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Abstract: Background: Rheumatoid arthritis (RA) has been associated with air pollution, possibly
due to the augmentation of inflammatory effects. In this study, we aimed to determine the roles
of inflammatory pathways and microRNA involved in the pathogenesis of RA fibroblast-like
synoviocytes (FLS) inflammation induced by particulate matter. Methods: The inflammatory
mediators, messenger RNAs, microRNAs and their interrelationships were investigated using western
blotting, QPCR, ELISA and immunohistochemistry. Results: Particulate matter (PMs) induced an
increase in the expression of interleukin-6 (IL-6) and cyclooxygenase-II (COX-II) in RA-FLS and
microRNA-137 was found definitely to mediate the inflammatory pathways. PMs-induced generation
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of reactive oxygen species (ROS) in RA-FLS was attenuated by pretreatment with antioxidants.
Nox-dependent ROS generation led to phosphorylation of ERK1/2, p38 and JNK, followed by
downregulation of microRNA-137. In vivo studies, the joints of rats exposed to PMs revealed synovial
fibroblast inflammation under pathologic examination and the expressions of IL-6 and COX-II were
obviously increased. PMs exposure results in activated ROS-mediated mitogen-activated protein
kinase (MAPK) signaling pathways and cause increased IL-6 and COX-II through downregulation of
hsa-miRNA-137, which lead to inflammation and RA exacerbation. Conclusions: microRNA-137
plays an important role in PMs-induced RA acute exacerbation through MAPK signaling pathways
and IL-6/COX-II activation. Targeting these mechanisms can potentially be used to develop new
therapeutic strategies and prevention of RA inflammation in the future.

Keywords: particulate matter; air pollution; rheumatoid arthritis; reactive oxidative stress;
interleukin-6; inflammation; MAPK signaling

1. Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation
and progressive damage to joints. If joint damages are untreated, morbidity and mortality will
increase [1,2]. The pathogeneses of RA include infiltration of various inflammatory cells and a crosstalk
with cytokines, including IL-6, IL-17, TNF-α and GM-CSF that mediate the immune responses and
cause disease onset, persistence and subsequent joint destruction [3,4]. Currently, a combination of
genetic and environmental factors that eventually converge in the over-reactive immune system is
considered as the basic concept of RA etiology [5,6]. Several genes were identified to contribute to RA
susceptibility and epigenetic modulations as well as gene mutation are considered to be associated
with RA disease presentation [7,8].

Environmental factors contribute to the onset of autoimmune diseases. One of the important
environmental contributors is air pollution, which usually increases with the development of modern
countries [9,10]. Several epidemiological studies and experimental models have demonstrated the
association between particulate matter (PMs), smoking and certain occupational exposure and RA
exacerbation [10–13]. Of particular concern is the ambient fine particulate matter (PMs), a mixture of
multiple components (such as metals, water-soluble ions, polycyclic aromatic hydrocarbons [PAHs]
and organic carbons, etc.) and diversified sources (such as coal combustion, ground dust, biomass
burning and vehicle exhaust) with high oxidative potential and small aerodynamic diameter (less
than 2.5 micrometers) that can penetrate deep into the pulmonary microvascular system and affect
various organ systems [14,15]. PMs are found to cause detrimental inflammation on various target
organs through producing reactive oxygen species (ROS) [16–18]. The oxidative effects of PMs on
pulmonary epithelial cells are mediated through pro-inflammatory cytokines such as interleukin-6
(IL-6), IL-8 and cyclooxygenase II (COX-II), which are also involved in the pathogenesis of RA
exacerbation [19–21]. Numerous studies have elucidated the potential biologic effects of PMs, including
induction of acute inflammation, influencing adaptive immune responses and a significant role for
epigenetic mechanisms. We have previously demonstrated that PMs can induce inflammation in
human fibroblast-like synoviocytes (FLSs) [22], which mimic the pathogenesis of RA; however, little is
known about the link between inflammatory pathway and epigenetic changes in RA patients after
PMs exposure.

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate expression of functionally related
protein-coding genes and act as key regulators of inflammation [23,24]. Under external stimulation or
oxidative stress, miRNA expression can be upregulated or downregulated, which may influence disease
presentation [25]. The epigenetic effects of miRNAs were demonstrated to regulate FLS proliferation
in RA patients, contribute to or ameliorate RA disease progression and can be the biomarker for RA
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diagnosis [26–29]. Other studies have also found that miRNA profiles in blood were altered by air
pollution exposure and these changes were associated with immune responses and oxidative stress in
chronic inflammatory diseases [30–32]. We hypothesized that exposure to PMs would alter miRNA
expression in the FLS, leading to exacerbation of acute joint inflammation. In this study, we sought to
determine whether ambient PMs is associated with the expression of specific miRNA and to investigate
the participation of such miRNA in the inflammatory pathways related to RA.

2. Materials and Methods

2.1. Materials

Synthesized sequences of a human miRNA137 (hsa-miR-137) mimic, a hsa-miR-137 inhibitor and a
negative control miRNA were purchased from GeneDireX (Las Vegas, NV). U0126, SB203580, SP600125,
PD98059, N-acetylcysteine (NAC), Apocynin (APO), Diphenyleneiodonium (DPI) and catalase were
supplied by Sigma-Aldrich (St Louis, MO, USA). The MEK1 dominant-negative mutant was a gift
from Dr. W.M. Fu (National Taiwan University, Taipei, Taiwan). The ERK2 (K52R) dominant-negative
mutant was a gift from Dr. M. Cobb (Southwestern Medical Center, Dallas, TX, USA). The p38
dominant negative mutant was provided by Dr. J. Han (Southwestern Medical Center, Dallas, TX).
The JNK dominant negative mutant was provided by Dr. M. Karin (University of California, San
Diego, CA, USA). The human IL-6 promoter construct pIL6-luc651 (-651/+1) was gifts from Dr. Oliver
Eickelberg (Ludwig Maximilians University Munich, Munich, Germany). The human COX-II promoter
construct pCOX-2-Luc (−891/+9) was gifts from Dr. Jin-Ching Lee (Kaohsiung Medical University,
Kaohsiung, Taiwan).

Cell culture supplements were purchased from Invitrogen (Carlsbad, CA, USA). Luciferase®

Reporter Assay System was bought from Promega (Madison, WI, USA). All other chemicals not
described above were supplied by Sigma-Aldrich (St Louis, MO, USA).

2.2. Human Synovial Fluids and Tissues

Human synovial fibroblasts (SFs) were isolated by collagenase treatment of synovial tissue
samples obtained from 12 patients with RA undergoing knee replacement surgery in Chiayi Chang
Gung Memorial Hospital (CCGMH). In addition, 12 samples of nonarthritic synovial tissues obtained
arthroscopy after trauma joint derangement were used as the control. Among the 12 RA patients,
7 (58.3%) were under steroid treatment and all patients had DMARDs at the time of enrollment.
The DMARDs included methotrexate (7 patients, 58.3%), hydroxychloroquine (3 patients, 25%) and
sulfasalazine (2 patients, 16.7%). Written informed consent was obtained from all patients recruited
into this study, and this study was approved by the Institutional Review Board of CCGMH. The
certificate of the IRB number was 201600517A3. The synovial tissue was obtained from patients with
RA and the controls. Fresh synovial tissues were finely minced and digested in Dulbecco’s modified
Eagle’s medium (DMEM) containing 2 mg/mL type II collagenase (Sigma-Aldrich, St. Louis, MO,
USA) for 4 h at 37 ◦C and under 5% CO2. Passages 5–7 of the obtained RASFs were used in this study.
Results of four independent experiments were presented.

Patients were included if they meet the following criteria:

(1) Patients who were able and willing to provide written informed consent;
(2) Patients who had sufficient knowledge to understand Chinese or Taiwanese language, so they

could comply with the requirements of the study;
(3) Patients who were at least 18 years old, but less than 90 years old;
(4) Patients who were diagnosed as having RA by their rheumatologist and met the 2010 ACR/EULAR

classification criteria for RA (Aletaha D, et al., 2010);
(5) Patients who had active RA defined as a clinical disease activity index (CDAI) > 10 and had a

swollen knee joint;
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The exclusion criteria of this study were:

(1) Patients who had any other inflammatory rheumatic disease than RA, including secondary
Sjögren’s syndrome;

(2) Patients who refused to sign or who could not understand either Chinese or Taiwanese;
(3) Patients who could not tolerate the procedure of knee treatment.
(4) Patients who were pregnant.

Human fibroblast-like synoviocytes (H-FLS) were obtained from Cell Applications INC (USA) and
human rheumatoid arthritis fibroblast-like synoviocytes cell line (MH7A) were obtained from Riken cell
bank (Ibaraki, Japan). Cells were cultured in the Roswell park memorial institute (RPMI)-1640 (Wako,
Osaka, Japan) supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Gibco, Eggenstein,
Germany), penicillin (final concentration, 100 U/mL) and streptomycin (final concentration, 0.1 mg/mL)
in a humidified atmosphere of 5% CO2 and 95% air at 37 ◦C.

2.3. Preparation of Particle Matter Samples

The particle matters (PMs) (SRM 1649b, obtained from NIST; Gaithersburg, MD, USA) were
prepared at a concentration of 1000 µg/mL in PBS. The suspended particles were then sonicated for
30 min to avoid agglomeration.

For other experimental designs and procedures, including cell cytotoxicity assay, cell cycle analysis,
quantification of mRNA and miRNA by real-time quantitative polymerase chain reaction amplification,
enzyme-linked immunosorbent assay, transfection and reporter gene assay, western blot analysis,
measurement of intracellular ROS accumulation, predicted and validated microRNA target interactions
and plasmid construction and luciferase assay, please see the Supplemental Material.

2.4. Transient Transfection

Cells were transfected with hsa-miR-137 mimic, control mimic, vector, dominant negative MEK
mutants, dominant negative ERK mutants, dominant negative JNK mutants and dominant negative
p38 mutants and luciferase plasmid by using Lipofectamine 3000 in culture medium. After 24 h of
transfection, cells were incubated with the indicated agents. After 24 h of incubation, the luciferase
activity in the transfected cells was measured using a luciferase reporter assay system (Promega)
according to the manufacturer’s instructions. Transactivation was determined by monitoring the firefly
luciferase levels in the pGL2 vector. The luciferase assay was performed by adding lysis buffer (100 µL)
and harvesting the cells through centrifugation (13,000 rpm for 5 min). The supernatant was transferred
to fresh tubes and 20 µL of cell lysate was added to 80 µL of fresh luciferase assay buffer in an assay
tube. The luciferase activity was measured using a microplate luminometer. Luciferase activity was
normalized to transfection efficiency based on the cotransfected β-galactosidase expression vector.

2.5. Reporter Gene Assay

Human synovial fibroblasts were co-transfected with 0.8 µg IL-6 or COX-II luciferase plasmid
and 0.4 µg β-galactosidase expression vector. Fibroblasts were grown to 80% confluent in 12 well
plates and were transfected the following day with Lipofectamine 3000 (LF3000; Invitrogen). DNA
and LF3000 were premixed for 20 min and then applied to cells. After 24 h transfection, cells were
then incubated with the indicated agents. After further 24 h incubation, the media were removed
and cells were washed once with cold PBS. To prepare lysates, 100 µl reporter lysis buffer (Promega,
Madison, WI, USA) was added to each well and cells were scraped from dishes. The supernatant
was collected after centrifugation at 13,000 rpm for 10 min. Aliquots of cell lysates (20 µl) containing
equal amounts of protein (20–30 µg) were placed into wells of an opaque black 96-well microplate.
An equal volume of luciferase substrate was added to all samples and luminescence was measured in
a microplate luminometer. The value of luciferase activity was normalized to transfection efficiency
monitored by the co-transfected β-galactosidase expression vector.
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2.6. Plasmid Construction and Luciferase Assays

The 3′UTR-luciferase reporter constructs containing 3′UTR regions of IL-6 or COX-II with wild
type and mutant binding sites of hsa-miR-137 were amplified by PCR method, cDNAs obtained from
H293 T cells. PCR products were cloned into pmirGLO reporter vector (Promega) between PmeI and
XbaI sites, instantly downstream of the luciferase gene. Mutant 3′UTR were constructed by introducing
mismatched mutations into putative seed regions of IL-6 or COX-II, with all constructs containing 3′UTR
inserts sequenced and verified. These plasmids with 3′UTR of IL-6 or COX-II and β-galactosidase as
control were transfected into cells using lipofectamine 3000. Following transfection, these cells were
incubated with the indicated agents. Cell extracts were prepared and used for measuring the luciferase
and β-galactosidase activities as the manufacturer’s recommendations. Activities of luciferase and
β-galactosidase were then measured by Luciferase Assay System (Promega, WI, USA).

2.7. Collagen-Induced Arthritis (CIA) Rat Model

Female Lewis rats, weighing between 175 and 200 g from Lasco (Taipei, Taiwan), were used
in these studies. Subjects were randomized into the study groups, such that all groups had similar
average baseline body weights and activity profiles prior to induction. We employed the CIA model,
a well-established and validated rodent rheumatology model. Briefly, to induce arthritis, rats were
anesthetized under isoflurane and injected intradermally with 2 mg/mL of porcine type II collagen
(Chondrex; Redmond, WA, USA) in Incomplete Freund’s Adjuvant (IFA) (Sigma; St. Louis, MO, USA)
at two sites on the back of the animal. A booster was given 7 days post-induction. Control animals
were injected with IFA only. 32 rats were randomly assigned to 4 groups: 8 in the control group, 8 in
the PMs-exposure group, 8 in the CIA group and 8 in the CIA-with-PMs-exposure group. Rats in the
PMs-exposure group received PMs dose (4 mg/kg) with intratracheal instillation at day 21. Rats in the
control group received an equivalent volume of normal saline with intratracheal instillation on the
same days. The clinical severity of arthritis in each knee was measured in a blinded manner with a
plethysmometer (Marsap, Mumbai, India, http://www.marsap.com) once weekly for 1 week. The rats
were sacrificed on day 42 and the phalanges and knee joints were removed immediately and fixed in
4% paraformaldehyde for immunohistochemistry.

2.8. Immunohistochemistry

Rat joint tissue was fixed in 4% paraformaldehyde, decalcified in EDTA bone decalcifier and
embedded in paraffin. The sections (7 µm) were stained with hematoxylin and eosin (H&E) and
toluidine blue to detect proteoglycans. For immunohistochemistry, rat joint sections were blocked with
1% normal goat serum and stained with antibodies to IL-6 (1 µg/mL, Santa Cruz, CA, USA), COX-II
(200 ng/mL, Santa Cruz, CA, USA) and isotype control antibody (1 µg/mL, Santa Cruz, CA, USA) at
4 ◦C overnight. After three washes in PBS, the secondary antibody (biotin-labeled goat anti-rabbit
IgG) was applied for 1 h at room temperature. Staining was detected with 3, 3′-diaminobenzidine
tetrahydrochloride and the sections were then counterstained with H&E and observed under a
light microscope.

2.9. Statistical Analysis

The data were expressed as the mean ± SD. Statistical analysis was performed using SigmaStat
3.0 software. One-way analysis of variance (ANOVA) with Fisher’s LSD post hoc tests was used
for statistical comparisons of more than two groups. In all cases, p < 0.05 was considered to be
statistically significant.

http://www.marsap.com
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3. Results

3.1. PMs Promote IL-6 and COX-II Expression in Human Rheumatoid Arthritis Fibroblast-Like
Synoviocytes (RA-FLS)

We detected mRNA expression levels of inflammatory cytokines in RA-FLS. The cells were treated
with PMs (50 µg/cm2) for 24 h. The mRNA expression of inflammatory cytokines were examined using
qPCR. Moreover, then the expression of IL-6 and COX-II were significantly higher than that of other
inflammatory cytokines in RA-FLS compared with the basal level expressed in controls (Figure 1A).
To understand the relationship between PMs and IL-6 and COX-II in RA-FLS, we examined the level of
IL-6 and COX-II after PMs treatment. RA-FLS were incubated with various concentrations of PMs for
24 h or PMs (50 µg/cm2) for 6, 12 or 24 h. The mRNA and protein expression of IL-6 and COX-2 were
examined using qPCR and western blot. We found that PMs induced IL-6 and COX-II production in a
concentration-dependent manner (Figure 1B,C) and induction occurred in a time-dependent manner
in RA-FLS (Figure 1D). Furthermore, RA-FLS were incubated with various concentrations of PMs
for 24 h; supernatants and cell lysates were then collected. The IL-6 level in the culture media was
measured using a Quantikine ELISA kit. We observed that PMs markedly induced IL-6 release in
a concentration-dependent manner according to ELISA analysis (Figure 1E). In addition, RA-FLS
were incubated with various concentrations of PMs for 24 h. IL-6 and COX-2 luciferase activity was
measured and the results were normalized to the β-galactosidase activity. PMs-induced IL-6 and
COX-II expression significantly increased within 6 h and continued to increase over 24 h. In addition,
PMs also induced the expression of IL-6 and COX-II promoter activity in these cells (Figure 1F,G). Taken
together, these results suggest that PMs induces IL-6 and COX-II upregulation in human RA-FLS.

3.2. PMs Induces IL-6 and COX-II Expression via ROS

Several studies have demonstrated that reactive oxygen species (ROS) contributes to IL-6 and
COX-II expression in various cell types. Thus, the role of ROS generation associated with IL-6 and
COX-II expression in response to PMs was investigated. To confirm that the generation of ROS was
involved in PMs-induced IL-6 and COX-II expression in RA-FLS, CellROX green reagent was used
to measure the generation of ROS in these cells. The cells were labeled with CellROX green reagent
and then treated with 50 µg/cm2 PMs and the resultant fluorescent intensity was measured at 485 nm
excitation and 520 nm emission.

As shown in Figure 2A,B, the results indicated that PMs treatment of RA-FLS induced ROS
accumulation. Moreover, pretreatment with N-acetylcysteine 1-mM (NAC, NADPH oxidase inhibitor),
diphenyleneiodonium chloride 10 µM (DPI, nonspecific flavoprotein inhibitor), catalase 500 units/mL
(ROS scavengers) and apocynin 100 µM (APO, NOX-like enzymes inhibitor) markedly inhibited
PMs-induced ROS generation (Figure 2C). NAC, DPI, catalase and APO significantly abrogated
PMs-induced IL-6 and COX-II protein and mRNA levels and promoter activity (Figure 2D–F). These
results indicated that ROS generation plays a critical role in PMs-induced IL-6 and COX-II expression
in human RA-FLS.

3.3. PMs Induce IL-6 and COX-II Expression via MAPK in Human RA-FLS

There are studies indicating that MAPK family members (ERK1/2, p38 MAPK and JNK1/2) play a
role in IL-6 and COX-II gene expression [33,34]. Therefore, we examined whether MEK, ERK, JNK and
p38 MAPK are also important mediators in PMs-induced IL-6 and COX-II expression in human RA-FLS.
We found that the pretreatment with the inhibitor of ERK (PD98059; 20 µM), p38 MAPK (SB203580;
20 µM), JNK (SP600125; 20 µM) or MEK (U0126; 20 µM) inhibited enhancement of IL-6 and COX-II
mRNA expression and promoter activity by PMs (Figure 3A,B). To further verify that PMs-induced
IL-6 and COX-II expression was mediated via MAPK, cells were transfected with MEK, ERK, JNK and
p38 MAPK mutants, and then incubated with PMs for 24 h. Transfection with MEK, ERK, JNK and p38
MAPK mutants markedly inhibited PMs-induced IL-6 and COX-II mRNA levels in RA-FLS (Figure 3C).
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Figure 1. Concentration- and time-dependent increase in IL-6 production by particulate matter (PMs).
(A) Human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) were incubated with PMs
(50 µg/cm2) for 24 h. The mRNA expression of inflammatory cytokines were examined using qPCR
(n = 4); (B) RA-FLS were incubated with various concentrations of PMs for 24 h. The mRNA expression
of IL-6 and COX-2 were examined using qPCR (n = 4); (C) RA-FLS were incubated with various
concentrations of PMs for 24 h. The protein expression of IL-6 and COX-2 were examined using
western blot (n = 4); (D) RA-FLS were incubated with PMs (50 µg/cm2) for 6, 12 or 24 h. The mRNA
expression of IL-6 and COX-2 were examined using qPCR (n = 4); (E) RA-FLS were incubated with
various concentrations of PMs for 24 h; supernatants and cell lysates were then collected. The IL-6 level
in the culture media was measured using a Quantikine ELISA kit (n = 4); (F,G) RA-FLS were incubated
with various concentrations of PMs for 24 h. IL-6 and COX-2 luciferase activity was measured and the
results were normalized to the β-galactosidase activity. Results are expressed as mean ± SD. * p < 0.05
compared with the control; # p < 0.05 compared with the PM-treated group.

To determine whether MEK, ERK, JNK and p38 MAPK were activated during PMs-triggered
IL-6 and COX-2 expression, we found increased phosphorylation of MEK, ERK, JNK and p38 MAPK
in a time-dependent manner following PMs stimulation (Figure 3D). Moreover, we confirmed a
relationship between ROS production and MAPK signaling pathways in response to PMs. Incubating
the cells with the ROS inhibitor reduced PMs-induced increases in MEK, ERK, JNK and p38 MAPK
phosphorylation (Figure 3E). These results indicated that MEK, ERK, JNK and p38 MAPK play critical
roles in PMs-induced IL-6 and COX-II expression in human RA-FLS.
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Figure 2. PMs induce the generation of reactive oxygen species (ROS) in human rheumatoid arthritis
synovial fibroblasts (RASFs). (A,B) RA-FLS were treated with control solution or PMs (50 µg/cm2)
for various times. The concentration of ROS production was examined by using flow cytometry and
fluorescence image; (C) RA-FLS were pretreated for 30 min with N-acetylcysteine 1-mM (NAC, NADPH
oxidase inhibitor), diphenyleneiodonium chloride 10 µM (DPI, nonspecific flavoprotein inhibitor),
catalase 500 units/mL (ROS scavengers) and apocynin 100 µM (APO, NOX-like enzymes inhibitor)
followed by treatment with PMs (50 µg/cm2) for 30 min. The concentration of ROS production was
examined by using flow cytometry; (D–F) RA-FLS were treated with N-acetylcysteine 1-mM (NAC,
NADPH oxidase inhibitor), diphenyleneiodonium chloride 10 µM (DPI, nonspecific flavoprotein
inhibitor), catalase 500 units/mL (ROS scavengers) and apocynin 100 µM (APO, NOX-like enzymes
inhibitor) followed by treatment with PMs (50 µg/cm2) for 24 h. The IL-6 and COX-2 expression were
examined by using qPCR, western blotting and luciferase activity. The data are expressed as the mean
± SD. * p < 0.05 compared with controls. # p < 0.05 compared with the PMs treated groups.

3.4. PMs Enhances IL-6 and COX-II Expression by Inhibiting Hsa-miR-137 Synthesis

The role of microRNAs demonstrate differential expression patterns between RA and heath
people and are involved in the pathogenesis of RA [35,36]. This study identified that PMs promotes
inflammation via IL-6 and COX-II. Next, we sought to determine whether specific miRNAs are involved
in PMs-induced inhibition of IL-6 and COX-II expression. analysis of miRNA target prediction programs
(miRsystem) confirmed that hsa-miR-137 directly targets the 3′-UTR region of IL-6 and COX-II (Figure 4A).
hsa-miR-137 is located on human chromosome 1p22 and has been implicated to act as a suppressor in
several inflammatory diseases. hsa-miR-137 that could possibly bind to the 3′-UTR region of IL-6 and
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COX-II mRNA, levels of hsa-miR-137 expression were significantly decreased by the greatest extent after
PMs administration. To confirm these findings, we compared levels of hsa-miR-137 expression in RA-FLS
treated with PMs 10–50 µg/cm2. PMs concentration- and time-dependently inhibited miR-137 expression
(Figure 4B,C). We used the fluorescent dye-labeled miRNA mimic control and miRNA inhibitor control
that can be easily observed under fluorescent microscope to determine the transfection efficiency. In our
study, we demonstrate that up to 50% transfection efficiency can be obtained. (Figure 4D). To further
determine whether PMs stimulates IL-6 and COX-II expression by inhibiting hsa-miR-137 synthesis,
we transfected RA-FLS with hsa-miR-137 mimic and observed reductions in PMs-enhanced IL-6 and
COX-II mRNA and protein secretion (Figure 4D–F). In the other hand, we also we transfected RA-FLS
with hsa-miR-137 inhibitor and observed inductions in PMs-enhanced IL-6 and COX-II mRNA expression
(Figure 4G). Furthermore, Pretreatment of cells with ROS inhibitors significantly reversed PMs-induced
inhibition of hsa-miR-137 expression (Figure 4H). In addition, pretreated cells with MAPK inhibitors
or transfected cells with MEK, ERK, JNK and p38 MAPK mutants significantly reversed PMs-induced
inhibition of hsa-miR-137 expression (Figure 4I,J).

Figure 3. PMs-induced IL-6 and COX-2 expression via MAPK in human RA-FLS. (A,B) RA-FLS were
first treated with U0126, PD98059, SB203580 and SP600125 and PMs stimulation, IL-6 and COX-II
mRNA expression and luciferase activity were measured, respectively; (C) RA-FLS were transfected
with MEK, ERK, p38 and JNK dominant negative (DN) mutants for 24 h and PMs stimulation, IL-6
and COX-2 mRNA were measured using qPCR; (D) At different PM stimulation durations (0, 10, 15,
30 and 60 min), MEK, ERK, p38 and JNK phosphorylated and total proteins were measured using
Western immunoblotting; (E) RA-FLS were pretreated for 30 min with N-acetylcysteine (NAC, NADPH
oxidase inhibitor), diphenyleneiodonium chloride (DPI, nonspecific flavoprotein inhibitor), catalase
(ROS scavengers) and apocynin (APO, NOX-like enzymes inhibitor) followed by treatment with PMs
(50 µg/cm2) for 15 min. MEK, ERK, p38 and JNK phosphorylated and total proteins were measured
using Western immunoblotting. Results are expressed as mean ± SD, n = 4. * p < 0.05 compared with
control; # p < 0.05 compared with the PM-treated group.
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Figure 4. hsa-miR-137 inhibition is involved in PM-induced IL-6 and COX-2 expression. (A) Searches
of the online computational algorithms (miRsystem) and miRNA-Target predictions for candidate
miRNAs that target the IL-6 and COX-II-regions revealed the involvement of hsa-miR-137; (B,C) RA
patient’s synovial fibroblast cells were incubated with various concentrations of PMs for 24 h or with
PM2.5 (50 µg/cm2) for 4, 6, 16 or 24 h; hsa-miR-137 expression was assessed by qPCR; (D) Cells
were transfected with fluorescent dye-labeled miRNA mimic control and miRNA inhibitor for 24 h,
the fluorescence staining was examined by; (E–G) RASFs were transfected with hsa-miR-137 mimics or
hsa-miR-137 inhibitors for 24 h, followed by stimulation with PMs for 24 h; IL-6 and COX-II-expression
was examined by qPCR and western blot; (H–J) Cells were pretreated for 30 min with NAC, DPI,
catalase and APO or MAPK inhibitor or MEK, ERK, JNK and p38 MAPK mutants stimulated with
PMs for 24 h. hsa-miR-137 expression was assessed by qPCR. Results are expressed as the mean ± SD.
* p < 0.05 as compared with baseline. # p < 0.05 as compared with the PMs-treated group.

We also used the luciferase reporter vector, including the wild-type 3′UTR of IL-6 and COX-II
mRNA (IL-6–3′UTR-WT and COX-II-3′UTR-WT) and the mutated vector harboring mismatches in the
predicted hsa-miR-137 binding site (IL-6–3′UTR-MUT and COX-II-3′UTR-MUT), to determine whether
hsa-miR-137 regulates transcription of the IL-6 and COX-II gene (Figure 5A). hsa-miR-137 mimic
reduced PMs-enhanced luciferase activity in the IL-6–3′UTR-WT and COX-II-3′UTR-WT plasmid, but
not in the IL-6–3′UTR-MUT and COX-II-3′UTR-MUT plasmid (Figure 5B,C). In addition, treatment
with ROS inhibitors, MEK, ERK, JNK and p38 inhibitors or dominant-negative mutants reversed
PMs-mediated IL-6–3′-UTR and COX-2–3′-UTR luciferase activity (Figure 5D–F). Collectively, these
data suggest that hsa-miR-137 directly represses IL-6 and COX-II expression via binding to the 3′-UTR
region of the human IL-6 and COX-II gene through the MAPK signaling pathway. Therefore, the present
study aimed to determine whether hsa-miR-137 effects inflammation in RA and the results revealed
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that the overexpression of hsa-miR-137 substantially decreased the expression of IL-6 and COX-II in
RA-FLS, suggesting that hsa-miR-137 may have potential as an anti-inflammatory therapy for RA.

Figure 5. PMs increases IL-6 and COX-II-expression via inhibition of hsa-miR-137 through the MEK,
ERK, p38 and JNK signaling pathways. (A) Schematic 3’-UTR representation of human IL-6 and
COX-II containing the hsa-miR-137 binding site; (B,C) Cells were transfected with indicated luciferase
plasmids before incubation with PM2.5 for 24 h; Luciferase activity was assessed; (D–F) Incubation
with ROS, MEK, ERK, JNK and p38 inhibitors or MEK, ERK, JNK and p38 MAPK mutants reversed
PM-mediated IL-6 and COX-II-3’-UTR luciferase activity. Results are expressed as the mean ± SD.
* p < 0.05 as compared with baseline. # p < 0.05 as compared with the PM2.5-treated group.
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3.5. PMs Enhanced CIA-Induced Arthritis

To further confirm the role of PMs in vivo, we first assessed the deteriorating effects of PMs on
rats with CIA. Compared with controls, paw swelling was significantly prominent in CIA rat and
worsened after administration of PMs (Figure 6A,B). IHC staining revealed substantially higher IL-6
and COX-II expression in CIA rats compared with controls. Additionally, treatment with PMs also
enhanced IL-6 and COX-II expression over synovium specimens (Figure 6C). These results indicated
that PMs augments disease activity in the CIA rat model.

Figure 6. Administration of PMs augments bone erosion and IL-6 and COX-II expression in a
collagen-induced arthritis (CIA) model. (A,B) Hind paw swelling was photographed and measured
with a digital plethysmometer in healthy controls, untreated CIA mice and in CIA mice administered
PMs 4 mg/kg (C) Histologic sections of ankle joints were stained with H&E and Toluidine blue O or
immunostained with COX-II and IL-6 antibodies. Results are expressed as the mean ± SD. * p < 0.05
compared with controls; # p < 0.05 compared with the PMs-treated group.

4. Discussion

Few articles have explored the relationship between intra-articular inflammation and air pollution
exposure in humans. However, it is increasingly important to understand the mechanisms by which
air pollution induces the development and exacerbation of RA [37,38]. Because many epidemiological
studies have suggested the relationship between air pollution and RA exacerbation [9–11,37],
understanding these interactions may contribute to new preventative and therapeutic strategies. In this
study, we found that high levels of IL-6 and COX-II in human RA-FLS are associated with PMs-induced
suppression of hsa-miR-137, which influence RA-FLS inflammation. Specifically, PMs induces IL-6
and COX-II expression via MEK, ERK, JNK and p38 MAPK signaling pathways, as well as through
downregulation of hsa-miR-137 expression.

miRNAs represent an important mode of epigenetic control in RA gene expression [5,6,25,26].
These noncoding RNAs are implicated in many biologic processes and play an important role in the
inflammatory pathways. Previous studies have identified several miRNAs that can upregulate or
downregulate RA-FLS [26,27,39–42], through various effects, such as Treg/Th17 balance, NF-kappaB
regulatory circuit, TLR4-dependent cytokine release, affecting lymphocyte function and targeting other
inflammatory mediators. In the current study, we first identified hsa-miR-137 as the potential regulator
of IL-6 and COX-II expression through the predictive software. hsa-miR-137 has previously been
documented as an important regulator of cancer development by targeting many different mRNAs to
inhibit the release of inflammatory cytokines, proliferation and migration of several cancer cells [43–45].
A recent study also found that hsa-miR-137 can decrease proliferation, migration and invasion of
RA-FLS [46]. We then found downregulation of hsa-miR-137 after PMs exposure in RA-FLS, suggesting
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its role in the PMs-induced RA exacerbation. Our data also showed that overexpression of hsa-miR-137
is associated with decreased IL-6 and COX-II in RA-FLS. Therefore, the IL-6/COX-II-miR-137 axis may
represent a novel pathogenesis of RA-FLS autoimmune inflammation and hsa-miR-137 can be a novel
therapeutic target for the treatment of RA exacerbation.

In the current study, we demonstrated for the first time that IL-6 is the pro-inflammatory cytokine
and IL-6 and COX-II activation is the main mediators that trigger RA after exposure to air pollution.
Serum level of IL-6 has a significant relationship with RA severity and disease activity [47,48]. IL-6
is involved in the pathogenesis of RA exacerbation through various signal pathways, including
STAT-1 and STAT-3 recruitment and activation, pathogenic Th17/protective Treg imbalance and
phosphorylation of tyrosine kinase in JAK family [19–21]. Targeting the IL-6 receptors was shown
effective in decreasing the RA disease activity, reducing the bone erosion and improving the disability
scores [47,48]. In 2020, Xu et al., provided evidence that PM2.5 exposure could activate oxidative
stress-JAK2/STAT3 signaling pathway, elevate the levels of IL-6, IL-8 and COX-2 in human bronchial
epithelial cells [49]. Our previous study showed that PMs induce COX-2 in RA-FLS [22]. Air pollution
is an important global issue and the potential determinant. Our study suggested that the targeting IL-6
and COX-2 may attenuate PMs-induced arthritis.

In contrast to previous studies that have found Th17/Tregs imbalance and STAT activation as
the key mechanism in IL-6 associated RA immunopathology [19–21], we found that MAPK family
members (ERK1/2, p38 MAPK and JNK1/2) are the major signaling pathways after PMs exposure. We
found that inhibition of hsa-miR-137 will activate a luciferase reporter constructs containing the IL-6
and COX-II 3′UTRs and these effects can be reversed by inhibitors of ROS, MEK, ERK, JNK and p38.
The MAPKs are another important inflammatory mediators involved in the proliferation and migration
of RA-FLS [50]. It has beens suggested that the enhanced anti-inflammatory effects of therapeutic
inhibitors result from targeting the JNK and p38 MAPK pathways [50,51]. MAPKs signaling pathways
regulate the production of chemokines, tissue destructive enzymes and many inflammatory cytokines
in RA patients [50,51]. Therefore, the results of the current study indicate that hsa-miR-137 may
regulate intra-articular inflammation by targeting the p38 MAPK signaling pathways.

We also found that PMs induce ROS production, which is associated with IL-6 and COX-II
production. Serum level of ROS is effective as biomarkers for monitoring RA disease progression [52].
ROS can activate the signaling cascades of inflammatory cells to synthesize pro-inflammatory cytokines
and we found that IL-6 and COX-II are the downstream mediators. Particulate matter has been found
to induce ROS-associated signaling pathways and subsequent inflammation in various organ systems,
including skin keratinocyte, brain nerve cells (SH-SY5Y) and cardiovascular system [53–55]. In this
study, we demonstrated that PMs-induced ROS production in RA-FLS increases the expression of IL-6
and COX-II by downregulating hsa-miRNA-137.

5. Conclusions

We have shown that exposure to PMs results in hsa-miR-137 downregulation and an increase of
IL-6 and COX-II production in RA-FLS, causing inflammation and RA exacerbation. The molecular
mechanisms include ROS-mediated MAPK signaling pathways that cause increased IL-6 and COX-II
through downregulation of hsa-miR-137 (Figure 7). A better understanding of the regulatory pathways
helps to develop therapeutic strategies and potential targeting. In the future, further research is needed
to investigate whether targeting hsa-miR-137 or inhibitors of ROS/MAPK signaling pathways can
suppress the PMs-induced RA exacerbation.
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Figure 7. Schematic diagram illustrating the proposed signaling pathway involved in particulate matter
(PM)-upregulation of IL-6 and COX-II expression via miR-137. PMs increase generation of reactive
oxygen species (ROS) and in turn activate MAPK signaling pathways that cause increased IL-6 and
COX-II through downregulation of miRNA-137.
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