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Abstract: The COVID-19 pandemic is progressing worldwide with an alarming death toll. There is
an urgent need for novel therapeutic strategies to combat potentially fatal complications. Distinctive
clinical features of severe COVID-19 include acute respiratory distress syndrome, neutrophilia,
and cytokine storm, along with severe inflammatory response syndrome or sepsis. Here, we propose
the putative role of enhanced neutrophil infiltration and the release of neutrophil extracellular
traps, complement activation and vascular thrombosis during necroinflammation in COVID-19.
Furthermore, we discuss how neutrophilic inflammation contributes to the higher mortality of
COVID-19 in patients with underlying co-morbidities such as diabetes and cardiovascular diseases.
This perspective highlights neutrophils as a putative target for the immunopathologic complications of
severely ill COVID-19 patients. Development of the novel therapeutic strategies targeting neutrophils
may help reduce the overall disease fatality rate of COVID-19.
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1. Introduction

The novel severe acute respiratory syndrome coronavirus (SARS-CoV)-2 was first discovered in
Wuhan, China, and believed to have transmitted from bats to humans [1]. The SARS-CoV-2 has higher
human-to-human transmission capabilities compared to the SARS-CoV and Middle East respiratory
syndrome coronavirus (MERS-CoV) and has resulted in a pandemic. The World Health Organization
has named the disease COVID-19: coronavirus disease-2019; since it was first reported in December
2019. Although SARS-CoV-2 affects lungs at first, it can extend to many organs, including the heart,
kidneys, gut, blood vessels, and the brain [2].

The SARS-CoV-2 is closely related to the SARS-CoV since they have 80% similarity in genome
sequence and seven conserved non-structural domains identified by protein sequence analysis [3,4].
Moreover, they both have a similar receptor-binding domain, and therefore both use the same cell
entry receptor, i.e. angiotensin-converting enzyme II (ACE2) [5]. Subsequently, viral replication
in combination with the subsequent antiviral immune response both contribute to the severity of
COVID-19, which in some patients involves cytokine storm followed by severe inflammatory response
syndrome (SIRS), sepsis, multi-organ failure, and death [6]. However, little is known about the immune
pathomechanisms that trigger the cytokine storm during COVID-19. We propose that as part of the
first line of the innate immune defense, neutrophils are critical for the exacerbation of the immune
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response, and that neutrophil extracellular traps (NETs)-related necroinflammation plays a central role
in the development of the cytokine storm, sepsis and multi-organ failure during COVID-19.

2. ACE2 and Neutrophils

ACE2, a homolog of ACE and central negative regulator of the renin-angiotensin system is a
type 1 integral membrane glycoprotein monocarboxypeptidase that converts angiotensin-II (AngII)
to Ang-(1–7) and is constitutively expressed by the epithelial cells of the lungs, kidney, heart,
and intestines on the outer surface [5,7]. Ang-(1–7) is a vasodilator that mediates anti-inflammatory,
anti-proliferative, and anti-fibrotic effects through the Mas receptor [8]. Using ACE2-mutant mice,
Imai, et al. demonstrated protective functions of ACE2 in acute respiratory distress syndrome (ARDS) [7].
They observed that ACE2 negatively regulates AngII, and thus, increases vascular permeability,
lung edema, and the infiltration of neutrophils, partially mediated by the angiotensin 1 receptor
(AT1R) [7]. Interestingly, SARS-CoV-infected mice or mice receiving injections of SARS-CoV spike
protein showed an aggravated phenotype compared to ACE2-mutant mice, suggesting the contribution
of ACE2 beyond being a mere receptor for SARS-CoV [9]. Similar to SARS-CoV, upon binding to ACE2,
SARS-CoV-2 enters cells along with ACE2 leading to reduced ACE2 expression on the cell surface [5].
Therefore, the loss of ACE2 might contribute to the severity of ARDS during COVID-19 by increasing
AngII- and AT1R-mediated vascular permeability, lung edema, and neutrophils infiltration [10].

How does ACE2 regulate the infiltration of neutrophils mechanistically? Sodhi et al. demonstrated
that attenuation of pulmonary ACE2 activity leads to activation of des-Arg9 bradykinin (DABK)/
bradykinin receptor B1 (BKB1R) axis, the release of pro-inflammatory chemokines e.g., C-X-C motif
chemokine ligand 5 (CXCL5), macrophage inflammatory protein-2 (MIP2), CXCL1, and tumor
necrosis factor (TNF)-α from airway epithelia, increased neutrophil infiltration, and exaggerated
endotoxin-induced lung inflammation and injury [11]. The dynamic variation of pulmonary ACE2
was found essential to control neutrophilic inflammation, i.e., a balanced reduction of ACE2 while
encountering a bacterial lung infection to recruit inflammatory neutrophils to combat the infection
and later its recovery to restrict neutrophil accumulation to alleviate the inflammation by limiting
interleukin (IL)-17 signaling by reducing STAT3 pathway activity [12]. Thus, ACE2 prevents the
infiltration of neutrophils at the injury or infection site.

3. SARS-CoV-2, Neutrophils, and Necroinflammation in COVID-19

An increased neutrophil-to-lymphocyte ratio predicts severe illness in the early stage of
SARS-CoV-2 infection, whereas neutrophilia frequently develops in COVID-19 patients in intensive
care units [6,13–16]. Being part of the first line of innate immune defense, neutrophils have been
thought to have protective roles during bacterial or fungal infections, where they kill bacteria or fungi
by phagocytosis as well as NET formation [16]. However, their role in viral infections remains unclear.
In murine SARS-CoV infection, neutrophils were dispensable for antibody-mediated clearance of
SARS-CoV from pulmonary cells as well as the survival of SARS-CoV-infected mice [17,18]. On the
other hand, continuous infiltration of neutrophils at the site of infection and their degranulation and
release of NETs in response to microbial stimuli to raise an immune response produces exaggerated
cytokines and chemokine that might result in the “cytokine storm” and contribute to the ARDS,
SIRS and sepsis development during COVID-19 [6,14,19]. Higher levels of interleukin (IL)-1β,
interferon-γ, CXCL10, monocyte chemoattractant protein-1, granulocyte colony-stimulating factor,
monocyte inhibitory protein-1, and TNF-α were observed in COVID-19 patients requiring ICU
admission [6,14]. A lung autopsy from a patient who succumbed to COVID-19 revealed an extensive
neutrophil infiltration in pulmonary capillaries with extravasation into the alveolar space displaying
acute capillaritis, as well as neutrophilic mucositis of the trachea indicating inflammation to the
entire airway [20]. Moreover, SARS-CoV-2 infection of endothelial cells and the accumulation of
inflammatory cells induced endothelitis in multiple organs, which may contribute to the systemic



Cells 2020, 9, 1383 3 of 8

impaired microcirculatory function during COVID-19 [21] and to the phenomenon of the “happy
hypoxia” [22].

The SARS-CoV accessory protein open reading frames SARS3a induced multimodal necrotic
cell death in epithelial cells [23]. Interestingly, SARS3a is conserved in SARS-CoV-2 [4], suggesting
the engagement of similar pathomechanisms during COVID-19. Cellular necrosis as well as NET
formation results in the release of several intracellular danger-associated molecular patterns that
activate the pattern recognition receptors on the surrounding immune and non-immune cells resulting
in more production of inflammatory cytokines and chemokines [24]. The release of NETs disperses
histones, DNA, and granule proteins, such as myeloperoxidase, neutrophil elastase, cathepsin G,
and proteinase 3, which results in severe tissue destruction, setting up the auto-amplification loop of
necroinflammation [24,25] (Figure 1).
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Figure 1. Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19.
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) binds to ACE2 and enter epithelial
as well as endothelial cells along with it leading to reduced ACE2 expression that stimulates
neutrophil recruitment. Subsequently, neutrophils undergo degranulation and NET formation releasing
intracellular danger-associated molecular patterns, e.g., DNA, histones, neutrophil elastase that
activate the pattern recognition receptors on surrounding immune and non-immune cells to induce
cytokine secretion. The extracellular DNA released by NETs activates platelets and aggregated
NETs provide a scaffold for binding of erythrocytes and activated platelets that promote thrombus
formation. The extracellular histones present on NETs induce necrosis in epithelial or endothelial cells
leading to the release of associated molecular patterns. This sets up an auto-amplification loop of
necroinflammation that aggravate the disease severity during COVID-19. SARS-CoV-2 = severe acute
respiratory syndrome coronavirus 2, ACE2 = angiotensin-converting enzyme 2, NET = neutrophil
extracellular traps, DAMPs = danger-associated molecular patterns.

NETing neutrophils tend to form larger aggregates called “AggNETs” that drive the formation
of thrombi in blood vessels [26]. Interestingly, high incidences of venous thrombosis are reported in
COVID-19 [27]. The extracellular DNA released by NETs activates the platelets, and the AggNETs
provide a scaffold for binding of the erythrocytes and activated platelets, which further promote the
NET formation and set up a vicious cycle propagating thrombus formation [26]. NETs also activate
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the complement system. Myeloperoxidase, cathepsin G, and proteinase 3 activate properdin, factor B,
and C3, three components of the alternative pathway required to induce the complement cascade [28].
Activated neutrophils also express properdin, factor B, and C3, suggesting an important role of
neutrophils in complement activation. Of note, activation of the complement system has been reported
in the severe COVID-19 patients [27]. Together, neutrophils infiltration and NETs formation drive
necroinflammation during coronavirus infections (Table 1).

Table 1. Evidence for neutrophil-mediated necroinflammation in coronavirus infections.

Virus Evidence for Involvement of Neutrophils Reference

SARS-CoV-2

High levels of markers of NETs, e.g., cell free-DNA, myeloperoxidase-DNA,
and citrullinated histone 3 in sera from severely ill patients [19]

High neutrophil-to-lymphocyte ratio cause ARDS in patients [13,15,29]

Neutrophil infiltration in pulmonary capillaries with extravasation into the alveolar space [20]

High neutrophil-to-lymphocyte ratio and D-dimer levels in patients [30]

SARS-CoV

C3 mediated neutrophil recruitment during disease progression in mice [31]

Neutrophils infiltration in lungs during the late phase of infection in mice [32]

Neutrophils count correlate with the cytokine storm in patients [33]

Higher levels of neutrophil chemokine IL-8 found in patients [34]

Neutrophilia is associated with the severity of disease in patients [35]

MERS-CoV

Neutrophil-mediated innate inflammatory response in human DPP4 knock-in mice [36]

Increased neutrophils contribute to leukocytosis, an indicator of disease severity and
fatality in patients [37]

Increased release of ROS caused extensive pulmonary lesions and increased the disease
severity in marmosets [38]

SARS-CoV = severe acute respiratory syndrome coronavirus, MERS-CoV = Middle East respiratory syndrome
coronavirus, NET = neutrophil extracellular trap, ARDS = acute respiratory distress syndrome, C3 = complement
factor 3, ROS = reactive oxygen species.

4. Diabetes, SARS-CoV-2, and Neutrophils

Many prevalent co-morbidities increase the severity and mortality of COVID-19 [14,27,39–41].
One of the most distinctive co-morbidities is diabetes mellitus [6]. Out of 1099 cases reported by
Guan et al., 16.2% of patients with severe disease had a higher prevalence of diabetes compared to
5.7% of patients with the non-severe disease [14]. Case fatality was higher in COVID patients with
diabetes [42]. This may be attributed to the dysfunctional innate immunity, as well as the exaggerated
pro-inflammatory cytokine response in patients with diabetes [43]. Furthermore, higher glucose levels
glycosylate and shed ACE2 [44] may contribute to the severity of ARDS during COVID-19 by increasing
vascular permeability, edema, and neutrophils infiltration in DM patients. On the other hand, it was
believed that patients with diabetes treated with ACE inhibitors and angiotensin-receptor blockers
may develop increased ACE2 expression, which could further facilitate the cell entry of SARS-CoV-2
and aggravate the infection [40]. However, a recent study reported no association with the likelihood
of COVID-19 positive test or severity of COVID-19 with renin-angiotensin system inhibitors [45].
Hyperglycemia in diabetes primes neutrophils to release NETs that might further contribute to the
cytokine storm, SIRS, and sepsis in COVID-19 [43]. Besides, sugar-activated neutrophils produce
S100 Calcium-binding proteins A8/A9 (S100A8/A9) that increased the production of thrombopoietin
in the liver and subsequent thrombocytosis [46], which might contribute to thrombus formation in
COVID-19. Th17-associated cytokine production promoted disease-predictive inflammation in DM [47].
Interestingly, a higher number of CCR6+ TH17 cells were found in the peripheral blood of COVID-19
patients, suggesting critical involvement of TH17 response [48]. Together, neutrophil-mediated cytokine
storm leads to sepsis and subsequent multi-organ failure to aggravate the severity of COVID-19 disease.
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5. Cardiovascular Diseases, SARS-CoV-2, and Neutrophils

Cardiovascular diseases, including coronary heart disease, cardiomyopathy, arrhythmias,
myocardial injury, and hypertension are other distinctive co-morbidities of COVID-19 that have
higher overall mortality rates [14,42,49]. Especially, the extent of myocardial injury correlated with
cardiac dysfunction, arrhythmias, and fatal outcome of COVID-19 [49]. ACE2 exerts vasodilatory effects
through Ang-(1–7) and the Mas receptor [8]. Therefore downregulation of ACE2 upon SARS-CoV-2 cell
entry induces vasoconstriction and subsequent hypertension. Subsequent ACE2-mediated neutrophil
infiltration, as well as NET formation, might be responsible for the exaggerated inflammatory
response, which in turn contributes to the development of cardiovascular diseases, e.g., thrombosis,
atherosclerosis, and endothelial injury, etc. One in five hospitalized COVID-19 patients showed
increased troponin, brain natriuretic peptide, lymphopenia, and inflammation markers, such as
c-reactive protein, IL-1β, and IL-6 in the early course of the disease suggesting cardiac injury [49,50].
Recently, NET-related endothelial cell injury was reported to contribute to vascular pathology in
pulmonary hypertension [39]. Moreover, IL-1β promoted the thrombus formation via NET-associated
tissue factor during atheroembolic events during cardiovascular diseases [51,52]. Furthermore, increased
neutrophil elastase activity was reported to contribute to obesity, insulin resistance, and related
inflammation [53]. Interestingly, the presence of obesity in metabolic associated fatty liver disease
increased the severity of COVID-19 six-fold [41]. All these reports indicate the involvement of
neutrophils and related necroinflammation in the pathology and severity of COVID-19.

6. Summary and Perspectives

To summarize, neutrophils play a central role in the immunopathology of COVID-19. SARS-CoV-2
infection, as well as downregulation of ACE2 upon the cell entry of SARS-CoV-2 triggers neutrophil
infiltration in the lungs. Necrotic cell death of alveolar epithelial cells, as well as NET formation,
releases damage-associated molecular patterns and alarmins in the surrounding extracellular space,
which induce production of pro-inflammatory cytokines and vice versa, setting up a loop of
necroinflammation that is responsible for the cytokine storm and sepsis. NETting neutrophils cause
endothelial injury and necroinflammation via complement activation, as well as promote the venous
thrombus formation during COVID-19. Underlying co-morbidities in COVID-19 patients, e.g., diabetes
and cardiovascular diseases enhance the neutrophilic inflammation and thereby severity of COVID-19.
Therefore, the development of novel therapeutic strategies targeted at neutrophils, e.g., inhibitors
of neutrophil recruitment or NET formation may help reduce the overall disease mortality rate
of COVID-19.
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