with DAPI. Free-floating tissues were mounted onto slides and stained in a 0.1% solution of Sudan Black B. Slides were rinsed, and coverslips mounted using ProLong Gold anti-fade reagent (Molecular Probes). All samples were batch stained with case-control matched tissues. Immunostained tissues were imaged with Olympus FV1200 laser scanning confocal microscope fitted with the Olympus Fluoview version 4.0B software suite. This software was used to outline cellular as well as nuclear boundaries of ERVK⁺ neurons in neuro-normal and ALS specimens. Quantification of micrographs was done using ImageJ to perform the intensity, puncta, and colocalization measurements. GraphPad Prism was used to perform statistical analysis of micrograph data between neuro-normal and ALS patient groups.

Solochrome cyanine staining

Free-floating cervical and lumbar spinal cord sections (60 μm) in ethylene glycol-sucrose solution from human neuro-normal (NN) and amyotrophic lateral sclerosis (ALS) patient tissues (*n* = 3 for each group and cord region) were used for solochrome cyanine staining. Sections were transferred to well plates and rinsed three times for five minutes with Trisbuffered saline (TBS) and 0.05% Triton X100. After washing, sections were carefully mounted onto Superfrost+ slides and dried before staining. Histochemical staining was performed for solochrome cyanine and counterstaining with eosin for visualization of myelin, as previously described[10], using erichrome cyanine R (J.T. Baker #L128-05) and 10% Iron Alum (ferric ammonium sulfate, Fisher #I75-500) solutions for staining and Eosin Y (Fisher #E511-25) solution for counterstaining. Sections were mounted with Permount, and slides were coverslipped and dried before imaging. Low magnification scanning of slides was performed to obtain whole spinal cord section images of ALS and NN tissue for comparison of myelin staining.

Cell culture and treatments

The SVGA cell line is derived from immortalized human fetal astrocytes [11] and was maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% Fetal Bovine Serum (HyClone). ReNcell CX cells (Millipore #SCC007) are immortalized human neural progenitor cells (hNPCs) [12], and were maintained in a proprietary ReNcell neural stem cell medium (Millipore) supplemented with 20 ng/mL human epidermal growth factor (EGF; PeproTech #AF10015) and 20 ng/mL human basic fibroblast growth factor (bFGF; PeproTech #AF10018B). T47D cells were maintained as previously described[13]. All cell lines were maintained in a 37 °C incubator containing 5% CO₂. SVGA cells were seeded into six-well plates and onto glass coverslips at a density of 300,000 cells/mL and 30,000 cells/mll, respectively, for 24 h. To differentiate HNPCs into neurons, ReNcells CX were seeded in laminin (20 µg/mL; Millipore #CC095) coated six-well plates at a density of 50,000 cells/mL for 24 h. Adhered cells were rinsed with 1X PBS and allowed to differentiate in the presence of ReNcell medium lacking growth factors for 10 days.

Immunoprecipitation and cell treatments

Immunoprecipitation (IP) beads (BioRad Surebeads, USA) were prepared by transferring 100 μ L of beads into a 1.5 mL Eppendorf tube and washing three times with 1 mL 0.1% PBS-Tween. Next, 10 μ L of protein-specific antibody in PBS is added to the tube and incubated for 10 min at room temperature while rotating. The mixture was then centrifuged briefly, and beads are washed three times with 1 mL 0.1% PBS-Tween. Next, 200 μ L 0.4% paraformaldehyde was added to beads, and the mixture was incubated for 10 min at room temperature. Centrifugation and wash steps were repeated. Beads were then incubated for 1 h at room temperature, rotating, with 500 ug of whole-cell extracts in PBS. Centrifugation and wash steps were repeated, and beads were transferred to a new tube before the last wash was removed. Beads were incubated

a final time with 20 μ L 0.1M glycine, pH 2.85, for 5 min at room temperature. The supernatant was then transferred into a new 1.5 mL Eppendorf tube containing 2 μ L 0.5 M NaOH.

Cells were dosed by volume of IP product (5 μ L standard dose), as there was no reliable way to measure the concentration of the protein in the IP product, as protein concentration was vanishingly below the sensitivity of our in-house BCA assay (20 μ g/mL).

Immunocytochemistry

For the cleaved caspase-3 assays, SVGA astrocytes were cultured in complete Dulbecco's modified eagle's medium in 12 well plates until 80% cell confluency was reached. SteriFlip Vacuum-driven System Filtration system (50 mL, 0.22 µm pore size, SE1M179M6) was used to prepare sterile cell treatments. Prior to treatment, culture media was removed, and cells were washed twice with phosphate-buffered saline before adding 500 µL of treatment or imaging media per well. This resulted in wells treated with purified protein containing 5 μ L of immunoprecipitation (IP) product with or without the addition of 10 mM of CaCl₂. Treated cells were then incubated at 37 °C for 24 h before imaging. Next, 20 min prior to imaging, two drops of each NucBlue Live Cell Stain ReadyProbes reagent (Molecular Probes R37605) and CellEvent Caspase-3/7 Green ReadyProbes reagent (Molecular Probes R37111) were added to each well and returned to this incubator until imaging cells. Cells were imaged using an EVOS microscope in the transmission, blue and green fluorescent channels. SVGA cells were treated with 0.1 ng/ml human TNF α or human LIGHT (PeproTech). Untreated cells were used as negative control. Twenty-four hours post-treatment, cells were fixed with methanol for 40 seconds and rinsed with 1X PBS. Cells were permeabilized with 250 µL of PBS-T (PBS with 0.25% TritonX-100) and blocked with 250 µL of 3% BSA in TBS-T (TBS with 0.25% TritonX-100)

for 30 min. Immunocytochemistry was performed using primary antibodies for 3 h and secondary antibodies for 2 h. Nuclei were counterstained with DAPI. Coverslips were mounted onto slides using ProLong Gold anti-fade reagent (Molecular Probes) and dried overnight. Controls were prepared by immunostaining without the primary antibodies. Confocal microscopy was performed using an Olympus FV1200 laser scanning confocal microscope. Olympus Fluoview software was used to outline cellular and nuclear boundaries, with quantification of total intensity (integration) in each compartment reported. GraphPad Prism was used to perform statistical analysis of micrograph data between treatment groups using paired t-tests.

Transient transfections

Empty pcDNA3.1, custom pcDNA3.1-CTXLP, and custom pcDNA3.1-SU vectors were synthesized by GenScript, USA (to be reposited on Addgene). SVGA cells (or 293T cells) were transfected with 2 μ g of these plasmids individually using 6 μ L of Lipofectamine LTX Reagent, as per manufacturer's instructions (Invitrogen #15338-100). Cells were transfected in serum-free culture media for 4 h, followed by addition of complete media. Cells were harvested 24 h post-transfection. Un-transfected cells and those transfected with the empty vector were used as the negative controls.

Western Blotting

Harvested cells were lysed on ice with 50 μ L of in-house lysis buffer (0.05M Tris (pH 7.4), 0.15M NaCl, 0.002M EDTA, 10% glycerol and 1% NP-40 in ultra-pure water) to extract proteins. Pellets remaining from lysis buffer extraction were lysed with 50 μ L in-house RIPA buffer (1X TBS, 1% SDS, 1% NP40, and 0.5% DOC in ultra-pure water). Autopsied tissues were lysed on ice with in-house RIPA lysis buffer (1X TBS, 1% SDS, 1% NP40, and 0.5% DOC in ultra-pure water) and homogenized (3 min at a frequency of 30 1/sec) with ceramic beads to extract proteins. All lysis buffer was supplemented with 1× HALT

protease and phosphatase inhibitor cocktail (Thermo Scientific #78442). BCA assay (Thermo Scientific #PI23227) was used to determine the protein content of each sample as per the manufacturer's instructions. Cell lysates were prepared for SDS-PAGE and heated at 95 °C for 10 min. Proteins (15 µg per lane) were separated by SDS-PAGE using a 10% polyacrylamide gel and transferred onto a nitrocellulose membrane. A prerun cancer cell line blot was obtained from GBiosciences (TB-55). Membranes were blocked in 5% skim milk solution for 30 min and probed with the desired primary antibody overnight at 4 °C, followed by incubation at room temperature for 2 h. Primary antibodies used are listed in Table S4. The membrane was then probed with horseradish peroxidase (HRP)-conjugated antibody (Bio-Rad, #170-6516 and #170-6515) or fluorescentconjugated secondary antibody for 2 h at room temperature. To image HRP-conjugated antibodies, the nitrocellulose membrane was developed with 2 ml of Luminata Crescendo Western HRP substrate (Millipore #WBLUR0500) and imaged using Protein Simple FluorChem M chemiluminescent imager. To image fluorescent-conjugated antibodies, low fluorescence polyvinylidene fluoride membrane (Biorad, USA #1620174) was directly imaged using Protein Simple FluorChem M imager. Image Lab software (BioRad, USA) was used to determine the molecular weight and relative density (normalized to β -actin) of each band. GraphPad Prism was used to compare the patient groups through the Mann–Whitney t-test. Correlation analysis was performed using the Pearson rank correlation coefficient.

Quantitative PCR

QPCR was performed on cDNA generated from transfected 293T cells using SYBR Green detection to amplify inflammatory genes, as previously described [14]. Primers were NFκB p65 F: 5'-TCAATGGCTACACAGGACCA-3' and R: 5'-CACTGTCACCTGGAAGCAGA-3', IRF7 F: 5'-TACCATCTACCTGGGCTTCG-3' and R: 5'-AGGGTTCCAGCTTCACCA-3', CXCL10 F: 5'-TTCCTGCAAGCCAATTTTGTC-3' and R:5'-TCTTCTCACCCTTCTTTTCATTGT-3',ViperinF:5'-CACAAAGAAGTGTCCTGCTTGGT-3'andR:5'-AAGCGCATATATTTCATCCAGAATAAG -3'.

Chromatin immunoprecipitation (ChIP)

SVGAs were seeded in 10 cm dishes at an approximate density of 3 × 10⁶ cells/dish for 24 h at 37 °C and 5% CO₂. Laminin-coated dishes were used to seed ReNcell CX cells at a density of 3 × 10⁵ cells/dish for 24 h at 37 °C and 5% CO₂. The culture media on adhered ReNcell CX cells was then replaced with that lacking EGF and bFGF growth factors, and cells were allowed to differentiate into neurons for 10 days. SVGAs and neurons were treated with 10 ng/ml human TNF α (PeproTech) or human LIGHT (PeproTech) for 8 h, fixed with 4% paraformaldehyde, and harvested. Untreated cells were used as the negative control. Chromatin Immunoprecipitation (ChIP) was performed using the Pierce Magnetic ChIP kit (Thermo Scientific #26157) as per manufacturer's instructions. CTXLP bound DNA segments were isolated using 5 µg of rabbit anti-CTXLP (custom) antibody. Immunoprecipitation with IgG antibody was used as negative control. QPCR was performed on the immunoprecipitated DNA using SYBR Green detection to amplify the ISREs in the ERVK 5' LTR. Primers for the first ISRE (nt. 380-392) were F: 5'-TCACCACTCCCTAATCTCAAGT-3' and R: 5'-TCAGCACAGACCCTTTACGG-3' and for second ISRE (nt. 563-575) were F: 5'- CTGAGATAGGAGAAAAACCGCCT-3' and R: 5'-GGAGAGGGTCAGCAGACAAA-3', as previously described[14]. Data were analyzed using the $\Delta\Delta$ Ct method and normalized relative to the input and IgG controls for each condition. All data were graphed as mean ± standard error of measurement. Statistical analyses were performed in GraphPad PRISM using Two-Way ANOVA and Tukey's multiple comparisons test.

LIST OF ABBREVIATIONS

ALS	Amyotrophic lateral sclerosis
BA 4 & 6	Brodmann area 4 & 6 (motor cortex)
BBB	Blood-brain barrier
BCA	Bicinchoninic acid assay
BMAA	beta-N-methylamino-L-alanine
CACNA1B	Cav2.2
CC	Cervical spinal cord
ChIP	Chromatin Immunoprecipitation
CNS	Central nervous system
CTXLP	Conotoxin-like protein
CX3CL1	Chemokine (C-X3-C motif) ligand 1
DAPI	4',6-diamidino-2-phenylindole
DNA	Deoxyribonucleic acid
ERVH/K/W	Endogenous retrovirus-H/-K/-W
FTD	Frontotemporal dementia
HIV	Human Immunodeficiency Virus
HIV Tat	Human Immunodeficiency Virus transactivator of transcription protein
hNPC	Human neural progenitor cells
HRP	Horseradish peroxidase
HTLV	Human T-Lymphotropic Virus
ICK	Inhibitor cysteine knot
IP	Immunoprecipitation/Immunoprecipitated
IRES	Internal ribosomal entry site
ISRE	Interferon-stimulated response element
LC	Lumbar spinal cord
LIGHT	Homologous to lymphotoxin, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator, a receptor
	expressed by T
	lymphocytes
LTR	Long terminal repeat
MAG	Myelin-associated glycoprotein
MAP2	Microtubule-associated protein 2
MBP	Myelin basic protein
MLKL	Mixed lineage kinase domain-like
MMTV	Mouse mammary tumor virus
MOG	Myelin oligodendrocyte glycoprotein
mRNA	Messenger RNA

MS	Multiple Sclerosis
NF-ĸB	Nuclear factor kappa B
NLS	Nuclear localization sequence
NN	Neuro-normal
Nogo-A	Neurite outgrowth inhibitor
NPV	Nuclear polyhedrosis virus
OL	Oligodendrocyte
Olig1	Oligodendrocyte transcription factor 1
Olig2	Oligodendrocyte transcription factor 2
OPC	Oligodendrocyte precursor cell
ORF	Open reading frame
PBS	Phosphate buffered saline
PCA	Primary component analysis
PFAM	Protein family
PLP	Myelin proteolipid protein
PMI	Post-mortem interval
PRF	Programmed ribosomal frameshifting
RIP1	Receptor-interacting protein kinase 1
RIP3	Receptor-interacting protein kinase 3
RNA	Ribonucleic acid
RPMI	Roswell Park Memorial Institute
RT	Reverse transcriptase
SC	Solochrome cyanine
SRA	Sequence read archive
SU	Surface unit
TCF4	Transcription factor 4
TM	Transmembrane
TNFα	Tumor necrosis factor alpha
tRNA	Transfer RNA
VGCC	Voltage-gated Calcium channels
WCE	Whole cell extract

SUPPLEMENTARY REFERENCES

- Dinkel, H.; Van Roey, K.; Michael, S.; Kumar, M.; Uyar, B.; Altenberg, B.; Milchevskaya, V.; Schneider, M.; Kuhn, H.; Behrendt, A.; et al. ELM 2016—Data update and new functionality of the eukaryotic linear motif resource. *Nucleic Acids Res.* 2016, 44, D294– 300, doi:10.1093/nar/gkv1291.
- 2. Gracy, J.; Le-Nguyen, D.; Gelly, J.C.; Kaas, Q.; Heitz, A.; Chiche, L. KNOTTIN: The knottin or inhibitor cystine knot scaffold in 2007. *Nucleic Acids Res.* **2008**, *36*, D314–319, doi:10.1093/nar/gkm939.
- 3. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera A visualization system for exploratory research and analysis. *J. Comput. Chem.* **2004**, *25*, 1605–1612, doi:10.1002/jcc.20084.
- 4. Subramanian, R.P.; Wildschutte, J.H.; Russo, C.; Coffin, J.M. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. *Retrovirology* **2011**, *8*, 90, doi:10.1186/1742-4690-8-90.
- 5. Li, W.; Lee, M.H.; Henderson, L.; Tyagi, R.; Bachani, M.; Steiner, J.; Campanac, E.; Hoffman, D.A.; von Geldern, G.; Johnson, K.; et al. Human endogenous retrovirus-K contributes to motor neuron disease. *Sci. Transl. Med.* **2015**, *7*, 307ra153, doi:10.1126/scitranslmed.aac8201.
- 6. Gao, B.; Peng, C.; Yang, J.; Yi, Y.; Zhang, J.; Shi, Q. Cone Snails: A Big Store of Conotoxins for Novel Drug Discovery. *Toxins* **2017**, *9*, doi:10.3390/toxins9120397.
- Brohawn, D.G.; O'Brien, L.C.; Bennett, J.P., Jr. RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord. *PLoS ONE* 2016, 11, e0160520, doi:10.1371/journal.pone.0160520.
- 8. Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* **2012**, *28*, 1647–1649, doi:10.1093/bioinformatics/bts199.
- 9. Douville, R.; Liu, J.; Rothstein, J.; Nath, A. Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. *Ann. Neurol.* **2011**, *69*, 141–151, doi:10.1002/ana.22149.
- 10. Di Curzio, D.L.; Buist, R.J.; Del Bigio, M.R. Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus. *Exp. Neurol.* **2013**, 248, 112–128, doi:10.1016/j.expneurol.2013.06.004.
- 11. Major, E.O.; Miller, A.E.; Mourrain, P.; Traub, R.G.; de Widt, E.; Sever, J. Establishment of a line of human fetal glial cells that supports JC virus multiplication. *Proc. Natl. Acad. Sci. USA* **1985**, *82*, 1257–1261.
- 12. Donato, R.; Miljan, E.A.; Hines, S.J.; Aouabdi, S.; Pollock, K.; Patel, S.; Edwards, F.A.; Sinden, J.D. Differential development of neuronal physiological responsiveness in two human neural stem cell lines. *BMC Neurosci.* **2007**, *8*, 36, doi:10.1186/1471-2202-8-36.
- Golan, M.; Hizi, A.; Resau, J.H.; Yaal-Hahoshen, N.; Reichman, H.; Keydar, I.; Tsarfaty, I. Human endogenous retrovirus (HERV-K) reverse transcriptase as a breast cancer prognostic marker. *Neoplasia* 2008, 10, 521–533.

14. Manghera, M.; Ferguson-Parry, J.; Lin, R.; Douville, R.N. NF-kappaB and IRF1 Induce Endogenous Retrovirus K Expression via Interferon-Stimulated Response Elements in Its 5' Long Terminal Repeat. *J. Virol.* **2016**, *90*, 9338–9349, doi:10.1128/JVI.01503-16.