

Supplementary Figures

Knape et al. 2020: Molecular basis for Ser/Thr specificity in PKA Signaling

Figure S1. Michaelis-Menten kinetics of PKA C α constructs. Phosphorylation of S-Kemptide (red) and T-Kemptide (black) was measured using a spectrophotometric kinase assay. The observed rate constant (*k*_{obs}) was plotted against the peptide concentration. (A) PKA C α wt. (B) PKA C α F187V. (C) PKA C α F187I. (D) PKA C α F187T. The data points are means of two duplicate measurements with error bars indicating the standard deviation (SD). Representative graphs from at least three independent measurements.

Figure S2. PKA C α wt phosphorylates GST-PKT efficiently in vitro. PKA C α wt phosphorylates GST-PKS (PKI A21S) as well as GST-PKT (PKI A21T) in the presence of ATP and MnCl₂. AMP-PCP and MnCl₂ could not be used by PKA C α as cosubstrates and showed no phosphorylation of the substrates like in the reactions without any nucleotide. Western blot was performed with a phospho-PKA substrate antibody (α -RRXS*/T*) and an α -GST antibody as control, respectively.

Figure S3. On-chip phosphorylation with PKA C α wt. (A) On-chip phosphorylation of GST-PKS. (B) On-chip phosphorylation of GST-PKT.

Figure S4. Binding of PKA C α to PKI-derived substrates in the absence of metal ions and nucleotides. SPR curves showing the interaction of PKA C α wt with (A) GST-PKS and (B) GST-PKT, respectively. The interaction was monitored using a running buffer with EDTA.

Figure S5. Formation of the Michaelis complex in the presence of 0.2 mM AMP-PNP and 1 mM MgCl₂. SPR binding curves showing the interaction of PKA C α wt with (A) GST-PKS and (B) GST-PKT, respectively.

Figure S6. Formation of the Michaelis complex in the presence of 0.2 mM AMP-PCP and 1 mM MnCl₂. SPR binding curves showing the interaction of PKA C α wt with (A) GST-PKS and (B) GST-PKT, respectively.

Figure S7. Steady-state analysis for the substrate binding of PKA C α wt in the presence of 0.2 mM AMP-PCP and 1 mM MgCl₂. Equilibrium SPR signals for GST-PKS (red) and GST-PKT (black) were plotted against the respective PKA C α wt concentration. Determined K_D values for GST-PKS and GST-PKT were 55 nM and 124 nM, respectively.

Figure S8. Interaction of PKA C α F187V with GST-PKI. SPR curves of the interaction analyses in the presence of 1 mM ATP and 10 mM MgCl₂.

Figure S9. Biochemical analyses of PKA C α F187V. (A) Recombinant PKA C α F187V is autophosphorylated at T197 and S338 as validated by Western blotting. (B-C) SPR on-chip phosphorylation of GST-PKS (B) and GST-PKT (C) in the presence of ATP and MgCl₂. (D-E) SPR binding curves showing the formation of the Michaelis complex between PKA C α F187V and PKS (D) or PKT (E), respectively, in the presence of 0.2 mM AMP-PCP and 1 mM MnCl₂.

Figure S10. Cushing's syndrome mutant PKA C β 1 S53L has increased serine specificity. Specific kinase activity of recombinant PKA C β 1 wt (three independent protein preparations) and S53L mutant (two independent protein preparations) as determined with a spectrophotometric kinase assay using either S-Kemptide (red) or T-Kemptide (black). Bars show the mean values with SD. One unit (U) corresponds to a turnover of 1 µmol substrate per minute.