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Abstract: ABCC6, belonging to sub-family C of ATP-binding cassette transporter, is an ATP-
dependent transporter mainly present in the basolateral plasma membrane of hepatic and kidney 
cells. Although the substrates transported are still uncertain, ABCC6 has been shown to promote 
ATP release. The extracellular ATP and its derivatives di- and mono-nucleotides and adenosine by 
acting on specific receptors activate the so-called purinergic pathway, which in turn controls 
relevant cellular functions such as cell immunity, inflammation, and cancer. Here, we analyzed the 
effect of Abcc6 knockdown and probenecid-induced ABCC6 inhibition on cell cycle, cytoskeleton, 
and motility of HepG2 cells. Gene and protein expression were evaluated by quantitative Reverse 
Transcription PCR (RT-qPCR) and western blot, respectively. Cellular cycle analysis was evaluated 
by flow cytometry. Actin cytoskeleton dynamics was evaluated by laser confocal microscopy using 
fluorophore-conjugated phalloidin. Cell motility was analyzed by in vitro wound-healing migration 
assay. Cell migration is reduced both in Abcc6 knockdown HepG2 cells and in probenecid treated 
HepG2 cells by interfering with the extracellular reserve of ATP. Therefore, ABCC6 could contribute 
to cytoskeleton rearrangements and cell motility through purinergic signaling. Altogether, our 
findings shed light on a new role of the ABCC6 transporter in HepG2 cells and suggest that its 
inhibitor/s could be considered potential anti-metastatic drugs. 
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1. Introduction 

Extracellular ATP, but also adenosine, ADP, UTP, UDP, participate in the “purinergic signaling” 
pathway, a ubiquitous system of cell-to-cell communication that modulates several 
pathophysiological processes such as wound healing, cancer, neurodegeneration, and inflammation 
[1]. Four families of specific receptors (i.e., nucleotide P2X and P2Y receptors, adenosine P1 receptors, 
the adenine-selective P0 receptor and several ectonucleotidases) are essential components of this 
pathway. Nucleotides can be released from damaged cells, plasma membrane-derived microvesicles, 
membrane channels (connexins, pannexins, calcium homeostasis modulator channels, and P2 × 7 
receptor) or specific ATP binding cassette (ABC) transporters [2,3]. 
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The human Abcc6 gene belongs to the ABCC family and codifies for the MRP6 protein, mainly 
expressed at the basolateral membrane of hepatocytes [4]. More than 300 mutations in Abcc6 such as 
deletions, insertions, or substitutions, mostly occurring in the sequence encoding the nucleotide 
binding domains, are associated with the Pseudoxanthoma elasticum, an autosomal recessive disease 
characterized by a progressive ectopic calcification [5–7]. Studies aimed at understanding the 
molecular mechanisms underlying the observed phenotype have shown that ABCC6 contributes to 
the outflow of ATP from cells [8,9]. In the extracellular milieu, ATP is hydrolyzed by the 
ectonucleotidase ENPP1 to AMP and pyrophosphate (PPi), an inhibitor of ectopic mineralization. The 
ecto-5′-nucleotidase CD73 is able to catalyze the conversion of extracellular AMP to adenosine and 
phosphate; it is the main source of extracellular adenosine in all tissues in which ATP is poorly present 
in extracellular fluids [10,11]. CD73 is considered a key regulator in some cancer processes such as 
drug resistance, tumor metastasis, and tumor angiogenesis [12,13], therefore is an excellent candidate 
for cancer therapy [14–16]. In previous studies, we have reported that knockdown of Abcc6 in 
hepatocarcinoma cancer cells (HepG2), or the inhibition of its activity lead to the downregulation of 
NT5E gene, which codifies for the CD73 protein [17–19]. Taken together, these data suggest a close 
correlation between ABCC6 and CD73. 

Different roles of ABCC6 in various cancer types have been reported; it has been given an 
irrelevant [20,21], important [22–25], diagnostic [26,27] or prognostic [28–30] role. Furthermore, 
ABCC6 could play a role in cancer cell biology as an ATP supplier of the purinergic pathway. 

In the present study, we demonstrated that both Abcc6 silencing and ABCC6 inhibition, by 
modulating the extracellular pool of ATP, lead to cytoskeletal rearrangement and reduction in cell 
motility in HepG2 cells. Moreover, we suggest that probenecid, a drug with uricosuric activity as 
well as an unspecific inhibitor of some transport proteins including ABCC6 [31–33], might be a 
potential anticancer drug. 

2. Materials and Methods 

2.1. Cell Culture and Treatments 

Human hepatoblastoma cells (HepG2) and triple-negative human breast cancer poorly 
differentiated cells (MDA-MB-231) were maintained in Dulbecco’s modified Eagle’s medium 
(DMEM) containing 4.5 g/L glucose, supplemented with 10% fetal bovine serum (FBS), 2 mM L-
glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin at 37 °C, in an atmosphere humidified 
with 5% of CO2. Probenecid and adenosine were dissolved in dimethyl sulfoxide (DMSO) at 30 
mg/mL and 80 mg/mL, respectively. Based on our previous cytotoxicity assays, 250 μM probenecid 
was selected for the experiments [18]. The final concentration of DMSO did not exceed 0.25% v/v; 
control cells were treated at the same final percentage of DMSO (vehicle). ATP and adenosine 5'-(α,β-
methylene)diphosphate (AOPCP) were dissolved in phosphate buffered saline at 27.5 mg/mL and 50 
mg/mL, respectively. The stock solutions were then diluted with DMEM to the desired 
concentrations. All compounds were purchased from Sigma (Sigma, Saint Louis, MO, USA). 

2.2. Generation of Stable Abcc6 Knockdown HepG2 Cells 

The Abcc6 knockdown HepG2 cell line was established using a Lentivirus shRNA knockdown 
vector system purchased from Cyagen Biosciences (Santa Clara, CA, USA) with EGFP as a reporter 
gene. Cell transfection was performed according to the manufacturer’s instructions. Cell seeding was 
performed at a density of 1.5 × 105 cells in a 12-well plate. After 24 h, the cells were transfected with 
both Abcc6-shRNA and scrambled-shRNA as a negative control, at a suitable multiplicity of infection 
equal to 10. In order to stably harvest knockdown cells, HepG2 cells were selected with 2 μg/mL 
puromycin for 12 days. After selection, individual resistant clones were expanded in medium 
without puromycin and clones silenced between 70 and 80% were used for further experiments. 
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2.3. Real-Time Reverse Transcription Polymerase Chain Reaction (RT-qPCR) 

HepG2 cells cultured in the presence of 250 µM probenecid or 0.25% DMSO (vehicle) for 48 h 
were harvested and total RNA was extracted using the Quick-RNA MiniPrep Kit (Zymo Research, 
Irvine, CA, USA), according to the manufacturer’s protocol. cDNA was synthesized using a High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystem Waltham, MA, USA) in accordance 
with the manufacturer’s instructions. Real-time quantitative RT-PCR was performed with a 7500 Fast 
Real-Time PCR System (Applied Biosystems) using iTaq™ Universal-SYBR® Green Supermix (Bio-
Rad, Hercules, CA, USA). To confirm PCR specificity, the PCR products were subjected to a melting-
curve analysis. The comparative threshold cycle method (∆∆Ct) was used to quantify relative 
amounts of product transcripts with β-actin as the endogenous reference. Primers were designed for 
spanning exon–exon junctions eliminating undesirable genomic DNA amplification (Table 1). 

Table 1. List of primers used in this study. 

Gene Accession Number Forward Primer Reverse Primer 

β-actin NM 001101.3 5′-CCTGGCACCCAGCACAAT-3′ 5′-GCCGATCCACACGGAGTACT-3′ 

Abcc6 NM_001171.5 5′-AAGGAACCACCATCAGGAGGAG-3′ 5′-ACCAGCGACACAGAGAAGAGG3′ 

p21 NM_000389 5′-CTGTCTTGTACCCTTGTGCCT-3′ 5′-CGTTTGGAGTGGTAGAAATCTGTC-3′ 

p53 NM_001276760.1 5′-TGAATGAGGCCTTGGAACTC-3′ 5′-ACTTCAGGTGGCTGGAGTG-3′ 

2.4. Western Blot Analysis 

Cells were lysed in Radioimmunoprecipitation assay (RIPA) buffer (0.1% sodium dodecyl 
sulfate, 1% NP-40, and 0.5% sodium deoxycholate in PBS at pH 7.4) supplemented with a protease 
and phosphatase inhibitor cocktail (Roche, Penzberg, Germany). The proteins (100 μg) were loaded 
onto 8% sodium dodecyl sulfate–polyacrylamide gels electrophoresis and electrophoretically 
transferred to nitrocellulose membranes (Amersham Bioscience, Buckinghamshire, United 
Kingdom). The membranes were blocked in saturation buffer (with 5% nonfat milk in PBS with 0.05% 
Tween 20, PBST) for 2 h at room temperature and then probed overnight at 4 °C with specific primary 
antibodies: 1:400 anti-β-actin monoclonal (Sigma, Saint Louis, MO, USA); 1:50 MRP6 Monoclonal 
Antibody (M6II-31) (Invitrogen, Waltham, MA, USA); 1:500 anti-CD73 monoclonal (Invitrogen); and 
1:1000 anti-Lamin A/C polyclonal (Cell Signaling, Danvers, MA, USA). Membrane was washed three 
times with PBST and then incubated at room temperature for 1 h with appropriated horseradish 
peroxidase-conjugated secondary antibody and signal visualized by ECL™ Western Blotting 
Detection Reagents (GE Healthcare, Chicago, IL, USA) or SuperSignal™ West Pico PLUS 
Chemiluminescent Substrate (Thermo Scientific, Waltham, MA, USA), using a Chemidoc™ XRS 
detection system equipped with Image Lab Software for image acquisition (BioRad). Densitometric 
analysis was performed by using GelAnalizer 2010 software (Istvan Lazar, www.gelanalyzer.com). 
Protein expression level in the control sample was taken as 100%. Each result was expressed as a 
percentage of the value of the control sample. Each test was repeated three times. 

2.5. Extracellular ATP Bioluminescence Assay 

Measurement of extracellular ATP in cell culture medium was performed through the ATP 
Bioluminescence Assay Kit CLS II (Roche), according to the manufacturer’s protocol. A total of 1.5 × 
105 HepG2 cells and 1 × 105 MDA-MB-231 cells were seeded into each well of a 12 well plate and after 
24 h, the culture medium was removed, cells were washed with PBS and complete DMEM medium 
without Phenol Red (D5030 Sigma-Aldrich, Saint Louis, MO, USA), in the presence and absence of 
probenecid 250 µM, was added. After 48 h, 100 µL of the culture medium was gently collected in ice-
cold sterile tubes, centrifugated at 1200 rpm for 5 min at 4 °C to precipitate cell debris, and ATP in 
the supernatant was measured after dilution to 1:10 in ATP free water and the addition of a 
luciferin/luciferase reagent. Luminescence was immediately determined through a Glomax 
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luminometer (Promega, Madison, WI, USA) with an integration time of 0.5 s−1. ATP content was 
determined quantitatively by luminometry, and the ATP concentrations were normalized to an ATP 
standard curve. ATP levels were then normalized per micrograms of proteins. 

2.6. Cell Cycle Analysis 

Cell cycle analysis was performed as described by Laurenzana et al. [34]. Briefly, HepG2 cells (2 
× 105 cells/well) were seeded into 12-well plates and treated with 250 µM probenecid or 0.25% DMSO 
(vehicle) for 24 and 48 h. Cells were then harvested, washed once with ice-cold PBS, fixed in cold 70% 
ethanol, and stained with propidium iodide staining solution (50 μg/mL PI and 10 μg/mL RNase) for 
30 min in the dark. Cells were analyzed for cell cycle distribution using Navios flow cytometer 
(Beckman Coulter, O'Callaghan's Mills, Ireland) and ModFit LT Software (Verity Software House, 
Topsham, ME, USA). 

2.7. Confocal Fluorescence Microscopy 

HepG2 cells (1.5 × 105) and MDA MB 231 cells (1 × 105) were grown on coverslips and treated 
with 250 µM probenecid (in presence or absence of 500 µM ATP and 100 µM adenosine) or 50 µM 
AOPCP for 48 h. Cells were fixed in 4% PFA for 10 min at room temperature, washed three times 
with PBS, permeabilized with 0.5% v/v Triton X-100 in PBS for 5 min, washed three times with PBS, 
and blocked in saturation buffer (1% bovine serum albumin in PBS) for 20 min. Then, cells were 
incubated with Phalloidin Alexa Fluor 488 (ex./em.: 495/518 nm, Invitrogen™) diluted 1:1000 or 
Phalloidin Alexa Fluor 568 (ex./em.: 578/600 nm, Invitrogen™) diluted 1:500 in saturation buffer for 
1 h, in the dark and after three washes with PBS. Where indicated, the nuclei were stained with 1.5 
µM of propidium iodide (ex./em.: 535/617 nm, Invitrogen™) in PBS for 10 min. The images were 
obtained with a confocal fluorescence microscope (Leica TSC-SP2 HCX PL APO, ×63/1.32–0.60 oil 
objective) and acquired using the Leica Confocal Software W (Leica Microsystem, Wetzlar, 
Germany). 

2.8. Migration Assay 

Cell migration rate was evaluated by the in vitro wound-healing migration assay. To assess the 
effect of probenecid, HepG2 cells (1 × 106) were seeded in each 35-mm cell culture dish and cultured 
in DMEM containing 10% FBS to promote a nearly confluent cell monolayer. Twenty-four hours after 
seeding, cells were treated with either 250 µM probenecid or 0.25% DMSO for 36 h in DMEM 
containing 10% FBS. Then, a linear wound was generated in the cellular monolayer with a sterile 10 
μL plastic pipette tip. Any cellular debris was removed by washing with PBS and replacing with 2 
mL of DMEM with 1% FBS still containing 250 µM probenecid or 0.25% DMSO and placed in the 
BioStation IM incubator, version 2 (Nikon, Tokyo, Japan) for 12 h. Please note that cells were treated 
overall for 48 h with 250 µM probenecid or 0.25% DMSO. Time-lapse images were obtained every 
hour for 12 hours and further analyzed by using computing software (ImageJ 1.46, ImageJ 1.46, U. S. 
National Institutes of Health, Bethesda, MD, USA). Migration rate was reported as µm/h. 

Abcc6-shRNA HepG2 cells (1 × 106) were cultured in DMEM containing 10% FBS to promote a 
nearly confluent cell monolayer. Twenty-four hours after seeding cells, a linear wound was generated 
in the cellular monolayer with a sterile 10 μL plastic pipette tip. Any cellular debris was removed by 
washing with PBS and replacing with 2 mL of DMEM with 1% FBS and placed in the BioStation IM 
incubator, version 2 (Nikon) for 12 h. Images were analyzed as indicated above. 

2.9. Statistical Analysis 

All of the assays were performed at least three times independently. Statistical analyses were 
performed using the Student’s t-test or one-way Analysis of variance (ANOVA). Where indicated, 
data are presented as the means ± standard error (ES) by GraphPad Prism software (GraphPad 
Software, San Diego, CA, USA). * p < 0.05, ** p < 0.01, and *** p < 0.001 were considered to be 
statistically significant. 
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3. Results 

3.1. Probenecid Affects the Extracellular ATP Released by HepG2 Cells 

There are multiple systems through which ATP can leave cells including ABCC6 [8,9]. It has also 
been shown that probenecid inhibits both the expression [18] and the activity of the ABCC6 
transporter [33]. In order to evaluate the contribution of ABCC6 to the outflow of ATP from HepG2, 
we measured the amount of ATP released from the silenced and probenecid-treated cells in 
comparison with MDA-MB-231 cells, which, compared to HepG2, have a lower expression of Abcc6 
(Figure 1). When HepG2 cells were treated with 250 μM probenecid for 48 h, we observed a decrease 
in the amount of extracellular ATP by about 40% (Figure 1A). Abcc6 silencing reduced the ATP levels 
by about 60% compared to those of the control cells (scr-shRNA) and did not decrease further with 
the addition of probenecid, thus suggesting a significant contribution of the ABCC6 transporter to 
the extracellular ATP pool. On the contrary, in MDA-MB-231 cells, in which the expression of Abcc6 
was from low to negligible compared to HepG2 cells (Figure 1B), probenecid did not affect the 
extracellular ATP content, thus suggesting that the ABCC6 transporter is scarcely involved in the 
extrusion of ATP from these cancer cells. 

 
Figure 1. Extracellular ATP content. (A) HepG2 and MDA-MB-231 cells were treated with 250 μM 
probenecid or 0.25% DMSO for 48 h. Results are expressed as the mean ± standard error (ES) of three 
different experiments. * p < 0.05 Probenecid vs. DMSO, *** p < 0.001 Abcc6-shRNA and Abcc6-shRNA 
+ Probenecid vs. scr-shRNA (B) Abcc6 gene expression in HepG2, Abcc6-shRNA HepG2 and MDA-
MB-231 cells. Gene expression was normalized to β-actin mRNA levels. *** p < 0.001 MDA-MB-231 
cells vs. HepG2 cells, ** p < 0.01 Abcc6-shRNA HepG2 cells vs. scrambled HepG2 cells; (C) 
Representative western blot of Abcc6-shRNA HepG2 cells. Densitometric analysis of the 
immunoreactive bands performed in five independent experiments. The protein levels were 
normalized with β-actin content. Data were normalized to scrambled cells set to 100%. Data are 
shown as the mean ± standard error (SE) *** p < 0.001 Abcc6-shRNA HepG2 cells vs. scr-shRNA 
HepG2 cells. 

3.2. Probenecid Affects the Expression of Some Genes in HepG2 Cells 

We previously demonstrated that the downregulation of Abcc6 disregulates the expression of 
CD73 and Lamin A/C proteins. To verify that this effect is specific for cells expressing appreciable 
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levels of ABCC6 transporter, we tested the effect of probenecid on the expression level of CD73 and 
Lamin A/C in both HepG2 (Figure 2A) and MDA-MB-231 cells (Figure 2B). Interestingly, unlike for 
that observed in the HepG2 cells, the expression levels of these genes did not change in MDA-MB-
231 cells upon probenecid treatment, confirming that the effects of probenecid on gene expression in 
HepG2 cells is selective and could be largely mediated by mechanism/s involving the ABCC6 
transporter. 

 
Figure 2. Effect of probenecid on ABCC6, NT5E, and Lamin A/C expression. (A) Representative 
western blot of HepG2 cells and (B) MDA-MB-231 cells treated with 250 µM probenecid or 0.25% 
DMSO (control) for 48 h. Densitometric analysis of the immunoreactive bands performed in three 
independent experiments. The protein levels were normalized with β-actin content. Data were 
normalized to control cells set to 100%. Data are shown as the mean ± standard error (SE) ** p < 0.01, 
*** p< 0.001 of HepG2 + Probenecid vs. HepG2 control. 

3.3. Probenecid Does Not Affect HepG2 Cell Cycle 

We have previously shown cell cycle alteration with a senescence-like phenotype in Abcc6-
silenced HepG2 cells [19]. HepG2 cells treated with probenecid showed neither alteration of cyclin-
dependent kinase inhibitor p21/WAF1 and Tumor Protein p53 (p53) expression, nor alteration of the 
cell cycle (Figure 3). 

 
Figure 3. (A) mRNA expression levels of p21 and p53 genes in HepG2 cells treated with 250 µM 
probenecid for 48 h and in Abcc6-knockdown HepG2 cells. Data are shown as fold increase compared 
with DMSO-treated cells calibrator for HepG2 probenecid treated cells (Probenecid) or scrambled 
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HepG2 cells (scr-shRNA) calibrator for Abcc6-shRNA HepG2 cells. (B) Flow cytometry analysis of 
cell cycle phase distribution of HepG2 cells treated with 250 µM probenecid for 24 and 48 h. Data are 
expressed as means ± standard error (SE) of three replicates from three independent experiments. ** 
p < 0.01 Abcc6-shRNA vs. scr-shRNA. 

3.4. Probenecid Induces Cytoskeletal Rearrangement of HepG2 Cells 

Considering that Lamin is among the structural components of the cytoskeleton and its 
expression changed in probenecid treated HepG2 cells, we analyzed the effect of probenecid on 
cytoskeleton arrangement. Actin filaments (also called F-actin) are the main component of the 
cytoskeleton and are involved in cellular movements [35]. The initial step in cell migration is the 
protrusion of the leading cell membrane created by branched, dendritic arrays, the filopodia. 

We analyzed filopodia in Abcc6 knockdown HepG2 cells by confocal fluorescence microscopy 
(Figure 4). The efficiency of stable silencing in each experimental condition is appreciable in the 
relative insets in Figure 4. In fact, since the viral vectors used for Abcc6 silencing incorporate the 
sequence of EGFP as a gene reporter, cells infected with either the scrambled shRNA or the Abcc6-
shRNA showed a green-labeled cytoplasm when visualized with filters for EGFP (Figure 4, insets). 
Scrambled HepG2 cells exhibited many filopodia, which extended in all directions in the cells (Figure 
4A, arrows). Instead, in Abcc6-shRNA HepG2 cells, filopodia were almost completely absent (Figure 
4B, stars); the addition in Abcc6 silenced cells of either adenosine (Figure 4C, arrows) or ATP (Figure 
4D, arrows) restored the normal architecture of filopodia. 

 
Figure 4. Representative confocal image of (A) scrambled HepG2 cells; (B) Abcc6-shRNA HepG2 cells; 
(C) Abcc6-shRNA HepG2 cells treated with 500 µM ATP; (D) Abcc6-shRNA HepG2 cells treated with 
100 µM adenosine. F-actin was stained with Phalloidin Alexa Fluor 568. In the insets, superposition 
of cytoskeleton (red) and EGFP (green) to monitor the infection efficiency. The scale bar in the 
enlarged figure: 40 µm. 



Cells 2020, 9, 1410 8 of 13 

 

In probenecid-treated HepG2 cells, we observed an almost complete lack of filopodia, or, if 
present, they were very short (Figure 5B, stars) compared to the control cells (Figure 5A, arrows); as 
observed in the Abcc6-shRNA cells, the addition of ATP (Figure 5C, arrows) or adenosine (Figure 
5D, arrows) restored the normal architecture of filipodia. 

 
Figure 5. Representative confocal image of HepG2 cells treated with (A) 0.25% DMSO (vehicle) for 48 
h; (B) 250 µM probenecid for 48 h; (C) 250 µM probenecid and 500 µM ATP for 48 h; (D) 250 µM 
probenecid and 100 µM adenosine for 48 h; (E) 50 µM AOPCP for 48 h. F-actin and nuclei were stained 
with Phalloidin Alexa Fluor 488 and propidium iodide, respectively. 

Previously, we showed that ATP as well as adenosine reverted the effect of probenecid on the 
downregulation of the protein level of CD73, restoring its protein level to that of the control 
conditions and even above [18]. The finding that adenosine alone mimicked the effect of ATP in this 
experiment suggests that the ability of ATP to revert the effect of probenecid on cytoskeleton 
architecture is likely dependent on its ability to be finally transformed in adenosine by CD73. To 
verify this possibility, we analyzed filipodia organization upon inhibition of CD73 with adenosine 5'-
(α,β-methylene)diphosphate (AOPCP), a non-hydrolysable ADP analog, which binds to the active 
site and inhibits the catalytic activity of CD73 (Figure 5E). AOPCP is able to recapitulate the effect of 
probenecid with almost absent filipodia (Figure 5E, arrows), thus indicating that the lack of 
extracellular adenosine, derived from extracellular ATP, causes the filipodia rearrangement. 

Unlike HepG2 cells, no effect of probenecid was observed on the MDA-MB-231 cell cytoskeleton 
(Figure 6A,B). 
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Figure 6. Representative confocal image of MDA-MB-231 cells treated with (A) 0.25% DMSO (vehicle) 
and (B) 250 µM probenecid for 48 h. F-actin and nuclei were stained with Phalloidin Alexa Fluor 488 
and propidium iodide, respectively. 

3.5. Probenecid Affects HepG2 Cell Migration 

Cell migration is regulated and supported by both specific soluble molecules and different 
intracellular pathways including those involved in cytoskeletal rearrangement [36]. We indeed 
evaluated cell migration upon Abcc6 silencing and ABCC6 inhibition by the scratch-wound assay. 
Abcc6 knockdown cells (Abcc6-shRNA) showed a significant inhibition of about 40% of migration 
rate compared to control cells (scr-shRNA) (Figure 7). Probenecid elicited the same effect of Abcc6 
silencing in HepG2 cells on cell migration rate (Figure 7, Probenecid −/+). The addition of ATP 
completely reverted the effect of both Abcc6 knockdown and probenecid treatment in HepG2 cells 
(Figure 7, +ATP). In the presence of ATP, indeed, the cell migration rate was restored to that of resting 
condition, specifically to 4.8 ± 0.35 μm/h and 5.0 ± 0.21 μm/h in the silenced and in probenecid treated 
cells, respectively. Overall, these results indicate a significant role of ABCC6 on HepG2 cell migration. 

 
Figure 7. Effect of probenecid and Abcc6 silencing on the migration rate of HepG2 cells. Cells were 
treated with 250 μM probenecid for 48 h (gray plain bars, Probenecid+). DMSO-treated cells were 
used as the control (gray plain bars, Probenecid−). A total of 500 µM ATP was added to either the 
control cells (gray plain bars, Probenecid−, ATP+) or to probenecid-treated cells (gray plain bars, 
Probenecid+, ATP+). HepG2 cells were transduced with scrambled shRNA (grey-texturized bars, scr-
shRNA) or with specific Abcc6-shRNA (black bars, Abcc6-shRNA). A sample of 500 µM ATP was 
added to either control cells (grey-texturized bars, scr-shRNA, ATP+) or to Abcc6 silenced cells (black 
bars, Abcc6-shRNA, ATP+). Data are expressed as mean ± standard error (SE) of three replicates from 
three independent experiments. Data were analyzed by one-way ANOVA followed by Dunnett’s post 
hoc test using GraphPad Prism 7 software, ***p < 0.001 probenecid treated cells (gray plain bars, 
Probenecid+) vs. control cells (gray plain bars, Probenecid−) in the absence of ATP (ATP−); Abcc6-
shRNA (black bars, Abcc6-shRNA) vs. scr-shRNA (grey-texturized bars, scr-shRNA) in the absence 
of ATP (ATP−). ### p < 0.001 probenecid + ATP treated HepG2 cells (gray plain bars, Probenecid+, 
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ATP+) vs. probenecid treated HepG2 cells (gray plain bars, Probenecid+, ATP−); Abcc6-shRNA cells+ 
ATP (black bars, Abcc6-shRNA, ATP+) vs. Abcc6-shRNA cells (black bars, Abcc6-shRNA, ATP−). NS, 
not significant. 

4. Discussion 

The human Abcc6 gene encodes for a protein mainly expressed in the basolateral membrane of 
the hepatocytes. In order to understand the possible physiological substrate/s transported and then 
the molecular mechanisms underlying the clinical phenotype of PXE, a number of studies have been 
conducted to clarify the structure and function of some domains of ABCC6 [37–42]. To date, we know 
that ABCC6 contributes to the outflow of ATP from cells [8,9]. ATP contributes to supplying the 
extracellular space of the anti-mineralization factor PPi, however, in a biological context such as that 
of tumors, we suggest that the role of ABCC6 can be as an ATP supplier in the purinergic pathway. 
Both nucleotides and nucleosides are important modulators of tumor biology and the purinergic 
system contributes with different mechanisms to the regulation of cancer growth and dissemination 
[43,44]. In the present study, we analyzed the effect of Abcc6 knockdown and probenecid-induced 
ABCC6 inhibition on the extracellular ATP availability, and consequently on cell migration, an 
important cellular process correlated to cancer. 

We found that either Abcc6 silencing or ABCC6 inhibition with probenecid induced a 
comparable decrease in the extracellular ATP content in HepG2 cells (Figure 1). Moreover, when 
Abcc6 silenced cells were treated with probenecid, no additive effects were observed, thus suggesting 
that, at least in HepG2 cells, probenecid inhibits the outflow of ATP from ABCC6 or ABCC6-related 
transport systems [45]. 

The hypothesis that the availability of ATP may be responsible for the cytoskeleton 
rearrangement and the consequent inhibition of cell migration has also been demonstrated. The 
cytoskeleton architecture in Abcc6 knockdown HepG2 cells is drastically modified (Figure 4A,B) as 
well as cell motility (Figure 7). Both conditions can be mimicked by the addition of probenecid to 
HepG2 cells and restored by the addition of ATP (Figures 4D, 5, and 7): as long as the outflow of ATP 
from the cells is not inhibited with probenecid, its amount is sufficient for the formation of filopodia 
and for motility. 

Since we have observed that both Abcc6 silencing [19] and probenecid treatment induced the 
down regulation of Lamin A/C expression (Figure 2A), we suggest that the lower levels of Lamin A/C 
can contribute to the rearrangement of the cytoskeleton and consequently to changes in cell 
migration. Accordingly, overexpression of Lamin A/C correlates with high degrees of malignance of 
some tumors due to its ability to promote migration and invasion, downregulation, or absence of 
Lamin A/C is associated with the low to absent cell motility [46]. 

In HepG2 cells, we have already observed a correlation between a decrease in the expression 
levels of CD73 upon Abcc6 silencing [17] or probenecid treatment [18]. CD73 is the main source of 
extracellular adenosine in all tissues and is a key regulator in some tumor processes such as invasion, 
migration, and metastasis [12,13]. In this study, we found that the inhibition of CD73 activity by 
AOPCP (Figure 5E) mimicked the effect of probenecid in the filipodia retraction; however, the 
addition of adenosine together with probenecid preserved the filipodia architecture, suggesting that 
ABCC6 could modulate the extracellular adenosine availability with a combined action on the rate of 
ATP efflux and, at same time, on the expression levels of the CD73 enzyme. As CD73 also functions 
as a membrane receptor for extracellular matrix proteins [47], it is not excluded that probenecid, 
downregulating its expression may affect adhesion, migration, and cellular invasion. 

However, despite all that we have discussed so far, not all effects observed following Abcc6 
silencing were mimicked by treatment with probenecid. Unlike what was previously observed in 
Abcc6 knockdown HepG2 cells [14], probenecid did not block cell cycle and cellular senescence, 
probably because it has a lesser impact on cellular metabolism, compared to what happens in 
response to gene silencing. 
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5. Conclusions 

ABCC6 could contribute to cytoskeleton rearrangements and cell motility through purinergic 
signaling by contributing to the extracellular reserve of ATP. Pharmacological inhibition of ABCC6 
by probenecid roughly mimics the effects of genetic silencing by regulating cytoskeleton 
rearrangement and cell motility, thus identifying ABCC6 as a potential therapeutic target for anti-
metastatic treatment. 
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