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Abstract: Esophageal cancer (EC) is an aggressive form of cancer, including squamous cell 
carcinoma (ESCC) and adenocarcinoma (EAC) as two predominant histological subtypes. 
Accumulating evidence supports the existence of cancer stem cells (CSCs) able to initiate and 
maintain EAC or ESCC. In this review, we aim to collect the current evidence on CSCs in esophageal 
cancer, including the biomarkers/characterization strategies of CSCs, heterogeneity of CSCs, and 
the key signaling pathways (Wnt/β-catenin, Notch, Hedgehog, YAP, JAK/STAT3) in modulating 
CSCs during esophageal cancer progression. Exploring the molecular mechanisms of therapy 
resistance in EC highlights DNA damage response (DDR), metabolic reprogramming, epithelial 
mesenchymal transition (EMT), and the role of the crosstalk of CSCs and their niche in the tumor 
progression. According to these molecular findings, potential therapeutic implications of targeting 
esophageal CSCs may provide novel strategies for the clinical management of esophageal cancer. 

Keywords: esophageal cancer; heterogeneity; cancer stem cell; plasticity; therapeutic resistance 
 

1. Introduction 

Esophageal cancer (EC) is the 7th most commonly diagnosed cancer and the 6th leading cause 
of cancer-related death worldwide, with an estimated 572,000 new cases and 509,000 deaths in 2018 
[1]. Esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC) are the two 
main histopathological subtypes of EC. EAC and ESCC vary in etiology and pathogenesis, genomic 
characteristics, geographical distribution, ethnic characteristics, and therapeutic sensitivity [2]. In 
addition to the common risk factors such as older age, male gender, tobacco smoking, and lower 
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socioeconomic status, EAC is reported to be more related to obesity, gastroesophageal reflux disease 
(GERD), and Barrett's esophagus, whereas ESCC is more associated to alcohol or hot beverages 
consumption and family history of cancer [3]. EAC exhibits frequent genomic amplifications of 
VEGFA, ERBB2, GATA4, GATA6, and CCNE1 as well as deletions of SMAD4, while ESCC generally 
presents amplifications of CCND1, SOX2, TERT, FGFR1, MDM2, NKX2-1, and/or TP63 as well as 
deletions of RB1 [4]. At the level of point mutations shows EAC frequent mutations in TP53, 
CDKN2A, ARID1A, and SMAD4 while ESCC is frequently mutated in TP53, CSMD3, NOTCH1, and 
PIK3CA [5,6]. EAC is more frequent in many western countries including Germany, while ESCC is 
the major histological type in eastern countries especially in China and Japan [7,8]. Years of efforts 
have improved the 5-year survival of EC from less than 5% in the 1960s to about 20% in recent decades 
[2]. Gradual improvement of multi-disciplinary management strategies of EC contributed to the 
improved therapeutic effect over time [9]. However, due to the lack of obvious symptoms at the early 
stage of the disease, EC patients usually have developed regional or distant metastasis at the time of 
diagnosis, which makes EC still a major global health care challenge. In addition, not all patients 
benefit from the multimodal therapies including neoadjuvant chemotherapy or perioperative 
chemoradiation and show no tumor response at all [10,11]. So far, the exact mechanisms underlying 
therapeutic resistance are often unclear. 

Cancer stem cells (CSCs) are a small group of cancer cells with specific properties such as self-
renewal, differentiation potential, proliferation, heterogeneity, and therapeutic resistance [12]. Since 
the first identification of CSC in acute myeloid leukemia (AML) by Bonnet et al. in 1990s [13], this 
particular subset of cells was reported in many solid tumors including gastrointestinal carcinoma 
[14,15]. The classic hierarchic CSC theory is that only CSCs have self-renewal ability and are able to 
differentiate into progenitor cells that lead to differentiated tumor cells. However, recent studies have 
shown the plasticity of CSCs while non-CSCs are capable of gaining stemness due to the changes in 
tumor microenvironment (TME) or the stimulations by cytotoxic treatments [16,17]. It is suggested 
that CSCs may be responsible for therapeutic resistance and are the major cellular source for tumor 
recurrence [12,17,18]. According to the CSCs theory, traditional cytotoxic treatments like 
chemotherapy and radiotherapy could eliminate rapidly proliferating non-CSC cells rather than the 
relatively quiescent CSCs and may stimulate non-CSCs to undergo stem-phenotypic transitions [16–
18]. For EC patients, no significant survival benefit of an adjuvant chemotherapy or radiotherapy has 
been shown [19–21]. It has been reported that nearly 70% of patients showed limited or no response 
to current neoadjuvant chemotherapy and still 30–40% of patients did not achieve a satisfactory 
response after neoadjuvant chemoradiotherapy [10,22,23]. Moreover, long-term follow-up revealed 
that about 40–50% of patients developed local or distant recurrence even after radical 
multidisciplinary treatment [24–26]. In light of this relatively poor susceptibility of EC to chemo- or 
radiotherapy, it appears highly promising to understand the role of CSCs in EC and to explore 
therapeutic strategies aiming to eradicate CSCs. 

In this review, we focus on the latest research findings on CSCs in EC from PubMed based on 
the medical subject headings of ‘esophageal cancer’, ‘esophageal adenocarcinoma’ or ‘esophageal 
squamous cell carcinoma’, ‘cancer stem cell’, ‘heterogeneity’ or ‘single cell’, ‘signaling pathways’, 
‘chemotherapy’, ‘radiotherapy’ or ‘therapeutic resistance’, ‘prognosis’ or ‘survival’. Only peer 
reviewed articles written in English were included. We thoroughly discuss isolation of CSCs, their 
biological characteristics, TME crosstalk, therapeutic resistance, and potential novel perspectives of 
CSCs eradication in EC. 

2. Isolation of Esophageal Cancer Stem Cells 

The introduction of the “tumor stem cell” concept bears interesting opportunities to explore the 
pathogenesis of malignant tumors. Reliable and robust protocols for esophageal cancer stem cells 
(ECSCs) isolation and enrichment is a pivotal task to harmonize ECSC studies. In recent years, many 
experts have explored several separation methods of ECSCs, mainly belonging to the following two 
types of strategies: ECSC biomarker based and ECSC biomarker-free based. 
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2.1. ECSC Isolation—Biomarker Based 

Using the specific surface or intracellular markers detectable by fluorescence-activated cell 
sorting (FACS) or antibodies conjugated to magnetic beads for screening of CSC is considered as one 
of the most authoritative methods (Figure 1). 

 
Figure 1. A schematic of various esophageal cancer stem cell markers and the overview of the 
progression from normal squamous epithelium to dysplastic cell and finally developing into 
adenocarcinoma. Cell surface markers CD44, CD24, CD90, CD271, CD133, ABCG2, ITGA7, ICAM-1 
and PDPN are used as single markers while CD44 and CD133 can be used in combination with other 
markers, including CD24, CD133 and CXCR4 to identify cancer stem cells (CSCs). Others are the 
transcription factors BMI1, NANOG, SOX2, OCT-4, GLI-1, SALL4, and Ep-CAM are implicated to 
enrich the CSCs. Various cell types have been proposed to give rise to metaplasia (the replacement of 
esophageal squamous epithelium by Barrett’s columnar epithelium in response to esophageal injury) 
which can progress to esophageal adenocarcinoma. Esophageal cancer cells are heterogeneous and 
include cancer stem cell populations. Chemotherapy and/or radiotherapy kill differentiated cancer 
cells but may fail to kill CSCs, which arise from stem cells, progenitor cells, or differentiated cells. 
Migrating cancer stem cells are considered to have a crucial role in initiating cancer metastasis. 

CD44 and CD133 are multifunctional cell surface antigens that have a role in tumor proliferation, 
migration, invasion, and angiogenesis in several aspects of cancer cell phenotypes and have been 
extensively studied as single and combined CSC markers [27,28]. Single marker CD44 is suggested 
to be a prognostic marker for EAC and ESCC [29,30]. In particular, some studies have proposed CD44 
as a CSC marker in ESCC [29,31]. Functional characteristics were also found for CD133 [32–34], 
CD271(p75NTR) [35–37], LgR5 [38–40], CD90 [41,42], ALDH1 [43–45], ABCG2 [33,46,47], ICAM-1[48] 
and ITGA7 [49]. Besides, CD44 and CD133 can be used in combination with CD24 (CD44+/CD24−) 
[50], CD133 (CD44+/CD133+)[51] and CXCR4 (CD133+/CXCR4+) [52] to identify esophageal CSCs 
(Table 1).  
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Table 1. Cancer stem cell markers for prognosis of esophageal cancer. 

Markers Cancer 
Type Results 

Marker for 
Diagnosis or 

Prognosis 
Reference  

Single marker EAC/ESCC 

CD44 EAC 
ESCC 

Cell surface protein: 
contributes to tumor 

invasion and regulates EMT 

High CD44 
expression correlates 

to positive lymph 
node ratio and 
lymph vascular 

invasion 

[29–31] 

     

ABCG2 ESCC 

ATP-binding cassette 
transporter (membrane 

transporter) is associated 
with the drug resistance 

and metastasis 

The presence of 
ABCG2-positive 

cells was associated 
with poor survival 

independent of 
primary tumor size 
and positive lymph 

node metastasis 

[33,46,47] 
 

     

ALDH1 
EAC 
ESCC 

Intracellular enzyme 
oxidizing aldehydes: 
ALDH1+ cancer cells 

possess highly invasive and 
metastatic capabilities with 

EMT phenotype and are 
associated with therapy 

resistances 

Positive ALDH1 
staining was 

relevant to higher 
clinical stage and 

shorter survival time 

[43–45] 
 

     

CD133 ESCC 

Cell surface protein: 
promotes tumor initiation 

and self-renewal capacity as 
well as chemoresistance.  

The presence of 
CD133+ cancer cells 
was associated with 

tumor cell 
differentiation 

[32–34] 

     

CD271 ESCC 

Cell surface protein: 
CD271+ cancer cells possess 
higher self-renewal activity 

and are associated with 
therapy-resistance and 
lymphnode metastasis 

Ep-CAM+ 
CD271(p75NTR)+ 

tumor cells in 
peripheral blood 

correlate with 
clinically diagnosed 

metastasis and 
venous invasion 

[35–37] 
 

     

LgR5 EAC 

Cell surface protein: 
promotes proliferation, 
migration and invasion 

ability 

High LgR5 was 
associated with 
worse survival 

[38–40] 
 

     

CD90 ESCC 

Cell surface protein: CD90+ 
cells possess higher self-

renewal activity and 
metastatic potential, and 

are more resistant to 
chemotherapy 

Higher CD90 
expression exhibit 

more local invasion 
and distant 
metastasis, 

indicating a poor 
prognosis 

[41,42] 
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ITGA7 ESCC 

Cell surface receptor: 
ITGA7 contributes to tumor 

innitiation and drug 
resistance, it promotes 
metastasis via inducing 

EMT together with an anti-
apoptosis function.  

More ITGA7+ cells in 
ESCC tissues predict 

a worse prognosis 

[49] 
 

     

ICAM1 ESCC 

Intercellular adhesion 
molecule1: promotes cancer 

cell migration, invasion, 
EMT, sphere formation, 
tumorigenesis and drug 

resistance 

 [48] 

     

SOX2 ESCC 

Transcription factor: 
promotes cancer cells 

migration and invasion as 
well as chemoresistance to 

cisplatin 

Controversial results 
exist regarding the 
prognostic value of 

SOX2 because of 
opposite conclusion 

among studies 

[53–57] 

     

NANOG ESCC 

Transcriptional regulator: 
regulates cancer cells 

proliferation and drug 
resistance 

 [58–60] 

     

BMI-1 ESCC 

Transcriptional regulator: 
regulates radiosensitivity of 
tumor cells and inbitits cell 

growth and invasion 

Overexpression of 
BMI-1 is associated 
with progression 

and invasion of EC 

[61–64] 

     

OCT-4 ESCC 

Transcriptional regulator: 
promotes cell cycle 

progression and accelerates 
proliferation and invasion 
of esophageal cancer cells 

Overexpression of 
OCT-4 is 

significantly 
associated with 

higher histological 
grade and poorer 

survival 

[54,62,65,6
6] 

     

Ep-CAM ESCC 

Transmembrane 
glycoprotein: Ep-CAM 

contributes to cell 
proliferation and 

tumorigenesis 

Expression level of 
Ep-CAM inversely 

correlates with 
degree of 

differentiation 

[67–69] 

     

Gli-1 
EAC 
ESCC 

Transcription factor: 
promotes cell proliferation 

and is associated with 
chemoradiation resistance 

Gli-1 is positively 
associated with 

distant metastasis, 
indicates poor 

outcome 

[70–72] 
 

     

SALL4 ESCC 

Transcription factor: 
promotes cell proliferation, 
migration and invasion as 
well as chemoresistance to 

cisplatin, contributes to 
tumorigenesis in vivo  

Overexpression of 
SALL4 was found in 
a majority of ESCC 

tissues and 
correlates with poor 

survival 

[55,73] 
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Podoplanin (PDPN) ESCC 
Transmembrane protein: 

accelerates the proliferation 
and regulates tumor EMT 

PDPN expression at 
the edge of cancer 
cell nest associates 

with tumor invasion 
and poor prognosis 

[74–77] 

     
Combined markers     

CD44+/CD24− EAC 
and ESCC 

CD44+/CD24− EC cells exert 
a higher proliferation rate 

and mediate therapy 
resistance 

 [50] 

     

CD44+/CD133+ ESCC  

Strong expression of 
CD44 and CD133 
indicates a poor 

prognosis regardless 
of chemotherapy in 

ESCC 

[51] 

     

CD133+/CXCR4+ ESCC 

CD133+CXCR4+cells 
regulate tumor invasion 

and show high proliferative 
capacity 

Concomitant CD133-
CXCR4 expression 
heralds impaired 

disease-free survival 
and overall survival 

[52] 

Other read-outs for cancer stemness associated genes such as BMI-1 [61], Nanog [58–60], Sox2 
[53–57], Oct-4 [54,62,65,66], SALL4 [55,73], GLI-1 [70–72], Ep-CAM [67–69], and Podoplanin (PDPN) 
[74–77] are involved in regulating CSC populations, leading to enhanced proliferation, invasiveness, 
therapy resistance, and metastatic capacity. They could potentially act as prognostic CSC markers in 
esophageal cancer. 

2.2. ECSC Isolation—Biomarker-Free 

In addition to the strategies mentioned above, there are several common methods for CSC 
isolation independent of specific markers. Firstly, side population (SP) cells are a subpopulation of 
cells that can exclude dyes such as Hoechst 33342 and therefore can be identified through FACS 
analysis. SP cells appear to be enriched with stem cells and share many biological characteristics with 
both normal and cancer stem cells [78], thus, they were regarded as stem cell-like cells in numerous 
types of cancers including leukemia [79], multiple myeloma [80], breast cancer [81]. Several studies 
have isolated stem cell-like subpopulations from esophageal cancer cells using side population 
strategy. For example, Huang et al. [62] isolated and identified SP cells in human esophageal cancer 
cell lines, the cells with the strongest dye efflux activity (SP cells) in EC9706 had higher clone 
formation efficiency than non-SP cells. Zhang et al. [82] demonstrated that radioresistant cell lines 
contained higher fractions of SP cells than parent cell lines of EC. In addition, Zhang et al. [83] also 
reported increased SP cells in 3D tumor spheres as compared to the 2D adherent cultured cells. Our 
previous study [84] detected SP cells using Hoechst 33342 staining in five different esophageal cancer 
cell lines and provided evidence that (1) the proportion of SP cells was variable in esophageal cancer 
cell lines, (2) SP cells exhibited stem cell properties and were associated with chemotherapy 
resistance, and (3) long-term exposure to chemotherapy drugs could enrich SP cells with EMT 
characteristics, which might be a source for recurrence and distant metastases. Secondly, serum-free 
suspension culture is widely accepted as an effective method for enrichment of CSCs. Many cancer 
types develop microsphere cells after serum-free suspension culture and exhibit stem cell-like 
characteristics [83,85–87]. The EAC cell line OE19 built tumor spheres, when cultured in serum-free 
medium, with increased expression levels of CD44 and they were more resistant to radiotherapy as 
the parent OE19 clone [88]. Consistently, in ESCC cell lines, sphere cells isolated through the same 
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method showed higher radio-resistance than their parental cells [89]. Spheres from the ESCC line 
ECA109, cultured in serum-free medium, exhibited higher proliferation rates and tumorigenicity in 
vivo [90]. However, the well-accepted sphere formation assay may not be always the most effective 
method for CSC enrichment, and the same is true for analyses of acquired therapy resistance [91]. 
Thirdly, radiation resistance has been identified as a major characteristic of CSCs in vitro [92,93] and 
accumulating evidence indicates that CSCs are mediating resistance to radiation therapy in cancer 
patients [94]. Thus, radio-resistance can be used to isolate CSCs. Using an in vitro isogenic model of 
radioresistant EAC, Lynam-Lennon et al. [95] demonstrated that radioresistant EAC cells have 
enhanced tumorigenicity in vivo and increased expression of CSC-associated markers as well as 
enhanced holo-clone forming ability. In two other studies, fractionated irradiation was applied to 
acquire radio-resistant esophageal cancer cells [82,96]. Both studies demonstrated that radioresistant 
EAC and ESCC cells showed stem cell properties both in vitro and in vivo. Lastly, attached-cell 
Aldefluor method (ACAM) is used to identify stem-like cells in ESCC cell lines (KY-5, KY-10, TE-1, 
TE-8, YES-1, YES-2), where ACAM positive cells showed significantly higher ALDH activity and 
higher CD44 expression than the parental cells, which may represent a strategy to identify ECSCs 
[97]. 

Some studies defined tumor transplantation assays through serial tumor transplantation in the 
animal models as standard to characterize CSC subpopulations [27,98]. Limiting dilution analysis of 
tumor transplantation assays demonstrated that ESCC cells with higher CD44 expression showed a 
shorter latency for visible tumor initiation after subcutaneous tumor injections into NOD/SCID mice 
with low doses [29], which was especially observed in EC cells with higher expression of ALDH1 and 
ITGA7 [44,49]. Similarly, subcutaneous injection of OE19 SP cells as well as tumor spheres generated 
from Eca109 cells to nude mice showed higher tumorigenicity than their parental cells [84,90]. In 
addition to transplantation assays, lineage tracing is a powerful technique that allows researchers to 
follow the fate of individual cells and their progeny and was applied as an effective method to study 
stem cells [99]. Using genetic in vivo lineage tracing, Mariko et al. showed that LGR5+ tumor cells 
have self-renewal and differentiation capacity and functionally behave as CSCs in colon cancer [100]. 
As to esophagus, Jiang M et al. found p63+KRT5+KRT7+ basal cells in the upper gastrointestinal tract 
of mice serve as a source of progenitors for the transitional epithelium that can reproduce Barrett’s 
metaplasia [101]. Giroux et al. found that a long-lived progenitor cell population with expression of 
Krt15 is able to self-renew, proliferate, and generate differentiated cells murine esophageal 
epithelium [102]. Although there is still limited consensus on the identification of ECSCs, increasing 
amounts of studies are trying to focus on the ECSCs for both pre-clinical and clinical applications. 
Certainly, further investigations are still necessary to find more valid, reliable, and robust methods 
to identify CSCs in esophageal cancer. 

2.3. Heterogeneity and Single-Cell Analysis of ECSCs 

Tumors consist of genetically and epigenetically various cell subpopulations, which is referred 
to as intratumor heterogeneity. The tumor clones are not equally sensitive to current treatments and 
are considered a major reason for cancer treatment failure [103,104]. The CSC model is one of the 
most popular theories to explain intratumor heterogeneity [104]. Recent development of single cell 
analysis and next generation sequencing technologies allows dissection of intratumor genetic and 
epigenetic heterogeneity at single-cell resolution, providing new insights into the roles of CSCs in 
tumor initiation and intratumor heterogeneity [105]. 

Single-cell RNA sequencing (scRNA-seq) of primary ESCC and EAC tissues successfully 
distinguished tumor cells from non-tumor cells and showed intrinsic molecular heterogeneity of EAC 
and ESCC tumors [106]. Bulk RNA-seq and scRNA-seq of paclitaxel-resistant cells and parental cells 
revealed that molecular mechanisms of intrinsic paclitaxel resistance were distinct from those of 
acquired resistance at single-cell level. This may open new options to target paclitaxel resistance in 
ESCC [107]. The same methodology was also applied to analyze transcriptomic dynamics of ESCC 
cells with acquired radio-resistance throughout exposition of ESCC cells to different doses of 
irradiations in vitro. The results showed that a cellular heterogeneity with distinct subpopulations 
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existed in irradiated ESCC cells, and dynamic gene regulations were found during the acquisition of 
radiation resistance [108,109]. Besides, a comparison of the transcriptomic profiles of EAC and ESCC 
cells with high and low stemness at single-cell level revealed a stemness-associated gene expression 
signature in ESCC and EAC cells. EAC CSCs highly expressed cell cycle-associated genes, while 
genes with regard to DNA replication and DNA damage repair were mainly increased in ESCC CSCs 
[110]. It was reported that beside intratumor heterogeneity, an intra-CSC heterogeneity was found in 
hepatocellular carcinoma, where different CSC subpopulations presented phenotypes, functions, and 
transcriptomic heterogeneity at a single-cell level [111]. In addition to single-cell transcriptomic 
analysis, single-molecule epigenomic technologies now provide an opportunity to study epigenetic 
regulations and dynamics such as DNA methylation, chromatin accessibility, and histone 
modifications at unprecedented resolution [112]. Moreover, although high-throughput single-cell 
methods have not yet arrived in proteomics, proteomics researchers hold an optimistic view that new 
technologies and strategies will soon be established to successfully tally proteins at single-cell level 
[113]. Therefore, given the encouraging perspective of single-cell analyses in cancer research, further 
studies focusing on intra-CSC heterogeneity in EC cells using single-cell analyses are needed and 
may provide new insights in targeting ECSCs. 

3. ECSC Signaling Pathways 

A regulatory network consisting of Wnt/β-catenin, transforming growth factor-β (TGF-β)/Smad, 
Notch, Hedgehog, Hippo, JAK/STAT3, and PI3K/AKT/c-MYC signaling pathways controls CSC 
properties [114–120]. These important signaling pathways regulate self-renewal, proliferation, and 
differentiation capacity of cancer stem cells. Dysregulation of these pathways may also contribute to 
the undesirable progression of esophageal cancer. 

Overexpression of WNT10A plays an important role in ESCC through activation of the Wnt/β-
catenin signaling pathway, inducing an increase of the CD44+/CD24− population, which can promote 
ESCC migration and invasion [121]. In addition, hypoxia-inducible-factor 1α (HIF-1α) has been 
revealed to be essential for regulating the stemness of ESCC by activating the Wnt/β-catenin pathway. 
Stable knockdown of HIF-1α in ESCC cells inhibited proliferation, migration, and tumor growth in 
vivo [122]. MicroRNA-455-3p was reported to play key roles in promoting chemoresistance in vitro 
and tumorigenesis of ESCC cells in vivo. Treatment with a miR-455-3p antagomir could sensitize 
ESCC cells to cisplatin and reduce the subpopulations of CD90+ and CD271+ (tumor-initiating cells) 
T-ICs via inactivation of Wnt/β-catenin and TGF-β signaling pathways [123]. Interestingly, SB525334, 
a TGF-β1 inhibitor, can significantly inhibit the migration and invasion of sphere-forming stem-like 
cells of KYSE70 and TE1, which display an increased self-renewal capacity, chemoresistance in vitro, 
and tumorigenesis in vivo [124]. 

The Notch signaling pathway plays an important role in regulating cell differentiation and 
proliferation during embryogenesis and normal tissue homeostasis, which have also been implicated 
in tumorigenesis including development of esophageal cancer [125]. Mastermind like1 (MAML1) is 
a key transcription coactivator of this pathway, which could promote the aggressiveness of ESCC 
through an upregulation of the EMT marker TWIST1 and increase the therapy resistance of ESCC 
stem cells, respectively [126,127]. In addition, Notch signaling is frequently activated in poorly 
differentiated tumors and drives a CSC phenotype. By using patient derived xenograft models and 
primary cell lines, several studies have demonstrated that Notch signaling is critical for CSC capacity 
and able to drive stemness and tumorigenicity of EAC [128]. 

Glioma-associated oncogene homolog 1 (Gli-1) is a key mediator of the Hedgehog (Hh) pathway. 
As a transcription factor of the Hh pathway, Gli-1 mediates therapy resistance in a study with 5-FU 
or radiation resistant EAC cell lines (SKGT4 (SK4) and Flo-1) [70]. And Gli-1 nuclear expression was 
identified as a strong and independent predictor of poor response to chemoradiation, early relapse 
and poor prognosis in ESCC after chemoradiotherapy (CRT) [70,129]. Gli-1 expression was observed 
in 28.3% of ESCC and showed strong correlation with the stemness genes SOX9 and CD44, which 
were associated to poor prognosis in ESCC patients [72]. Furthermore, Isohata et al. reported an 
existing crosstalk between Hh pathways and EMT pathways in ESCC since EMT regulator SIP1 is a 
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downstream target of Gli-1 [130], indicating potential Hh pathway regulation on EMT state of ESCC. 
Furthermore, Patched1 (PTCH1), another key mediator of the Hedgehog (Hh) pathway, together 
with Sonic Hedgehog (SHH), one of mammalian HH ligands, were significantly enriched in EC 
resection tissue from the patients with minimal-residual disease (MRD) after receiving neoadjuvant 
chemoradiation (nCRT), and PTCH1 is upregulated in CD44+/CD24− CSC population in both EAC 
(OE33) and ESCC (OE21) cell lines [131]. This study demonstrated that the HH pathway might 
regulate CD44+/CD24− CSC populations and increase the cancer stemness and therapy resistance. 

The Hippo pathway and its downstream effector Yes-associated protein (YAP) have been 
proposed to be regulators of organ size, cell proliferation, and stem cell properties in a variety of 
cancers [132–135]. Recent studies have demonstrated that genetic or pharmacological inhibition of 
YAP could repress CSC-like properties in vitro and attenuate tumor growth and CSC marker 
expression in ESCC xenograft models by directly activating its downstream target SOX9 [136]. 
Consistently, another study has shown that YAP1 driven SOX9 expression was a major determinant 
of CSC properties in both ESCC and EAC [137]. Moreover, YAP1 could confer therapy resistance and 
increase cell proliferation in EC cells by upregulating epidermal growth factor receptor (EGFR) [138]. 

The JAK/STAT3 signaling pathway plays a prominent role in mediating tumor cell proliferation, 
survival, invasion, and metastasis in different types of cancer [117]. Genistein, an angiogenesis 
inhibitor belonging to the category of isoflavones, suppressed the JAK1/2-STAT3 pathway by 
decreasing EGFR expression, significantly inhibiting esophageal cell proliferation in vitro, and 
tumorigenesis in vivo [139]. In addition, further research demonstrated that the suppression of the 
JAK/STAT3 pathway could inhibit ESCC cell proliferation in vitro [140,141]. 

Additionally, the PI3K/AKT/c-MYC signaling axis promotes cancer stem-like feature acquisition 
in ESCC cell lines [120]. The study found that the cell subset responsive to a Sox2 regulatory region 
(SRR2) reporter (RR cells) isolated from these ESCC cell lines contained significantly higher 
proportions of CD44-high and ALDH1A1-high cells. The authors demonstrated that the PI3K-AKT 
pathway regulates the RR phenotype and promotes its CSC-like features by upregulating c-MYC 
[120]. It should be noted that PI3K activation was observed to be related to human papillomavirus 
(HPV) oncogene repression in HPV-positive cervical cancer cells, contributing to therapy resistance, 
immune evasion, and tumor recurrence [142]. Given the clinical and experimental evidence showing 
a cross-talk between HPV infection status and CSC functions in oropharyngeal cancer as well as head 
and neck carcinomas, virus infection and related inflammation response may as well participate in 
the regulation of CSCs [143,144]. However, there is still limited evidence linking HPV or other viral 
infections to CSC in esophageal cancer. This aspect may deserve further investigation. 

4. Therapeutic Resistance and CSC in EC 

Primary and secondary resistance are major obstacles of conventional therapeutic strategies for 
esophageal cancer. CSCs are frequently resistant to established therapies and may be the primary 
cellular source underlying resistance. Several potential mechanisms mediating CSCs-induced 
therapeutic resistance have been reported, including relative quiescent status with enhanced DNA 
repair capacity, elevated drug export efficiency, improved protection against reactive oxygen species 
(ROS), and the protective CSC niche in the TME [145–148]. 

It is well-established that normal stem cells (SCs) present a reversible quiescent state that is 
insensitive to cytotoxic treatments, which mainly interfere with the mitotic system of proliferating 
cells [149–151]. Adult stem cells have a very robust DNA damage response (DDR) system to maintain 
genomic integrity and protect cellular homeostasis in response to stress [152,153]. These features also 
exist in CSCs [154,155]. In EC, CSCs isolated from the ESCC cell line EC9706 were resistant to DNA 
damage through impaired induction of p53 and declined G1 checkpoint arrest, and presented a slow-
cycling status with a lower level of phosphorylated Stat3, c-Myc, and a higher level of p27 when 
compared with the non-CSCs [156]. Single cell analysis revealed that overexpression of cell cycle-
associated genes, DNA replication modulating genes, as well as DNA damage repair regulating 
genes were significantly correlated with stem cell-like properties in both EAC and ESCC [110]. 
Besides, CD133+ ESCC cells are strongly resistant to conventional cytotoxic drugs [34]. It was reported 
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that CD133+ glioma stem cells are resistant to radiotherapy through the activation of the DNA 
damage checkpoint with enhanced DNA damage repair response [157]. A similar mechanism may 
mediate therapy resistance of CD133+ cells in ESCC as well. 

Multidrug resistance (MDR) describes the phenomenon that cancer cells can be cross-resistant 
to several structurally and functionally different drugs [158]. A major mechanism of MDR is an 
altered cell membrane transport system that can pump cytotoxic drugs out of the cancer cells before 
irreversible DNA damage occurs. For instance, overexpression of the ATP-binding cassette (ABC) 
transporter family is well established in drug resistant cells [159,160]. ABCB1 and ABCG2 are widely-
studied members of the ABC family and are related to CSC induced chemoresistance in many solid 
tumors such as breast, colon, and lung cancer [161,162]. ABCB1 and ABCG2 were also found to be 
remarkably upregulated in ESCC CSCs with an enhanced resistance to cisplatin as compared to non-
CSCs [83]. High expression of ABCG2 correlates with poor survival in ESCC patients [33,47]. ESCC 
cells with ABCG2 overexpression showed cross-resistance to both irinotecan and 5-FU through the 
activation of the AhR pathways, which could be reversed by targeting AhR to further inhibit ABCG2 
expression [163,164]. To reverse MDR in cancer cells, modulating ROS may be a viable strategy. It 
has been suggested that MDR cancer cells are more susceptible to alterations in ROS levels and can 
be sensitized to cytotoxic drugs after improving the ROS level by targeting relative modulators 
[165,166]. However, ROS levels were found to be decreased in many types of CSCs [167]. Among the 
potential mechanisms, the aldehyde dehydrogenases (ALDHs) play an important role in reducing 
ROS level within CSCs. ALDHs are a group of enzymes that catalyze the oxidation of aldehydes into 
less toxic carboxylic acids, which are commonly regarded as detoxifying enzymes [168]. As the best-
studied ALDH isoform, ALDH1 was reported to decrease ROS levels through the activation of 
antioxidant systems [169]. Detecting of ALDH1 activity was also widely used as a classic assay to 
identify CSCs in a variety of cancers including EC [170]. ALDH1+ cells in ESCC present typical stem 
cell-like properties as well as higher invasive and metastatic capabilities as compared to ALDH1- cells 
[44,45]. Clinical data suggested that EC patients with high expression of ALDH1 were more resistant 
to clinical interventions and had a poor long-term prognosis [44]. Taken together, the MDR of ECSCs 
may be attributed to the enhanced membrane pump-out ability and the decreased ROC level within 
tumor cells. 

Normal stem cells reside in a “stem cell niche”, which refers to a dynamic microenvironment 
that balances the stem cell activity to govern tissue homeostasis under diverse conditions [171]. A 
similar concept “cancer stem cell niche” states that CSCs might localize in a protective niche within 
the TME, which is critical for maintaining the biological function of CSC [145,172]. As a major 
component of the TME, cancer-associated fibroblasts (CAFs) play a pivotal role in forming the CSC 
niche, promoting tumorigenesis and inducing therapeutic resistance [173]. ESCC cells co-cultured 
with CAFs showed significantly altered gene expression in the TME including matricellular proteins, 
growth factors, cytokines, chemokines, EMT-related genes, and components of inflammatory 
signaling pathways [174]. The cross-talk between EC cells and CAFs might be mediated by IL-6 
through STAT3 and ERK1/2 signaling pathways and showed suppressed tumorigenesis both, in 
ESCC and EAC [174]. CAFs in ESCC were also reported to cause radio-resistance by regulating DNA 
damage response though promoting long noncoding RNA (lncRNA) DNM3OS expression via 
PDGFβ/PDGFRβ/FOXO1 signaling pathway [175]. EMT is another key process that may interact with 
CSC plasticity and TME. Studies have proved that stromal constituents of the TME can activate EMT 
through secreting various chemokines, cytokines, and activating several signaling pathways such as 
TGFβ, WNTs, NOTCH, and Hedgehog to maintain cancer stemness and promote tumor progression 
and metastasis in several types of cancers [176], including EC [177]. EC cells that underwent EMT 
presented an enhanced radiation resistance with improved DNA repair ability [178,179]. CSCs may 
also in turn modify their niche through activating EMT to reform adjacent stromal cells into a 
relatively undifferentiated status, which then reinforce the CSC plasticity as well as maintain the 
protective niche [147]. Some studies have reported that CSCs could usually be located in a hypoxic 
region in the TME [180], hypoxic condition of the CSC niche can also induce EMT as well as decrease 
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inner ROS levels, which can further maintain cancer stemness and contribute to therapeutic resistance 
[181,182]. 

Up to date, many efforts are dedicated to exploring the underlying mechanisms of CSCs-induced 
therapeutic resistance and provide insights in cancer treatment. Among them, targeting CSCs to 
reverse treatment failure is one of the most promising strategies that may bring long-term benefits to 
cancer patients. 

5. Therapeutic Strategies Targeting CSC in EC 

The unsatisfying results of conventional chemo- and radio-therapeutic strategies highlight the 
clinical need of more effective therapeutic compounds, especially those which could prevent tumor 
recurrence. Among all the potential targets, CSCs together with the niche/TME have attracted 
attention as targets for pre-clinical and clinical approaches. 

As discussed above, CSCs carrying variable surface markers allow the differentiation of highly 
malignant CSCs from normal cancer cells, many strategies based on surficial molecules and 
downstream compounds have also been developed to optimize treatment response. For instance, in 
2016 a phase I study targeting CD44, a cancer cell progenitor marker of EAC, achieved a limited 
clinical benefit among AML patients. However, it suggested a promising combination therapy with 
other cytotoxic agents [183]. BMS-833923 is a potent and specific inhibitor of SMO in the Hh pathway 
[184], which is currently tested in a phase I trial (NCT00909402: completed, but results are not 
published yet) evaluating inhibition of SMO as a first-line therapy for unresectable metastatic EC 
patients in combination with Cisplatin and Capecitabine. Additionally, Taladegib (LY-2940680) an 
alternative small molecule interfering with the Hh cascade through binding to the SMO receptor is 
currently evaluated (NCT02530437: active, not recruiting) [185]. The amplification or drug induced 
overexpression of EGFR has long been considered as a marker for resistance and tumor progression 
[186]. Targeted therapy based on anti-EGFR monoclonal antibodies (mAb) e.g., nimotuzumab, plus 
irinotecan, a common medication for gastric cancer treatment, showed potential improvement in 
EGFR positive patients of advanced gastric cancer [187]. 

It is now widely accepted that the oncogenesis and tumor heterogeneity are not exclusively 
dependent on aberrations or mutations of tumor cells, but also accompanied by the dynamic changes 
of microenvironmental compositions as well as the state and properties of surrounding stromal cells 
[188,189]. Apart from malignant tumor cells, the highly diverse cell types in the TME, mainly 
including CAFs, immune cells, vascular endothelial cells, and mesenchymal stem cells [190–192], are 
genetically stable, thus could be utilized as multiple targets in cancer therapy. A series of efforts has 
been undertaken to investigate the prominent role of the CXCL12/CXCR4 axis in cancer progression 
of different cancer entities including both histologic subtypes of EC [193–195]. Combination therapies 
with the CXCR4 antagonist AMD3100 counteracted the resistance of pancreatic cancer cells to 
gemcitabine via Fak, ERK, and Akt pathways [196]. Furthermore, co-administration of AMD3100 and 
anti-PD-L1 antibody diminished stroma–cancer cell interaction together with an improved immune 
response [197]. Gockel et al. validated CXCR4 expression in 94.1% of resectable ESCC patients (54.9% 
weak expression vs. 45.1% strong expression) and 89.1% resectable EAC patients (71.7% weak 
expression vs. 29.3% strong expression), strong CXCR4 expression was supposed to be relevant to 
poor prognosis in both subtypes [198]. A reduced cell proliferation rate was observed in the EAC cell 
line OE19 treated with AMD3100, smaller primary tumor size, and fewer metastatic spread to lung, 
liver, and lymph node were further confirmed in OE19 injected mice under AMD3100 treatment 
[199]. Another approach targeting the TME arose from the observation of overexpressed VEGF/VEGF 
receptor system which initiates pathological angiogenesis in tumor niches. By blocking VEGFR-2 
with ramucirumab, Fuchs et al. validated a significantly prolonged overall survival in a phase 3 trial 
among advanced gastric or gastro-esophageal junction adenocarcinoma (REGARD) patients [200]. 
Since rising evidence over past years supports the hypothesis that stem cells in gastroesophageal 
junction (GEJ) invoke very likely the occurrence of Barrett’s esophagus and EAC [201], antagonising 
VEGFR-2 could also be feasible in EAC. 
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Over the past decades, immunotherapy has been confirmed as an additional approach able to 
control different types of cancer and sometimes effective in patients resistant to conventional 
therapies [185]. Immune checkpoint receptors such as PD-1 and CTLA-4 are favorable drug targets 
as they release suppressive signals upon the activation by tumor cells. Up to 40% of GEJ 
adenocarcinoma cases express PD-L1 [202,203]. Blockade of PD-1 with the mAb Nivolumab revealed 
encouraging results with a survival benefit in advanced gastric or gastro-esophageal junction 
adenocarcinoma patients’ refractory to at least two chemotherapy regimens (ONO-4538-12, 
ATTRACTION-2) in a recent phase III trial in Asian patients [204]. Other novel immunological 
strategies involving genetically engineered immune cells (e.g., CAR T) could also elevate anti-CSC 
efficiency. Genetic knockdown of PD-1 alone, or in combination with chimeric antigen receptor 
(CAR) T cells, which carries a predefined affinity to a given tumor antigen, could significantly 
enhance immune reaction against a desired tumor type. Shannon et al. reported the persistent ability 
of CAR T cell CTL019 in monitoring ALL relapse [205]. However, in EAC patients one related clinical 
trial is still ongoing (NCT03706326: recruiting) and the result of another phase I study remains to be 
published (NCT03081715: completed). Similar to T cells, cytotoxic NK cells of the intrinsic immune 
system can induce apoptosis of viral infected or transformed autologous cells e.g., cancer cells via 
pore-forming and release of granzyme B [206]. CSCs are confirmed to be a small subset of cells with 
sparse MHC class I molecules (MHC-I), thus insinuates their blunt reaction to CD8+ T cells [207], 
which in term fails to silence NK cells as NK cell tolerance to self-tissue is maintained in the presence 
of MHC-I [208]. Additional studies have reported susceptibility of CSCs to allogeneic NK cells in 
diverse solid tumor types in pre-clinical models, such as colorectal cancer [209] and glioblastoma 
[210]. In another pre-clinical model, increased expression of the NKG2D ligands ULBP1, ULBP2, and 
MICA sensitized CD44+/CD24− breast CSCs to killing by previously activated NK cells by IL-2 and 
IL-15 [211]. Such investigations have ignited the passion of EC researchers to transform it into the 
clinical field (NCT02843581: completed) and the result is awaited by the community. The 
susceptibility of CSCs to cancer immunotherapy is poorly investigated and may represent an 
important mechanism underlying long-term benefit from these novel therapies. 

According to the tumor cell subclone functional diversity model proposed by Kreso et al., 
conventional radio- and chemotherapy targeting dividing cancer cells collapsed to diminish dormant 
(stem cell-like) cells within tumor entities could account for the post-treatment repopulation of tumor 
cells [212]. The same group also successfully observed that the previously dormant cell lineage—a 
minor bunch among tumor initiating cells (T-ICs), survived from chemotherapy and contributed to 
tumor regrowth in colorectal cancer [213]. In glioblastoma, tumor regrowth was significantly halted 
after the ablation of a subset of stem cell like endogenous tumor cells [214]. Both studies favorably 
provided direct evidence of the tumor reproducing capacity of T-ICs. Thus, it is feasible to hitch CSCs 
to EC recurrence albeit similar investigations are still scarce, such mechanism reversely strengthens 
the weightiness of CSC targeting in EC administration with individualized therapy. 

Eventually, emphasizing the importance of estimating prospective therapy response in precision 
medicine is warranted. For instance, a better OS in recurrent glioblastoma patients than previous data 
was achieved by using a systemic assay which firstly stratifies the cell kill rate to find an efficient one 
among different drug combinations targeting both CSCs and non-CSC cells [215]. This frontier 
attempt provided an auspicious way for the future treatment of recurrent EC patients or those with 
poor estimated prognosis. 

6. Conclusion and Future Perspectives 

The focus on ECSCs opens a new vision for translational research of EC and may result in further 
understanding of key mechanisms of EC etiology, progression, recurrence, and therapy resistance. 
As we discussed, CSCs could be isolated from esophageal tumors using either ECSC biomarker based 
or ECSC biomarker-free methods. A combined application of multiple markers or multiple methods 
to screen for CSCs in future studies may help to overcome the limitations derived from the 
heterogeneity of individual tumors. Furthermore, we emphasize the importance and advantages of 
integration of single cell analysis in esophageal cancer stem cell studies. This new method will help 
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to understand both intertumor and intratumor heterogeneity of CSCs in EC and the clonal 
architecture of esophageal cancer for both adeno- and squamous cell carcinomas. The crosstalk 
between ECSCs and their niche (TME) not only plays a pivotal role during oncogenesis but also has 
profound effects on modulating therapeutic efficacy. Therefore, future strategies of combined 
treatments, that target CSCs and the TME may result in successful implementation of individualized 
therapy of EC patients. 
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Abbreviations 
 

ABC ATP-binding cassette 
ACAM Attached-cell Aldefluor method 
ALDHs Aldehyde dehydrogenases 
AML Acute myeloid leukemia 
BE Barrett's esophagus 
CAFs Cancer-associated fibroblasts 
CAR Chimeric antigen receptor 
CSCs Cancer stem cells 
CRT Chemoradiotherapy 
DDR DNA damage response 
EAC Esophageal adenocarcinoma 
EC Esophageal cancer 
ECSCs Esophageal cancer stem cells 
EGFR Epidermal growth factor receptor 
EMT Epithelial mesenchymal transition 
ESCC Esophageal squamous cell carcinoma 
FACS Fluorescence-activated cell sorting 
GEJ Gastroesophageal junction 
GERD Gastroesophageal reflux disease 
Hh Hedgehog 
HIF-1α Hypoxia-inducible-factor 1α 
HPV Human Papillomavirus 
ICAM1 Intercellular adhesion molecule1 
lncRNA Long noncoding RNA 
Gli-1 Glioma-associated oncogene homolog 1 
mAb Monoclonal antibodies 
MRD Minimal residual disease 
nCRT Neoadjuvant chemoradiation 
MAML1 Mastermind like1 
MDR Multidrug resistance 
MHC-I MHC class I molecules 
REGARD Ramucirumab monotherapy for previously treated advanced gastric or gastro-

oesophageal junction adenocarcinoma 
PDPN Podoplanin 
PTCH1 Patched 1 
ROS Reactive oxygen species 
RR Reporter-responsive 
scRNA-seq Single-cell RNA sequencing 
SCs Stem cells 
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SHH Sonic Hedgehog 
SP Side population 
SRR2 Sox2 regulatory region 
TGF-β Transforming growths factor-β 
TME Tumor microenvironment 
T-ICs Tumor-initiating cells 
YAP Yes-associated protein 
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