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Abstract: Adult stem/progenitor are a small population of cells that reside in tissue-specific niches and
possess the potential to differentiate in all cell types of the organ in which they operate. Adult stem
cells are implicated with the homeostasis, regeneration, and aging of all tissues. Tissue-specific
adult stem cell senescence has emerged as an attractive theory for the decline in mammalian
tissue and organ function during aging. Cardiac aging, in particular, manifests as functional tissue
degeneration that leads to heart failure. Adult cardiac stem/progenitor cell (CSC) senescence has been
accordingly associated with physiological and pathological processes encompassing both non-age
and age-related decline in cardiac tissue repair and organ dysfunction and disease. Senescence is a
highly active and dynamic cell process with a first classical hallmark represented by its replicative
limit, which is the establishment of a stable growth arrest over time that is mainly secondary to
DNA damage and reactive oxygen species (ROS) accumulation elicited by different intrinsic stimuli
(like metabolism), as well as external stimuli and age. Replicative senescence is mainly executed
by telomere shortening, the activation of the p53/p16™K4/Rb molecular pathways, and chromatin
remodeling. In addition, senescent cells produce and secrete a complex mixture of molecules,
commonly known as the senescence-associated secretory phenotype (SASP), that regulate most of
their non-cell-autonomous effects. In this review, we discuss the molecular and cellular mechanisms
regulating different characteristics of the senescence phenotype and their consequences for adult
CSCs in particular. Because senescent cells contribute to the outcome of a variety of cardiac diseases,
including age-related and unrelated cardiac diseases like diabetic cardiomyopathy and anthracycline
cardiotoxicity, therapies that target senescent cell clearance are actively being explored. Moreover,
the further understanding of the reversibility of the senescence phenotype will help to develop novel
rational therapeutic strategies.
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1. Introduction

Several stressful insults and certain physiological processes trigger cellular senescence, which is
mainly characterized by a stable and largely irreversible replicative blockage accompanied by secretory
features, macromolecular damage, and deregulated metabolism [1] (Figure 1). In other words, cellular
senescence is a intricated phenomenon that profoundly changes the phenotype and function of
proliferative cells [2]. More than five decades ago, Leonard Hayflick demonstrated that primary human
cells sub-cultivated in vitro have a limited proliferative capacity [3], such that cell cultures stop dividing
after an average of 50 population doublings; this proliferation defect over time, named replicative
senescence, represents the first hallmark of cellular senescence. Replicative senescence is clearly
related to time and is therefore a major feature of aging [4]; it is classically associated with telomere
shortening, the progressive uncapping of chromosomes at each cell division [5]. Replicative senescence
is linked to a multi-component senescence-associated secretory phenotype (SASP), which is considered
the second hallmark of senescence [6,7]. Assuming that human cells have on average a lifespan
of 50 population doublings, 2°° is more than enough cells for several lifetimes. However, as aging
advances and several age-dependent and age-independent pathologies develop, cell senescence is
caused and/or fostered by several stress and physiological stimuli, and it can have context-dependent
positive or detrimental effects on the organism [8]. Indeed, several senescence-inducing stressors
cause genomic or epigenomic changes, an oncogenic transformation threat for cells and tissues [9].
Thus, senescence arrest is classically viewed as an endogenous protection from cancer development.
Concurrently, the SASP fine-tunes relevant physiological processes such as tissue repair and the
formation of specific embryonic structures [9,10]. On the other hand, senescent cells can dictate the
loss of tissue homeostasis, thus reducing the regenerative and reparative capacity of a tissue mainly
due to the functional decline of its stem cell compartment and dysregulating the normal function of
adjacent cells through SASP-dependent cell-to-cell communications.

Aging classically alters many tissues of vertebrate organisms through the progressive accumulation
of senescent cells [11,12]. Replicative senescence that results in cell cycle arrest has been generally
envisioned as a highly static state that, as said above, is contrary to the highly active process related to
the SASP [2]. This apparent contradiction seems to be overcome when considering that cell cycle arrest
is not such a permanent and static state for senescent cells. Senescent cells, indeed, possess an active
metabolism, that differentiates them from apoptotic and quiescent cells [2,8]. Accordingly, a typical
feature of senescent cells is a progressive enlargement despite a lack of cell division. The SASP accounts
for the high metabolism of senescent cells that produce and secrete potent biological factors that mainly
act on the neighboring cells and surrounding tissue but also at distance when offloaded in the systemic
circulation. The SASP activities promote inflammation, invasion, angiogenesis, and, counterintuitively,
cell proliferation. The SASP’s properties have been used to envision how a relatively small number of
senescent cells can have such profound local and systemic effects in fostering aging and age-related
pathologies. Hence, cell-to-cell communications—mainly through the paracrine effects of secreted
factors by the SASP affecting surrounding cell and tissue—Dbetter explains the participation of cellular
senescence in various physiological and pathological processes in contrast to the lone proliferative
arrest [13]. In essence, senescent cells may profoundly affect tissue homeostasis, interfere with organ
function, instruct other cells in their environment, or evoke secondary amplified immune network
responses, which are highly dynamic processes with a potential selective advantage for tumor growth.
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Figure 1. The Hallmarks of the Senescence Phenotype: Senescent cells exhibit the following four

interdependent hallmarks: (1) cell-cycle withdrawal, (2) macromolecular damage, (3) the secretory
phenotype (SASP), and (4) a deregulated metabolism (see also text). Figure reproduced with permission
from Gorgoulis, V. et al. [1].

Adult stem/progenitor cells are a small population of cells that reside in tissue-specific niches
and possess the potential to differentiate in all the cell types of the organ in which they operate.
Adult stem cells (e.g., hematopoietic stem cells, intestinal stem cells, satellite cells, skin stem cells,
and germline stem cells) are implicated with the homeostasis, regeneration, and aging of practically
all tissues [14-19]. Adult stem cell regenerative function declines with age, and cell-autonomous and
non-autonomous modifications within in the niche, as well as in the circulating blood, are involved
in this age-related decline [20-22]. In organs characterized by high and moderate turnover (like gut,
bone marrow and skin), aging appears to be dictated by adult stem cell senescence [20-22]. In the
reverse, in organs with a low cell turnover, like the brain and the heart, aging is mostly related to
parenchymal cell senescence [23,24]. However, brain and heart stem cell senescence contribute to
the respective organ failure with aging [25,26]. Aging is indeed a classical irreversible risk factor for
the development of cardiovascular diseases, the prevalence of which considerably increases as age
advances [24]. Age is associated with cellular and molecular changes in cardiac tissue homeostasis
and response to injury, thus resulting in the progressive deterioration of the structure and function
of the heart [24]. Accordingly, tissue-resident cardiac stem/progenitor cells (CSCs) undergo cellular
senescence through augmented reactive oxygen species (ROS) formation, oxidative stress, and the loss
of telomere/telomerase integrity in response to several physiological and pathological stimuli with
aging [27,28]. Aged-senescent CSCs contribute to impaired heart regeneration, which is secondary to
the SASP of CSCs that dictate otherwise healthy CSCs to undergo senescence [29]. The elimination of
senescent CSCs using senolytic drugs abolishes the SASP and its detrimental consequences in vitro
and in vivo, thus rejuvenating the aging dysfunctional heart [29].
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On this premise, in this review, we first describe the types of the intrinsic factors that damage
adult stem cells during aging, as well as the extrinsic factors, such as the SASP, that contribute to
the functional deficit of adult stem cells during aging. We then mainly discuss what it is known
about CSC senescence during aging and aging-associated diseases. We propose that intrinsic and
extrinsic CSC senescence contributes to age-related decline in the maintenance of cardiac anatomy and
function, as well as the development of cardiovascular diseases, including diabetic cardiomyopathy
and chemotherapy-induced cardiomyopathy. Though this review article indirectly deals with cardiac
senescence and aging, the focus is on CSCs, so readers are thus referred to recent review articles for
further elaboration on the aging of the heart and of other cardiac cell lineages [24,30]

2. Molecular Mechanisms of Adult Stem Cell Senescence and Aging

The main intrinsic and cell-autonomous molecular mechanism of the senescence program regulates
cell cycle arrest (Figure 2). In mammalian cells, the retinoblastoma (RB) family of pocket proteins and
the tumor suppressor p53 play a key role in the senescent cell-cycle inhibition [31]. RB1 and its relatives
p107 (retinoblastoma-like 1—RBL1) and p130 (retinoblastoma-like 2—RBL2) are phosphor-proteins
targeted by specific cyclin-dependent kinases (CDKs). RB protein phosphorylation de-represses
E2F family transcription factor activity, which is key for cell-cycle progression [32]. Additional key
regulatory proteins including the p21 (Cdkn1a), p16™K4A and p194RF (both encoded by the Cdkn2a
locus) cell cycle inhibitors are increased in senescent cells, thus contributing to the inhibition of the
cell cycle in G1-S fostering an irreversible arrested state [33-36]. Non-coding RNA-mediated and
microRNA, in particular, gene silencing also regulate replicative senescence [37].
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Figure 2. Molecular and Cellular Mechanisms of Senescence: A variety of stressors induce replicative
senescence by the induction of the p16/NK42/ARF and p53/p21¢'*! pathways converging on the Rb
family members to block cell growth. Telomere shortening and epigenetic modifications contribute
to the senescent status. These molecular modifications progress to the development of the SASP that
amplify senescence through cell-to-cell connections that modify tissue homeostasis, repair, and function.

Telomere shortening is a hallmark of stem cell aging [1,5,21]. Indeed, the telomeres of several
tissue-specific adult stem cells shorten with age, despite possessing telomerase [38,39]. Telomerase
reverse transcriptase (TERT) overexpression in mice increases their median lifespan [40,41]; however,
it is unknown whether the latter depends on the reversal of adult stem cell senescence and aging.
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The standard laboratory mice begin life with much longer telomeres than human beings, but they
have shorter lifespans. Mice lacking the telomerase RNA component (TERC) are, phenotypically,
almost indistinguishable from their wild type counterpart for five consecutive generations. However,
stem cell attrition becomes apparent at the sixth generation when these mice reach critical telomere
length, although at the fourth generation, it already becomes evident a skewed hematopoietic stem cell
(HSC) lineage potential phenotype [42,43].

The DNA damage response (DDR) to either intrinsic or external insults often initiates replicative
senescence and the progressive accumulation of DNA damage; the ensuing mutations characterize
adult stem cell senescence [44]. Histone H2AX phosphorylation and comet tails, typical DNA damage
markers, increase with age in HSCs [45,46], as well as in satellite cells [47]. Moreover, HSCs from
old subjects show signs of replication stress and the downregulation of DNA helicases, making them
more vulnerable to replication problems [48]. The oncogenic transformation of adult stem cells is
a risk that increases at each stem cell DNA replication and division. Accordingly, the lifetime risk
for any tissue to develop a cancer is proportional to the number of divisions its resident stem cell
compartment has undergone [49]. Quiescence is a state of reversible growth arrest that appears to be a
self-protective state for several tissue-specific adult stem cells. Adult stem cell prolonged quiescence
has been classically interpreted as a dormant, low-activity state, but it has also been envisioned as a
state of active ‘self-control,” as stem cells “idle” steady before moving into activation to proliferate and
differentiate when needed [50]. Quiescent cells are inherently safeguarded from replicative damage in
consideration of their dormant/low-activity state. However, if DNA damage occurs, double-strand
breaks (DSBs) in quiescent cells, i.e., in the GO-G1 phase of the cell cycle, are more likely to be repaired by
mutation-prone non-homologous end joining (NHE]) rather than by a more accurate repair mechanism
such as homologous recombination (HR) [51], thus generating mutations. Indeed, quiescent HSCs
depend more on NHE] to repair DSBs, whereas proliferating HSCs depend more upon HR [44,52].
Nevertheless, when adult stem cells are actively proliferating, they are more prone to accumulate DNA
damage [53], despite proliferating stem cells being able to repair DSBs more efficiently than when they
reside in quiescence. As time goes by, normal tissues get more somatic mutations [54]. Most these
mutations do not alter cell and tissue function, so the large majority of somatic mutations are not
capable of selection. However, a mutation conferring a selective growth advantage to the mutated
stem cell can rarely occur. The mutation-selected stem cell and its progeny behave then as a “clone,”
progressively expanding over time and, in particular, in the elderly [55]. The latter has been clearly
shown to happen in the HSC compartment, resulting in a process called “clonal hematopoiesis” where
the mutated stem cell clone gives rise to a considerable amount of mature blood cells. These DNA
mutations confer a proliferation-/survival-advantage and promote HSCs with precancerous clonal
expansion [54-58]. On the other hand, DNA damage during aging may also select mutations that
increase senescence, apoptosis, and/or differentiation, resulting in a reduced number of tissue-specific
adult stem cells.

Adult stem cell function is appreciably regulated by chromatin state, which is another important
mechanism for cell senescence. The epigenetic landscape envisioned by C. Waddington [59], in essence,
depicts the dynamic flow of gene communications that restrict and constrain cell fate down the
developmental slope [60], thus representing a metaphor for the qualitative understanding of the
developmental processes of cells and tissues. Gene loci that are key for cell fate decisions are indeed
bivalent; in other words, they concurrently harbor both active and repressive chromatin modifications [61].
Aging accounts for several chromatin and gene expression changes. DNA methylation, which is a
repressive epigenetic mark, decreases with age in HSCs, although this repressive change is variable.
This hypomethylation is closely connected to the proliferative history of HSCs, offering an indirect
explanation of their persistence in the quiescence state for prolonged times. Tri-methylation at the
fourth lysine residue of the histone H3 protein (H3K4me3), an activating modification, increases with
age at gene loci that control HSC self-renewal, theoretically explaining the increased number of HSCs
often encountered in aging [62]. Furthermore, the amount of the acetylation at the 16th lysine residue of
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the histone H4 protein (H4K16Ac), another activating change, decreases with age in HSCs [63]. On the
contrary, in satellite cells, the levels of H3K4me3 are mildly reduced with age, while the amount of the
tri-methylation at the 27th lysine residue of the histone H3 protein (H3K27me3), a repressive mark,
considerably rises with age, which is concurrent with a reduction of the expression levels of the histones
themselves with age [64]. Additionally, several chromatin modifiers—including components of the
SWI-SNF and polycomb repressive complexes (PRCs), the Histone deacetylases (HDACs) including
sirtuins, and DNA methyltransferases—change their expression levels with age in stem cells [65-67];
the latter suggests that alterations of epigenetic modifications are a general feature of stem cell aging
that underlies their functional decline. Chromatin progressively acquires permanent changes as a
function of progressive age of organisms and secondary to cell stress, in particular secondary to DNA
damage signals. DSB has the greatest lasting effect on chromatin among all the distinctive forms of
DNA damage. From yeast to mammals, chromatin factors are dramatically rearranged by DSBs as part
of the reaction to damage that is not entirely repaired [68,69]. Accordingly, chromatin modifications in
response to DNA damage seem to also mediate the skewed differentiation potential of aged adult stem
cells [70].

In stem cells, the polycomb group (PcG) proteins, a particular family of transcriptional repressors,
are key regulators of cell self-renewal and cell fate commitment [71-75]. PcG possess several stable gene
repressing functions, among which these proteins establish a repressive chromatin structure, inhibit the
chromatin remodeling system, prevent the transcriptional initiation organization and also inhibit the
interactions of enhancer/promoter that enable transcription [76]. PRC1 and PRC2, two distinct PRCs,
cooperate at the initial site of repression and induce epigenetic modifications of chromatin to enable
gene silencing [77,78]. PRC1 includes Cbx, Mph, Ring, Bmi-1, and Mel18. PCR2 includes Ezh2, Suz12,
and Eed, and it initiates silencing by increasing histone H3 Lisine-27 (H3K27) methylation [79,80].
The methylation of H3K27 appears to drive PRC1 binding to chromatin, which mediates steady
gene silencing [81,82]. Independently from their role in development as regulators of repressive
chromatin states, PcG proteins also regulate stem cell self-renewal and growth. Bmi-1, a PRC1 member,
is indeed essential for adult HSC self-renewal and amplification [83,84]. Bmi-1 targets the repression the
INK4a-ARF tumor suppressor gene locus, encoding p16™K42 and p19ARF (called p14ARF in humans),
which are key players of the molecular mechanisms of senescence in human and rodent primary
cells [85] (Figure 2). The over-expression of Bmi-1 in mouse embryonic fibroblasts significantly decreases
the expression levels of p16™K42 and p194RF, and it bypasses replicative senescence promoting cell
immortalization [86,87]. Human fibroblasts undergoing replicative senescence are characterized by the
downregulation of Bmi-1 protein levels with the concomitant accumulation of p16™K42 and p194RF
proteins [88]. These data generated the current hypothesis that the age-related functional decline of
tissue-specific stem cells is mediated, at least in part, by an increase in both cellular surveillance and
tumor suppressor activity [89].

In another account, ROS, prototypical senescence inducers, were found to contribute to the
decline in stem cell function and tissue repair during aging [90-94]. As age goes by, cell damage
accumulates while mitochondrial integrity declines, thus leading to increased ROS formation and
resulting in a vicious cycle that further harms cellular macromolecules and alters mitochondrial
oxidative phosphorylation, eventually leading to cellular disarrangement [95]. Human mesenchymal
stem cells (MSCs) increase ROS levels during aging [96], and the number of healthy hematopoietic
stem cells (HSCs) with low ROS levels decreases with age in mice [97]. A mouse hematopoietic system
genetically modified to lack the transcription factors FoxO1, FoxO3, and FoxO4, which are downstream
effectors of the insulin and insulin-like growth factor 1 (IGF-1) signaling pathways, harbors HSCs with
accumulated ROS, resulting in their exit from quiescence followed by apoptosis and a severe deficit
in their repopulating function [98]. Additionally, the erasing of phosphatase and tensin homolog
(PTEN) and the concomitant ablation of protein kinase B (AKT) 1 and 2 lead to a substantial deficit
in long-term HSC repopulating potential. This evidence envisions a molecular scenario where the
PTEN-AKT-mammalian target of rapamycin (mTOR) pathway, upstream of FoxO, modulates ROS
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levels due to the regulation of HSC self-renewal and survival [99-101]. Furthermore, as age advances,
FoxO3 and the DNA damage sensing serine/threonine protein kinase ATM (ataxia-telangiectasia
mutated) modify superoxide dismutase 2 (SOD2), thus contributing to the functional decline of aged
HSC [102-104]. Accordingly, the sirtuin family of NAD-dependent protein deacetylases contemporarily
regulate aging, oxidative stress, adult stem cell function, and sirtuin 1 (SIRT1), in particular, mediates
the age-dependent deficit in MSC proliferation and commitment [105,106]. Additionally, HSC aging is
regulated through ROS production by SIRT3 [107,108].

Finally, there is increasing evidence that cell metabolism is strongly associated with aging
and adult stem cell senescence [109]. Indeed, decreased nutrient signaling can extend the lifespan,
aging is accelerated by anabolic signaling, and the organismal lifespan is extended by several
pharmacological manipulations of specific metabolic pathways [110,111]. The epigenetic states
are altered by cellular metabolic pathways, and organismal aging and longevity are accordingly
affected by these changes [112,113]. A metabolic clock involving mitochondria and nutrient-sensing
pathways is involved in the aging process. With age, somatic mutations progressively accumulate
in the mitochondrial DNA (mtDNA), and because mitochondria are exposed to an oxidative
environment, mtDNA lacks both protective histones binding, and an efficient repair mechanism.
Concurrently, mtDNA mutations accumulate with high frequencies in adult stem cells with aging [114].
Nutrient sensing dysregulation is one of the major hallmarks of aging and nutrient-sensing systems
along with the “insulin and IGF-1 signaling” (IIS) pathway, mTOR, AMP-activated protein kinase
(AMPK), and sirtuins, all of which have been linked to aging [108]. Mitochondrial metabolism and
nutrient-sensing pathways are regulated by caloric restriction. Interestingly, caloric restriction increases
the lifespan and/or healthspan in many eukaryote species, including non-human primates [110,115,116].
Overall, modifications in metabolism secondary to environmental stimuli appear to globally affect the
epigenome of adult stem cells, thus inducing their senescence. Different metabolites change or keep
specific epigenetic states, thereby evoking permanent alterations in gene expression, regulating stem
cell fate and senescence in particular [109].

Growing evidence suggests that cytosolic-free iron triggers the molecular network underlying
the development of cellular senescence. Intracellular iron content exponentially increases during
cellular senescence, reaching approximately 30-fold higher levels than young cells and therefore
contributing to increased oxidative stress and cellular dysfunction [117]. Accordingly, the expression
of iron homeostasis proteins is altered in senescent cells. Redox-active iron accumulates in excess
in the cytosol as a consequence of defective ferritin, promoting: 1) the increase in the translation of
iron-dependent ferritin; 2) a reduction in ferritinophagy secondary to a decrease in the nuclear receptor
coactivator 4 (NCOA4) due to DNA instability; and 3) an upregulation of ROS, which promotes
oxidative injury that results in DNA damage and the oxidation of both lipids and proteins. The latter
results in cells either activating the molecular network (which could be seen as a self-defense response)
or, as an alternative, increasing their death by ferroptosis. A recent study demonstrated that human
fibroblasts and neurons exposed to non-ferritin-dependent iron undergo both cell senescence and
cell death by ferroptosis, suggesting that iron is a key player in the mechanisms leading to aging
and neurodegeneration [118]. CRISPR/Cas9 technology was employed to obtain induced pluripotent
stem cells (iPSC) from neuroferritinophaty (NF) patients. Fibroblasts, neural progenitors, and neurons
derived from these NF-iPSCs possess high levels of cytosolic-free iron, which is associated with
alterations in iron parameters, ferritin aggregates, oxidative damage, and the development of a
senescence phenotype [118]. Altogether, these data postulate a role for iron metabolism and ferritin in
stem cell senescence and aging.

3. SASP and Stem Cell Senescence and Aging

Senescent cells produce and release a variety of factors, including pro-inflammatory cytokines
(IL-6; IL-7; IL-1; IL-1b; IL-13; and IL-15) and chemokines (IL-8; GRO-a, -b, and -g; MCP-2; MCP-4;
MIP-1a; MIP-3a; HCC-4; eotaxin; eotaxin-3; TECK; ENA-78; I-309; and I-TAC), growth and angiogenic
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factors (amphiregulin; angiogenin; EGF; epiregulin; bFGF; heregulin; HGF; IGFBP-2, -3, -4, -6, and -7;
KGF; NGF; PIGF; stem cell factor (SCF); SDF-1; and VEGF), matrix metalloproteinases (MMP-1, -3,
-10, -12, -13, and -14; TIMP-1; TIMP-2; PAI-1, -2; tPA; uPA; and cathepsin B), receptors/ligands (EGF-R;
Fas; ICAM-1, -3; OPG; uPAR; SGP130; sTNFRI; sTNFRII; and TRAIL-R3), non-protein molecules
(nitric oxide; PGE2; and ROS), and insoluble factors (collagens, fibronectin, and laminin), all together
unified under the name of the SASP [6,119]. The SASP constitutes the extrinsic arm of cell senescence
mediating many of their non cell-autonomous patho-physiological effects [1] (Figure 2). Cell cycle
arrest and the SASP are differently regulated, as, indeed, the activation of the p53 and p16/™NK4A/Rb
tumor suppressor pathway underlies replicative senescence while the SASP is regulated by the
activation of specific transcription factors such as the C/EBPf3, GATA4, NF-«B, mTOR, p38MAPK,
and Notchl signaling molecules [119-125]. Additionally, the SASP is controlled by a significant
epigenetic regulation, whereby MLL1 (KMT2A), HMGB2, H2A.] and MacroH2A relocate soon after
the induction of senescence to induce the transcriptions of SASP genes [126-130].

The main function of the SASP is to reinforce cell senescence by secreting pro-senescent cytokines
such asIL1, IL6, and IL8 [130-132]. Furthermore, the SASP induces paracrine senescence in neighboring
cells [133]. On the other hand, Csfl, Ccl2, and IL8 (possibly Cxcl-3 in mice), constituents of the
SASPD, are key attractant signals for immune cells, and macrophages and natural killer (NK) cells
in particular, which act to eliminate senescent cells [134-136]. Recently, additional functions of
the SASP have also been revealed, as the SASP secretome can trigger proliferation, angiogenesis,
or epithelial-mesenchymal transition (EMT) in neighboring or cancer cells [6,137,138]. Remarkably,
the SASP exerts reprogramming-like functions, as it has been found that transient exposure to the
SASP modifies primary mouse keratinocytes to increase the expression of stem cell markers that show
regenerative potential in vivo [139]. Additionally, the expression of stem cell markers in the liver is
boosted by the induction of senescence in single cells in vivo. Overall, these data shows that the SASP
could also mediate a positive process by triggering stem cell plasticity and tissue repair; the latter
has generated the tantalizing hypothesis that the local injection of senescent cells could be a novel
regenerative approach to foster tissue functional repair in vivo [139].

However, the SASP can contribute to stem cell dysfunction in aging and age-associated diseases [7].
Indeed, inflammaging and the increased secretion of SASP-related molecules can modulate stem cell
dysfunction, which could be counteracted by anti-inflammatory SASP-inhibitors such as JAK/STAT
antagonists [140]. Accordingly, genetic and pharmacologic approaches to specifically target and kill
chronic and SASP-producing senescent cells have already been shown to increase the lifespan and to
ameliorate the quality of life and disease severity [141-146].

Finally, there are burgeoning data that show that senescent cells produce and secrete extracellular
vesicles (EVs), which differ in number and composition when compared to non-senescent cells,
and these senescent cell EVs (SCEVs) play a key role in the detrimental effects of senescence in
aging. SCEVs are loaded with microRNA, which has been recently shown to be part of the SASP
and is specifically produced or retained by senescent cells. The analysis of the microRNA content
of the SASP ha shown that there are selective microRNAs produced by the SASP, and these are
mainly involved in the repression of pro-apoptotic genes [147]. These SCEV-microRNAs have
been associated with various processes that govern the functional decline of tissue-specific adult
stem cells in aging: cell senescence, stem cell number decrease, telomere erosion, and circadian
rhythm [148]. SCEVs and their miRNA load are involved in the cell-to-cell communications via
senescent cells, which can induce both a pro-fibrotic/inflammatory and pro-regenerative tissue
response into neighboring cells [149,150]. Cell senescence specifies a precise repertoire of SCEV-derived
microRNA within the SASP (e.g., the upregulation of miR-17-3p and miR-173 and the downregulation
of miR-17-3p, miR-625-3p, miR-199b-5p, and miR-381-3p) that modulate an anti-apoptotic and, possibly,
a pro-tumorigenic response in adjacent cell microenvironments [147]. Thus, depending on which type
of SCEV-related microRNAs are released by the SASP, senescent cells have the ability to induce a tissue
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regenerative response from resident stem cells, though these SASP factors can also, on the contrary,
impair stem cell regenerative actions in chronic conditions [139,141].

4. Cardiac Stem Cell Senescence

Since 2003, it has been reproducibly shown that the adult mammalian heart harbors a population of
resident endogenous CSCs that participate in cardiac responses to injury and physiological CM turnover
during the lifespan [151-157]. CSCs are clonogenic, self-renewing and multipotent, giving rise to a
minimum of three different cardiogenic cell lineages (myocytes, smooth muscle, and endothelial cells),
both in vitro and in vivo, that harbor significant cardiac tissue regenerative capacity [151,152,154-158].
Unfortunately, to date, there is still significant confusion and controversy over the endogenous role
of CSCs as myogenic precursors contributing to myocardial homeostasis and repair/regeneration
following injury [159-163]. The expression of c-kit (a type III receptor tyrosine kinase also named
CD117 or SCF-R (stem cell factor receptor)) was instrumental in 2003 for the identification and
characterization of endogenous CSCs in the adult mammalian heart [151]. However, in the adult
myocardium, the detection of c-kit alone is inadequate and actually confusing when identifying
true multipotent cells among all the other c-kit-positive (c-kitP°®) cardiac cells. Indeed, the vast
majority (~90%) of c-kit-labelled cardiac cells are endothelial and mast cells. Only less than 10% of
the total c-kit-positive cardiac cells contain multipotent cells [154,155,157,158]. Sequential CD45/CD31
negative sorting followed by c-kit-positive sorting from total cardiac cells enriches multipotent CSCs,
but this three marker-based prospective identification still identifies a heterogeneous cell population
where only 10-20% of these CD45/CD31"¢8c-kitP° cardiac cells are clonogenic/multipotent in vitro
and in vivo [154,155,157,158]. Therefore, overall, only ~2% of the entire c-kit-positive cells fulfil the
criteria for multipotent CSCs. This evidence suggests that c-kit as a sole target is indeed a poor
biomarker for detecting CSCs within the adult myocardium. However, it is also fundamental to note
that c-kit-negative cardiac cells do not harbor clonogenic/multipotent cells and c-kit haploinsufficiency
reduces cardiomyocyte refreshment in the adult heart [155,158], which shows that c-kit identification
alone is not sufficient but is still necessary to identify CSCs [154].

Overall, resident CSCs show a mixed and overlapping expression of several stem cell markers
and an apparent multiplicity and heterogeneity of cardiac progenitor cell (CPC) sub-populations [164].
Thus, different CSC/CPC populations have been reported in the developing and adult heart:
c-kitP% CSCs [151,152,154,165,166]; cardiosphere-derived cells (CDCs) [153,167]; epicardium-derived
cells (EPDCs) [168,169]; cardiac side population cells (SP) [170-172]; Sca-1P°® (stem cell antigen-1)
CPCs [173-175]; Islet-1P%5-expressing CPCs [176,177] and platelet-derived growth factor receptor-alpha
(PDGFRoP%®)-expressing CPCs [178]. Independently from the primary marker used for their
original identification, these cardiac stem/progenitor cell populations are clonogenic, self-renewing,
and multipotent, both in vitro and in vivo, and express specific transcription factors (Isl-1, Nkx2.5,
MEF2C, and GATA4) in the embryonic and adult heart [164]. Moreover, these populations express
several markers of stemness (Oct3/4, Bmi-1, and Nanog) and show significant regenerative potential
in vivo [154,164].

Based on these data, a variety of studies have established that the heart contains a reservoir
of stem and progenitor cells. Despite the “stemness” of a cell not being linked to a single specific
biological marker, many reporting groups have independently described a “unique” CSC or CPC
based on the primary marker used to isolate/detect them. With the exception of the Islet-1 cells,
which dramatically decrease in number in adulthood [176] and seem to be remnants from the
cardiac primordia [179], the identification of different cardiac stem and progenitor cells by the
expression of precise membrane markers, which are, for the vast majority, overlapping among
all the different described cell populations, suggest that these apparently phenotypically different
cells are likely to be phenotypic variations of a unique cell type that is synthetically and overall
described as CD31"¢6/CD45"5/c-kitP/Sca-1P°5/Abcg-2P°5/PDGEF-RaP®s [154]. To avoid confusion,
we keep the acronym CSCs to refer to all of the above cell populations that overall show similar
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regenerative/reparative/protective potential in vivo independently from the primary biomarker used
to detect/characterize/isolate them [164].

The significant heterogeneity within c-kit labelled cardiac cells has prompted and spread confusion
over the identity and regenerative role of endogenous CSCs. By targeting c-kit as the only marker,
murine genetic fate map strategies based on the Cre/Lox recombination have been shown to be
able to label more than 80% of c-kit-expressing cells in different known c-kit domains in the adult
mouse [180-183]. Based on that premise, using these tools, the authors of the studies employing this
technology have assessed the adult hearts by claiming that only a minimal number of cardiomyocytes
derive from c-kit-expressing progenitors in adult life [162,180-183]. However, we have shown that
this technology fails to fate map CSCs in the adult heart because only less than 10% of CSC-enriched
CD45/CD31M8¢-kitPs are labelled in these c-kit“™ mice [158]. Furthermore, CRE knock-in causes c-kit
haploinsufficiency, which produces a significant deficit in the myogenic potential of CSCs in vitro and
in vivo [155,158,161]. Therefore, appropriate and precise genetic fate map strategies that are able to
actually label CSCs in vivo are still needed to address the myogenic role of CSCs in vivo.

The controversy and debate over the myogenic role of resident CSCs has been inadvertently
fueled by the recent retractions of several papers by one of the scientists involved in the discovery and
characterization of this cell entity [184,185]. It is a fact that the scandal surrounding those retracted
publications has created a significant setback for the field of resident CSC biology and regenerative
potential [184,185]. However, it must be cautioned that it would be equally devastating for this field if,
because of those misdeeds of one investigator, all the independent and reproducible investigations
of many other scientists on the regenerative role of CSCs were dismissed. It is worth outlining here
that several independent groups have contributed to the characterization of adult resident CSCs [152],
and these publications have never been questioned or retracted. Aside from the above scandal, which is
not the topic of this review and is discussed elsewhere [184,185], it remains factual that clonal CSCs are
robustly myogenic in vitro and in vivo [186]. The published record incontrovertibly shows that CSCs
are potent myogenic precursors with significant cardiac remuscularization potential when transplanted
in vivo [152,154,158]. Additionally, the cardioprotective and regenerative capacity of these cells lay on
their paracrine activity through the direct secretion of growth factors or the production of extracellular
vesicles [187,188].

Chronic heart failure is associated with a functional decline of the resident CSCs that progressively
reduce their potential to preserve tissue homeostasis and to contribute new cardiac cells upon
myocardial damage [189]. We and others have thus assessed whether the progressive accumulation
of dysfunctional and senescent CSCs plays a crucial role in the pathogenesis of cardiac aging and
failure [27-29,189-192]. Though cell senescence has been classically associated with the development of
HF, even for this condition, an acute raise of senescent fibroblasts after myocardial infarction has been
linked to a reduced fibrotic response of the myocardium, postulating a pro-regenerative effect from the
acute and transient exposure to senescence program [96]. Nonetheless, burgeoning data consistently
show that chronic exposure to senescent cells and the progressive accumulation of senescent stem cells
inhibit the regenerative myocardial response to HF [27-29,189-192]. In line with the latter information,
the selective clearance of senescent, p16™%A-positive cells that also accumulate in the mouse heart
with aging reduces age-dependent cardiac hypertrophy and ameliorates the myocardial response to
-adrenergic damage [193].

Senescent CSCs, along with dysfunctional cardiomyocytes, accumulate with age in the
myocardium, and this phenomena is directly linked to age independently from ischemic
cardiomyopathy or other myocardial diseases like diabetic cardiomyopathy, hypertensive
cardiomyopathy, valvular heart disease, and myocarditis [194]. Nevertheless, HF following chronic
ischemic cardiomyopathy is associated with the senescence of left ventricular resident CSCs [195].
On this basis, the group of Antonio Beltrami isolated, propagated in culture, and analyzed CSCs from
both recipients of cardiac transplantation affected by end stage HF and from normal donor hearts.
They showed that both aging and HF decrease the pool of resident CSCs in human atria. Furthermore,
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age and pathology both induce CSC senescence and dysfunction, reducing their proliferative, migratory,
and differentiation abilities [189,191-194].

We assessed in CSCs and cardiac myocytes from aging wild-type (WT) mice markers of cellular
senescence, cell death, telomerase activity, telomere integrity, and regeneration [29]. To determine
whether senescent program in the aging myocardium can be prevented, we compared the above
data from WT mice with IGF-1 transgenic mice (TG), characterized by local myocardial IGF-1
overproduction [27]. p27XiPl, p53, p16™NK4  and p19ARF expression in WT myocardial cells
progressively increased with age, while IGF-1 overexpression attenuated the levels of these proteins at
all ages. Telomerase activity decreased in aging WT muscle cells but increased in TG, and these changes
were secondary to parallel modifications in Akt phosphorylation. A reduction in nuclear phospho-Akt
and telomerase activity resulted in telomere shortening and uncapping in WT cardiac cells with aging.
Importantly, the senescence and death of CSCs increased with age in WT mice, thus impairing cell
homeostasis in the heart. Myocardial IGF-1 over-expression in TG mice prevented CSC senescence and
death with age, thus inhibiting ventricular dysfunction. Myocardial IGF-1 overexpression increased
nuclear phospho-Akt and telomerase activity, thus preventing cardiac cell senescence and death [27].
Overall, these data suggested that the preservation of functional CSCs and their resulting activation
to contribute new cardiac parenchymal cells can prevent/revert the detrimental impact of age on the
myocardial tissue.

In a recent study, we isolated human CSCs from biopsies of right atria, obtained from subjects
aged 32-86 years with aortic disease, valve disease, coronary artery bypass graft (CABG), or multiple
diseases [29]. There were no differences in the number of CSCs isolated from older (>70 years) subjects
compared to subjects <70 years. On average, 22 + 9%, 31 + 4%, 48 + 9%, and 56 + 16% of freshly
isolated CSCs expressed p16INK4A isolated from 50-59, 60-69, 70-79, and 80-89 year-old subjects,
respectively [29]. Concurrently, we also found an increase in the number of senescence-associated
(3-galactosidase (senescence-associated-3-galactosidase (SA-3-gal); ~60%) and DNA damage marker
YH2AX-positive CSCs (~20%) freshly isolated from old (71-79 years), compared to middle aged
(54-63 years) subjects. Moreover, p16!NK4*A-positive CSCs co-expressed YH2AX [29]. The average
telomere length of CSCs freshly isolated from old and middle-aged subjects” hearts were comparable;
however, CSCs freshly isolated from old (78-84 years) subjects” hearts contained a 12% subpopulation
with critically short telomeres with a length of <6 kb. CSCs isolated from old (77-86 years) subjects
showed a decreased proliferation, clonal amplification, and sphere formation compared to CSCs
isolated from middle-aged (34-62 years) subjects [29]. Accordingly, CSCs from old (76-77 years)
subjects plated in a cardiomyocyte differentiation medium had a decreased myogenic differentiation
potential when compared to middle-aged (47-62 years) subject’s CSCs [29]. Even though CSCs
isolated from old hearts showed a decreased proliferation, clonogenicity, and differentiation potential,
only ~50% of CSCs are senescent in old myocardiums, so we were able to isolate a functionally
cycling-competent CSC population. Indeed, single CSC-derived clones from younger (22-33 years) and
old (74-83 years) subjects were indistinguishable in terms of morphology, senescence, multipotency,
self-renewing transcript profile, and cardiac differentiation potential. These findings suggest that CSCs
become senescent during age in a stochastic, non-autonomous manner. Then, the cycling-competent
CSC population (SA-Bgal-negative) were compared head-to-head with a senescent (SA-fgal-positive)
population for their regenerative potential in an experimental myocardial infarction model in vivo
in immunosuppressed NSG mice. The healthy, cycling-competent CSCs showed a significant
regenerative and reparative potential on the injured myocardium, resulting in neo-cardiomyogenesis
and angiogenesis with improved cardiac function. However, these reparative and regenerative effects
were absent when senescent CSCs were injected [29]. Altogether, these findings show that the human
heart harbors a CSC compartment that undergoes senescence with age, thus dictating a progressive
permanent dysfunction of at least half the cells within this regenerative endogenous cell pool. Therefore,
it is still possible to retrieve a healthy, cycling-competent CSC fraction with an increased regenerative
and reparative capacity. These data generated the hypothesis that it would be possible to revert CSC
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aging by selectively eliminating the senescent CSCs and fostering the activation of the healthy aged
CSCs. Thus, senescent CSCs affect their microenvironment by decreasing the regenerative potential
of the resident stem cell pool. Identifying the molecular mechanisms of cellular senescence in CSCs
and selecting a healthy CSC population in aging could be clinically relevant and highly significant to
enhance the therapeutic potential of CSC-based repair. In regard to this, nucleostemin (NS), a protein
selectively accumulated in the nucleolus of most stem cells, modulates telomere length and is involved
in senescence regulation; interestingly, human CSCs show a strong positive correlation between NS
expression and telomere length [196]. Accordingly, NS overexpression increases TERT expression,
thus preserving telomere length in human CSCs. On the other hand, the loss of function experiments
to silence NS expression in CSCs generates a senescent phenotype that is not followed by an increased
differentiation of mutated cells [196]. These data, for the first time, suggested that it might be possible
to revert human CSC senescence.

5. Cardiac Stem/Progenitor Cell SASP

Senescent SA-B3-gal-positive CSCs from old human donors showed an increased expression
and secretion of SASP factors, including MMP-3, PAIl, IL-6, IL-8, IL-1$3, and GM-CSF, compared
to non-senescent, SA-f3-gal-negative, cycling-competent CSCs [29]. The use of the conditioned
medium from senescent CSCs resulted in a decreased proliferation and increased proportion of
senescent p16/NK4A_positive, SA-B-gal-positive, and YH2AX-positive CSCs in relative cell cultures
when compared to CSCs treated with conditioned media from cycling-competent CSCs or unconditioned
media. These findings, for the first time, showed that the senescent CSCs exhibit an SASP that can
negatively impact surrounding cells, causing otherwise healthy and cycling-competent CSCs to lose
proliferative capacity and switch to a senescent phenotype [29]. The removal of p16™%42 senescent
cells can delay the acquisition of age-related pathologies in adipose tissue, skeletal muscle, the heart,
blood vessels, the lungs, the liver, bone, and eyes [144,145,197-204]. Recent studies have documented
the use of senolytic drugs for the selective clearance of senescent cells from “aged” tissues [205].
We therefore tested the potential of four senolytic drugs—Dasatinib (D; an FDA-approved tyrosine
kinase inhibitor), Quercetin (Q; a flavonoid present in many fruits and vegetables), Fisetin (F; also a
flavonoid), and Navitoclax (N; an inhibitor of several BCL-2 family proteins)—alone and in combination
to eliminate and clear senescent CSCs in vitro. Out of all these single senolytic drugs and all their
possible combinations, D and Q proved to preserve cycling-competent CSC viability, while senescent
CSCs were cleared and induced to selective apoptosis [29]. We next determined whether clearing
senescent CSCs using D and Q would abrogate the SASP and its paracrine impact on CSCs. We found
that cycling-competent CSCs co-cultured in the presence of senescent CSCs for seven days were
decreased in number and proliferation, and they had increased expression of p16™K44 SA-B-gal and
YH2AX. The application of D and Q to co-cultures eliminated the senescent CSCs, and seven days later,
the cycling-competent CSCs had increased in number, proliferation, and the number of p16INK4A
and SA-f-gal CSCs had decreased compared to CSCs that had been in co-culture with senescent
CSCs without D and Q. The co-culture of cycling-competent CSCs with senescent CSCs led to an
increased secretion of SASP factors into the medium, but the level of SASP factors was reduced with
the application of D and Q. Concurrently, the elimination of senescent cells with D and Q treatment in
aged (~27 months) mice in vivo decreased cardiomyocyte hypertrophy and fibrosis, activated resident
CSCs, and increased the number of small and proliferating cardiomyocytes, as compared to young
and old vehicle-treated mice hearts [29]. Overall, these findings documented that senescent human
CSCs have an SASP, and the clearance of senescent CSCs using a combination of D and Q senolytics
abrogates the SASP and its detrimental senescence-inducing effect on healthy, cycling-competent CSCs
(Figure 3). The clearance of senescent cells by senolytic drug treatment in vivo leads to the stimulation
of healthy CSCs, resulting in new cardiomyocyte formation that is specific to the aged heart (Figure 3).
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Figure 3. Molecular and Cellular Mechanisms of Senescence: Replicative senescence and SASP

characterize the senescent phenotype of aged and dysfunctional CSCs. Senolityc drugs and SASP
inhibitors are able to eliminate senescent cells and senescent dysfunctional CSCs, thus favoring the
expansion of healthy and functional CSCs.

7

The SASP is replete in inflammatory cytokines and chemokines that contribute to ‘inflammaging
and can directly modulate the immune response [206,207]. CSCs can chemo-attract immune cells
and are usually cleared by these immune cells, but SCAPs protect senescent cells from their own
pro-apoptotic SASP. During aging and in multiple chronic diseases, senescent cells—and adult senescent
stem cells in particular—accumulate in dysfunctional tissues [206,207]. Senescent cells can impede
innate and adaptive immune responses [206,207]. Whether an immune system’s loss of capacity to clear
senescent cells promotes immune system dysfunction or, conversely, whether immune dysfunction
permits senescent cell accumulation are important issues that are not yet fully resolved [207]. Of interest,
with aging, Sca-1P°%/PDGFR-alphaP® cardiac mesenchymal multipotent cells [178,208-210] acquires
senescence markers and SASP factors involved in immune cell regulation and angiogenesis [132].
The senescence of these multipotent cardiac cells impacts cardiac microenvironment through the
modification of their vascular lineage differentiation potentials and the promotion of CCR2-dependent
monocyte recruitment [132]. These data open up the tantalizing hypothesis that senescence with aging
fosters a skewed differentiation potential within the cardiac multipotent compartment of the heart
with the clonal amplification of cells more prone to differentiate towards the endothelial cell lineage
and less to the myocyte lineage.

6. CSC Senescence and Diabetic Cardiomyopathy

Aging is accompanied by progressive glucose intolerance associated with age-related changes
in insulin resistance and pancreatic 3-cell function, resulting in a high prevalence of postprandial
hyperglycemia, type 2 diabetes mellitus (T2DM), and T2DM-assoaciated macro- and microvascular
complications in the elderly population [211-213]. Cardiovascular disease (CVD) is the main cause of
morbidity and mortality in diabetic patients, accounting for about 80% of all diabetic deaths in North
America [214,215]. DM has a dramatic impact on the aging and senescence of different types of adult
stem cells [216]. In particular, DM impairs the in vitro proliferative and differentiation potential of
adult CSCs, further worsening their senescence phenotype even when compared with CSCs from
non-diabetic ischemic patients [217]. DM not only induces a functional decline in resident CSCs, it also
reduces cardiac muscle function of diabetic individuals [218]. Indeed, Ob/ob and db/db mice, common
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mouse models of obesity and T2DM, show a reduced muscle regeneration after injury by cardiotoxin
injection when compared to non-diabetic mice [218].

In a model of insulin-dependent DM, the myocardial accumulation of ROS drives CSC senescence
through the expression of p53 and p16™K4a proteins and telomere erosion, which lead to CSC death by
apoptosis [219]. The p66°" gene appears to be a significant modulator of these effects because p66°'
knockout inhibits CSC senescence and death, preventing the senescent phenotype and the development
of cardiac failure by DM [219]. Diabetic p66°"“~/~ hearts harbor a significantly higher number of resident
CSCs when compared to WT diabetic mice, and CSC activation results in an increased cardiomyocyte

refreshment with preserved heart function in diabetic p66°~/~

mice. These data have generated the
hypothesis that maintaining a healthy and functional the resident pool of CSCs can efficiently offset
the detrimental consequences of DM on cardiac tissue [219].

She et al. recently found that diabetes suppresses CSC activation in the heart [220]. In this study,
the left coronary artery was permanently ligated to induce a myocardial infarction (MI) in non-diabetic
and diabetic rats. Five days later, BrdU incorporation in CSCs showed a significant activation of these
cells in the peri-MI zone of non-diabetic rats. However, CSC expansion was significantly reduced in
diabetic rats, and the latter was associated with worsened cardiac function at three weeks post-MI.
DM was also found to reduce the myocardial expression of SCF expression, together with a reduced
phosphorylation of ERK1/2 and p38 MAPK, in the peri-MI of diabetic versus non-diabetic rats [69],
thus suggesting that diabetic status diminished SCF expression via a decrease in ERK1/2 and p38
MAPK activation leads to the inhibition of CSC activation [220].

DM determines significant epigenetic alterations that affect stem cell integrity and lead to
senescence, in particular through DNA and histone modifications, as well as noncoding RNA
(nonprotein coding) regulation by microRNA and long-noncoding RNA [199]. Changes in chromatin
conformation were associated by Vecellio et al. with the impaired proliferation, differentiation,
and senescent behavior of diabetic CSC [217]. The major identified changes were the hypermethylation
of CpG islands, an increased trimethylation of H3K9, H3K27, and H4K20, as well as a decreased
monomethylation and acetylation of H3K9 [217]. The latter modifications was found to condense the
chromatin and cause a repressive response to hamper the transcription of cell growth genes and genomic
stability. Interestingly, the treatment of diabetic CSC with a pro-acetylation compound histone acetylase
activator pentadecylidene-malonate 1b (SPV106) reversed chromatin condensation and reverted, at least
in part, the senescent phenotype of CSCs by rescuing the proliferation and differentiation potential of
diabetic CSCs through an increased acetylation and decreased CpG methylation [217].

T2DM patients at early stages of their disease, while still asymptomatic, show a significant
increase in the amounts of circulating and cardiac miR-34a levels when compared to non-diabetic
controls [221]. The latter is associated with a specular significant reduction in the expression of
the pro-survival protein SIRT1, which is an mRNA specifically targeted for repression by miR-34a.
Accordingly, miR-34a is significantly upregulated while SIRT1 is downregulated in adult cardiac muscle
cells and CSCs harvested from diabetic hearts; the latter is associated with a higher pro-apoptotic
caspase-3/7 activity [221]. However, miR-34 has differential effects depending on the cell context.
Indeed, the repression of miR-34a has been found to increase SIRT1 expression in both cardiomyocytes
and CSCs; however, the expression of the tumor suppressor p53 protein is further increased in
cardiomyocytes with miR-34 inhibition, though it decreased the amount of CSCs. In spite of the
increased p53 levels, miR-34a antagonism was found to significantly prevent cardiomyocyte apoptosis
by high glucose in culture [221]. On the other hand, miR-34a inhibition significantly reduced
proliferation in vitro.

Intriguingly, diabetes has been associated with skewed differentiation potential, which is a typical
feature of cell senescence [21]. Indeed, diabetic status was found to alter the fate of CSCs to adipogenesis
through the inhibition of the 3-catenin/TCF-4 pathway [222].

Altogether, these data postulate the tantalizing hypothesis that the premature cellular senescence
and ageing of resident CSCs underpins the development of diabetic heart disease. It will therefore
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be important to further unravel the major mechanisms underlying CSC senescence where it appears
particularly relevant to ascertain how the SASP modulates diabetic CSCs and diabetic hearts [223].

7. CSC Senescence and Anthracycline Cardiomyopathy

Cardiovascular and oncologic diseases are the first and second causes of mortality in economically
developed countries. These two illnesses can be merged into one group when considering the
cardiovascular complications of anticancer therapies [224]. In the last two decades, the importance
of the cardiotoxic side effects of anticancer therapies has been increasingly recognized. Accordingly,
European and north American experts in the field have put together practice guidelines on the
approaches to investigate and manage cancer patients at high risk of cardiovascular complications [224].

Anthracyclines are drugs discovered in Italy more than a half century ago that are still a milestone
for many chemotherapy protocols [224]. These drugs are well known to commonly produce cardiotoxic
effects [224]. Doxorubicin (DOX), the main member of the anthracycline family, has been widely used
for a very long time as a prototypical anticancer drug to induce cardiotoxicity and cardiac dysfunction.
The main mechanism of DOX cardiotoxicity has been mainly attributed to the considerable accumulation
of ROS and reactive nitrogen species (RNS) in adult cardiac muscle cells [225-227]. Beyond the effects
on the cardiomyocytes, recent basic science reports have discovered other cardiac cell targets of the
DOX-induced cardiotoxicity, identifying the detrimental effects of DOX on the endogenous CSC pool
that induce their premature senescence [228-233]. It is worth remembering here that DOX is commonly
used as an in vitro assay to study cellular and stem cell senescence [29].

In an animal model of anthracycline-induced cardiomyopathy, DOX administration caused ROS
activation and DNA damage in resident CSCs with the induction of replicative senescence and apoptotic
death [228]. When compared to matched controls with non-cardiovascular diseases, DOX altered the
myocardium of treated patients who showed a higher number of CSCs marked by DNA damage and
senescence, and in particular by the phosphorylated form of histone H2AX and p16™NK4a [29,229].
DOX administration to human CSCs in vitro acutely activates senescent and proapoptotic pathways,
advancing the hypothesis that DOX depletes the myocardium of CSC-dependent regenerative potential
and making the DOX-injured myocardium more susceptible to chronic damage and failure [229].
Accordingly, DOX-injured human CSCs are unable to foster anatomical and functional regeneration
in animals with DOX cardiomyopathy [230,231]. Remarkably, resveratrol, an antioxidant compound
and a sirtuin 1 activator, was found to prevent the DOX-induced replicative senescence of CSCs by
preventing the excessive accumulation of intracellular ROS and fostering an oxidative stress defense.
Moreover, resveratrol treatment fueled the regenerative capacity of CSCs than when intramyocardially
injected in damaged hearts, and ameliorated cardiac function and significantly decreased animal
mortality [230]. That DOX induces CSC senescence and apoptosis has been independently reproduced.
Indeed, DOX increased the number of SA-3-gal-positive CSCs, while human amniotic fluid stem cell
secretome pre-treatment was able to significantly decrease DOX-induced CSC damage and death [232].
Additionally, a natural potent antioxidant and polyphenol-rich fraction extracted from citrus bergamot
(BPF) was found to significantly prevent DOX-induced cardiotoxicity in rats by reducing DOX-induced
ROS upregulation, increasing cardiac cell survival, and restoring protective autophagy while also
promoting CSC activation and cardiomyocyte replacement in DOX-injured cardiac tissue [234].

Human epidermal growth factor receptor 2 (HER2)-positive breast cancers are effectively managed
by a combination of anthracyclines (e.g., DOX) and trastuzumab (Trz), a humanized anti-HER2/ErbB2
drug [235]. Human CSCs produce and secrete exosomes that exert potent cardioprotective effects
when administered in animals with experimental myocardial ischemia [188]. On this basis, animals
with DOX/Trz-mediated cardiotoxicity were recently treated with the intravenous administration
of CSC-derived exosomes [235]. Animals treated with DOX/Trz administration developed a
cardiomyopathy characterized by myocardial fibrosis, CD68* inflammatory cell infiltration, inducible
nitric oxide synthase expression, and cardiac dysfunction, all of which were significantly reduced by
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the injection of CSC-derived exosomes. miR-146a-5p within the CSC-derived exosomes mediated these
positive effects [188].

Altogether, these data show that DOX alters CSC function and survival, and it generates
the hypothesis that the early toxicity of the resident CSCs caused by the acute exposure to DOX
may be responsible for late-onset heart failure in DOX-treated patients. However, whether CSC
functional decline by DOX dictates acute and chronic DOX-induced cardiomyopathy remains to be
fully ascertained.

8. Is CSC Intrinsic Senescence Reversible?

While eliminating senescent cells to rejuvenate tissue and organs through the selection of healthy
functional tissue-specific stem cells appears to be valid strategy to prevent/reverse the detrimental
effects of senescent-associated aging, it is yet unsubstantiated whether the permanent intrinsic
senescence-associated proliferative withdrawal can be reversed [2]. In regard to this, recent findings
showing proliferative activity in a senescent cell population implied that senescence is a dynamic, rather
than a terminal, phenomenon [236-239] (Figure 4). The acute inactivation of RB is sufficient to promote
proliferation in senescent mouse embryo fibroblasts (MEFs) [237], prevents SAHF accumulation, and
cooperates with p53 loss to bypass senescence in human diploid fibroblasts [35,240]. Indeed, the loss
of RB inhibits initial replicative senescence in culture; however, these ‘rescued” senescent proliferative
cells eventually have their cell cycle inhibited by an increased phosphorylation of p53, thus resulting
in an upregulation of the cell-cycle inhibitor p21 [241]. Therefore, the concurrent knock-down of
RB family proteins and p53 is necessary to prevent and revert senescence. Indeed, cells undergoing
cell cycle arrest by senescence with low levels of p16/™NK42 can be converted into proliferative cells
through acute p53 inactivation [236]. These data have raised the hypothesis that there is a state of ‘light’
senescence (representing low p16™K42 Jevels with the incomplete activation of Rb) that is different from
a ‘deep/stable’ senescent state, and the factors causing these hypothetical states are still being searched
for. The H3K9-active demethylases JMJD2C and LSD1 mediate escape from senescence in fibroblasts
or melanocytes [239]. Moreover, fluorescence-based SA-3-gal staining was employed to analyze single
cells, and through this methodology the presence of a few senescent cells moving out their cell cycle
arrest to duplicate their DNA and divide was discovered [242]. That senescent cells naturally reverted
to dividing cells was clearly shown by the evidence that cells labelled by the senescence marker retained
it while also showing the incorporation of the marker of DNA replication [242]. Overall, it has been
hypothesized that the stability of the senescent state—foremost the permanent cell cycle withdrawal
that is typical of senescence status—is mainly driven by the amount and form of senescence-associated
chromatin remodeling, and natural senescence reversibility seems to correlate with a less intense
epigenetic modification. On the other hand, the thus far accumulated data have shown that natural
escape from the senescent state back to a proliferative activity is not a whole conversion back to
pre-senescent cell life.
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Figure 4. Phenotypic Characteristics of Senescent Cells: Diagram depicting some of the phenotypic
alterations associated with senescence initiation, early senescence, and late phases of senescence, which
suggest that senescence is a dynamic rather terminal phenomenon. Figure reproduced with permission
from Herranz N. and Gil J. [243].

Recent findings have shown that a genetic in vivo strategy for transient reprogramming can
ameliorate age-associated senescent hallmarks and extend the lifespan in progeroid mice carrying a
Dox-inducible expression cassette for the classical four reprogramming factors, i.e., Oct4, Sox2, Klf4,
and c-Myc (OSKM) [244]. Similarly, the transient activation of OSKM in vivo was found to ameliorate
recovery from metabolic disease and muscle damage in older wild-type mice [244]. The improvement
of senescent features during aging by epigenetic modification through in vivo reprogramming elicited
by the short term expression off the OSKM factors lends further support to the main role played
by epigenetic regulation of mammalian aging. Recently, the transient expression of OSKMLN
as nuclear reprogramming factors, through the release of their relative mRNAs, induced a swift,
permanent, and wide improvement and turnaround of cellular aging in human endothelial cells and
fibroblasts at the cellular, epigenetic, and transcriptomic levels [245]. Intriguingly, all these epigenetic
and transcriptional changes occur before cellular identity is affected by epigenetic reprogramming.
Moreover, the transient expression of OSKMLN mRNAs was found to revert the senescence of both
mouse- and human-derived skeletal muscle stem cells without abolishing cellular identity and while
also restoring their muscle tissue regenerative potential in vivo [245].

The above data show that naturally aged human and mouse cells can be rejuvenated with the
restitution of a normal function in both diseased cells and aged stem cells while the cell identity is
preserved. It will therefore be interesting to evaluate if epigenetic reprogramming in truly senescent
CSCs revert their senescent-associated phenotype and regenerative defects in vitro and in vivo.
Of interest, our data (unpublished) show that Bmi-1, a member of the polycomb repressor complex
1 that mediates gene silencing by regulating chromatin structure and that is indispensable for the
self-renewal of normal stem cells, is significantly downregulated in aged and senescent CSCs. Restoring
Bmi-1 in aged CSCs rescues their replicative defects and self-renewal capacity (unpublished). However,
Bmil plays a key role as an epigenetic barrier to direct cardiac reprogramming [246]. Bmil directly
interacts with the regulatory regions of cardiogenic genes, whereby Bmil downregulation fosters
increased levels of the active tri-methylation at the fourth lysine residue of the histone H3 protein
(H3K4me3) and reduced the levels of the repressive ubiquitination of lysine 119 of histone 2A
(H2AK119UDb) at cardiogenic loci, resulting in the de-repression of cardiogenic gene expression during
cardiomyocyte conversion [246]. Furthermore, Bmil deletion replaces the need for Gata4 during
cardiomyocyte reprogramming [246]. From here, it can be hypothesized that while Bmi-1 re-expression
is necessary to revert CSC senescence, transient non-integrative Bmi-1 overexpression is needed to
obtain functional myogenic progeny from senescent CSCs.
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9. Conclusions

In the 50 years since the role of senescence in aging and disease was first proposed, the cell
senescence phenotype has moved from being considered an irreversible and static phenomenon to be
recognized as a relevant dynamic and active cellular mechanism in vivo (Figure 4). Adult stem cell
senescence contributes to aging and age-related, but also age-unrelated, physiological and pathological
processes due to organ dysfunction and disease. In particular, CSCs undergo senescence with age or
in response to different stresses, like diabetes and anthracycline therapy, with the activation of the
molecular machinery underlying replicative and differentiation defects along with the production and
secretion of a detrimental SASP. The clearance of senescent cells by senolytic drugs rejuvenates the
myocardial regenerative capacity of aged mice. However, whether CSC senescence is reversible remains
to be established. Therefore, it is essential to characterize the mechanisms and functions of senescent
CSCs in cardiac aging and disease to design specific, optimal, and nontoxic therapeutic approaches.
Concurrently, it is mandatory to obtain a better understanding of the molecular mechanisms of the
cell-autonomous and cell non-autonomous features of CSC senescence in vivo to establish which
of these two related characteristics can be better targeted. It will also be of particular interest to
assess whether and how the senescence and aging of other cardiac cells (cardiac fibroblasts [30] and
cardiomyocytes [247], in particular) have a direct effect on CSC senescence during aging and cardiac
disease. Nevertheless, all the in vivo biomarkers for senescence, including SA (-gal activity and
p16™K4a expression, may be unreliable [243], especially considering the heterogeneity of senescent
phenotypes in vivo. Therefore, the single-cell transcriptome profiling of CSCs as a function of age and
disease will be necessary to understand the nature of these senescent cells in order to eventually design
effective therapeutic approaches.
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