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Abstract: Bromodomain containing (BRD) proteins play an essential role in many cellular 

processes. The aim of this study was to estimate activity of bromodomains during alga Chara 

vulgaris spermatids differentiation. The effect of a bromodomain inhibitor, JQ1 (100 µM), on the 

distribution of individual stages of spermatids and their ultrastructure was studied. The material 

was Feulgen stained and analysed in an electron microscope. JQ1 caused shortening of the early 

stages of spermiogenesis and a reverse reaction at the later stages. Additionally, in the same 

antheridium, spermatids at distant developmental stages were present. On the ultrastructural 

level, chromatin fibril system disorders and significantly distended endoplasmic reticulum (ER) 

cisternae already at the early stages were observed. Many autolytic vacuoles were also visible. The 

ultrastructural disturbances intensified after prolonged treatment with JQ1. The obtained data 

show that JQ1 treatment led to changes in the spermatid number and disturbances in chromatin 

condensation and to cytoplasm reduction. The current studies show some similarities between C. 

vulgaris and mammals spermiogenesis. Taken together, these results suggest that JQ1 interferes 

with the spermatid differentiation on many interdependent levels and seems to induce ER stress, 

which leads to spermatid degeneration. Studies on the role of bromodomains in algae 

spermiogenesis have not been conducted so far. 

Keywords: bromodomain; Chara vulgaris; chromatin; chromatin remodeling complex; electron 

microscopy; endoplasmic reticulum stress; spermatogenesis; spermiogenesis 

 

1. Introduction 

Spermiogenesis is one of the most complex and highly specialized morphogenetic processes. In 

alga Chara vulgaris, this process is the second, following the proliferative phase, stage of 

spermatogenesis. It lasts 7 days during which 10 stages (I–X) of different duration times are 

distinguished. During each of the stages, there are characteristic ultrastructural changes [1] that are 

the result, among others, of the presence of double-strand DNA breaks that allow the exchange of 

histones to protamines, conditioning correct chromatin remodeling [2,3]. 

Bromodomains, 110-amino-acid domains, are present in many chromatin-associated proteins, 

histone acetyltransferase and subunits of ATP-dependent chromatin remodeling complexes [4,5]. 

Research on bromodomains and extra-terminal (BET) family proteins has mainly included yeast and 

animals (Drosophila, human and mouse). These proteins have two bromodomains. In mammals in 

BET proteins, four members of bromodomain containing (BRD) proteins: BRD2, BRD3, BRD4, and 

BRDT (bromodomain testis-specific, called BRD6) were distinguished [6–8]. Analyses concerning 

BRD proteins in plants are in the minority in comparison to those in animals, however, they have 

also been revealed in plants, but they have one bromodomain [9]. Plants studies have mainly 
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focused on Arabidopsis, in which 29 BRD proteins have been identified [10] and functions of only 

three genes, from among 12, have been characterized [11]. Brachypodium [12], tomato and tobacco 

species [13] as well as soybean [10] have also been analyzed. Although researches related to plant 

bromodomains are ongoing, there is still no evidence to support the Florence and Faller [14] 

hypothesis explaining the presence of one bromodomain in plant proteins instead of two, as is the 

case in animals. Based on detailed analysis, it was shown that bromodomains in plants were more 

similar to bromodomain 2 than bromodomain 1 present in animals [14]. 

BRD proteins play an important role, among others, in controlling leaf development [15], in the 

transcription, DNA repair and chromatin structure reorganization processes also associated with the 

removal of nucleosomes [4,16–18]. Proteins belonging to Swi2/Snf2 family, which are present in one 

of the chromatin remodeling complexes, also have a bromodomain motif on C-terminal region. 

According to the literature data, algae homologues of the SNF2 subunit have been detected so far in 

a few of Rhodophyta (Cyanidioschyzon merolae, Porphyra and Chondrus), Chlorophyta (Chlamydomonas 

reinhardtii) and recently in Charophyta (Chara vulgaris) [19]. There is little information about BRD 

proteins in algae. Presence of these kinds of proteins was shown in Cyanidioschyzon merolae (nine 

proteins) [10], Micromonas pusilla (strain CCMP1545, two proteins) [20], C. vulgaris (Brg1) [19], and in 

C. reinhardtii where the protein is characterized by the presence of as many as three bromodomains 

[10]; in addition, in diatom Thalassiosira pseudonana (strain CCMP1335) bromodomains in 27 

predicted proteins were identified [21] 

Inhibitors for the BET family of bromodomains have therapeutic potential and researches are 

conducted on many animal cancer cell models (human, mouse) [22]. Among the numerous 

bromodomain inhibitors, the JQ1 (thieno-triazolo-1,4-diazepine) is specific and often used in 

research as an anticancer drug. Studies on human and murine models showed that its biochemically 

active stereoisomer, (+)-JQ1, was a potent, more-specific inhibitor of BRD4 protein than of BRD2 and 

BRD3 [22,23]. Studies on mouse spermatogenesis revealed that bromodomain played an essential 

role in this process, and the loss of the first bromodomain of the Brdt gene caused sterility of these 

mammals [24,25]. In immunofluorescence studies during murine spermatogenesis, no BRD protein 

(BRD2, BRD4, BRDT) in condensing spermatids was demonstrated [26]. Bromodomains bind 

acetylated lysines, which are present in various proteins i.e., histones playing an important role in 

chromatin organization during spermiogenesis [27]. The results of previous immunofluorescent and 

ultrastructural analyses showed that blocking the removal of histones, during the exchange of these 

proteins into protamines, hindered the proper course of spermiogenesis [3,28]. The studies of 

spermatogenesis concerning Brdt gene in two fish species, which have different methods of nuclear 

protein exchange, revealed variations in this gene expression which could indicate a different role of 

Brdt protein [29]. The exchange of nucleoproteins in one of these species (Dicentrarchus labrax) 

follows the same scheme as in Chara [30]. Therefore, it is interesting how the blocking of 

bromodomains will affect spermiogenesis in this alga. C. vulgaris is a model organism which was 

earlier applied in the study i.e., on different processes during spermatogenesis [19]. This alga 

belongs to Charophyta, which are closely related to land plants [31,32]. 

The aim of the current work was to find out what role bromodomains play in the course of 

spermatid differentiation in this alga. The present research focused on whether and to what extent 

blocking the activity of bromodomains under the influence of their inhibitor, JQ1, affects the 

distribution of individual stages of spermatids and the ultrastructure of spermatids during 

spermiogenesis. To the best of my knowledge, this paper presents the first research on 

bromodomains in algae spermiogenesis. 

2. Materials and Methods 

2.1. Material 

The research material was antheridia of Chara vulgaris from III–V node pleuridia (counting from 

the apical buds). The algae were grown in an artificial pond located in the Rogów Arboretum 
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(Poland). Prior to the studies, the algae were grown for a few days in tanks containing water from 

the natural environment at room temperature under natural light. 

2.2. Treatment with Bromodomain Inhibitor 

The thallus fragments carrying antheridia were treated for 24 h and 48 h with a bromodomain 

inhibitor, (+)-JQ1 (hereafter referred to as JQ1) (Sigma, SML1524) at 100 µM concentration. The 

solution of the inhibitor was prepared with the water from the natural environment, with DMSO 

(Sigma) in the ratio 20 mg/mL. These duration times of treatment with the bromodomain inhibitor 

were used, because previous analyses [3,28] were also based on the same scheme. In the studies on 

animal material, using cell lines, a broad concentration range of bromodomain inhibitors, but lower 

than in this alga, was used. Because in the case of C. vulgaris, antheridial filaments were developing 

inside the multicellular antheridium, the concentration of the inhibitor used was many times higher 

in comparison with the cell line model. Initially the concentration of 50 µM was used, however, 

barely noticeable changes appeared only in single spermatids. 

2.3. Feulgen Staining and Light Microscopy Studies 

The inhibitor-treated material and the control, treated only with DMSO, were fixed in Carnoy 

solution (ethanol:glacial acetic acid, 3:1, v/v) for 1 h, rinsed in 96% ethyl alcohol, and kept in 70% 

ethyl alcohol. Next, the fixed specimens were stained with the Schiff’s reagent (Feulgen staining) 

according to the standard method (e.g., [33]). Next, antheridia from the treated material and the 

control were isolated. Squashed preparations from these antheridia were made on dry ice and then 

embedded in Canada balsam. The analysis of all the preparations in a light microscope was carried 

out in order to determine the transitory stage between proliferation phase and spermiogenesis 

(64/sp) and spermiogenesis stages (I–X). The percentage of spermatids at each stage of 

spermiogenesis, from both the control and JQ1-treated material, was calculated as a share of these 

spermatids from particular antheridia in the whole pool in a representative group regarded as 100%. 

After Feulgen staining from the material treated for 48 h with JQ1 too few antheridia were obtained, 

quantitative analysis of spermiogenesis stages was not possible. Because some spermatids at stage X 

revealed differences in the Feulgen staining intensity in comparison to the control, cytophotometric 

measurements were carried out. Analysis of images (in arbitrary units) was performed using a 

Jenamed 2 microscope (Carl Zeiss, Germany) with the computer-aided Cytophotometer v1.2 (Forel, 

Poland). 

2.4. Electron Microscopy 

Twenty-four hour and 48 h JQ1-treated material and the control were fixed with 3% 

glutaraldehyde in 0.1 M cacodylate buffer (pH 7.3) supplemented with 0.007 M CaCl2 for 3 h. The 

isolated antheridia were gently squashed in a drop of heated 2% agar in cacodylate buffer and 

postfixed in 1% OsO4 in the same buffer for 2 h. After dehydration in an alcohol series, the material 

was embedded in Epon 812 and Spurr mixture medium (Polysciences) according to the standard 

procedure presented earlier [3,34]. Ultrathin sections were double-stained with uranyl acetate and 

lead citrate according to Reynolds [35]. All ultrathin sections were examined and photographed in a 

JEOL JEM 1010 transmission electron microscope (TEM) at 80 kV acceleration voltage. 

3. Results 

3.1. A Relative Duration of C. vulgaris Stages of Spermiogenesis After Treatment with JQ1 

Analyses concerned the transitory stage between proliferation phase and spermiogenesis 

(64/sp) and spermiogenesis stages (I–X) both in the control and JQ1, a bromodomain inhibitor, 

treated material. Following 48 h treatment with JQ1, thallus differed in appearance from the control 

one; however, after acid hydrolysis and Feulgen staining, too few antheridia were obtained from this 

material, therefore, quantitative analysis of spermiogenesis stages was not possible. The control 
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frequency of spermatids at the stages I–III is greater than in V–VIII ones, and it is connected with a 

different duration of spermiogenesis stages [36]. Early stages last much longer in comparison with 

the successive ones. Comparative analysis of the percentage of spermatids in the control samples 

and after 24 h JQ1 treatment revealed shortening of the 64/sp stage and early stages (I–III) of 

spermiogenesis caused by this inhibitor, since a decrease in the number of spermatids was observed 

(Figure 1). 

. 

Figure 1. The percentage of C. vulgaris spermatids during the transitory stage between proliferation 

phase and spermiogenesis (64/sp) and spermiogenesis stages (I–X) in the control and after 24-h 

treatment with JQ1, a bromodomain inhibitor. Error bars represent ± SD. Statistical results were 

analyzed by Student t-test with the use of Microsoft Excel 2000. Differences in the percentage of 

spermatids during consecutive stages between control and JQ1-treated plants are statistically 

significant, p ≤ 0.05. In this experiment, three replicates were performed per each variant (the control 

and bromodomain inhibitor). * These differences are statistically significant in comparison with the 

control. 

On the other hand, an increase in the number of spermatids in subsequent stages of 

spermiogenesis V–VIII was observed. At stage IV and IX, slight decreases in the number of 

spermatids in the material treated with JQ1, with a slight increase of X at the last stage, were 

revealed (Figure 1). Light microscope analysis of the spermiogenesis stages in the material treated 

with JQ1 showed differences in the Feulgen staining intensity of antheridia and some spermatids 

compared to the control. These differences were most visible at stage X (Figure 2C vs. 2F). The 

cytophotometric measurements of the Feulgen staining intensity in these spermatids revealed 

twofold lower values (in arbitrary units). 

In antheridial filaments in the control material (Figure 2A) and in most of these antheridial 

filaments after treatment with the JQ1 synchronous differentiation was observed, because 

spermatids mostly at three consecutive spermiogenesis stages were visible. However, some 

antheridia antheridial filaments at different distant developmental stages were revealed. The pattern 

of such asynchronous differentiation was observed both after 24 h (stages II, V, X; Figure 2D,G,H) 

and 48 h (stages V, VII–X; Figure 2I) treatments with the inhibitor. Some spermatids at stage X 

looked differently after JQ1 (Figure 2F) than those in the control (Figure 2C). They were thin with an 

uneven surface. 
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Figure 2. Feulgen-stained spermatid nuclei at antheridial filaments of C. vulgaris spermiogenesis. 

(A–C) the control material at early (II; B) and late (X; C) stages; (A) synchronous differentiation of 

spermatids, VI–VIII consecutive spermiogenesis stages; (D–I) material after 24-h (D–H) and 48-h (I) 

treatment with JQ1; antheridial filaments at different distant developmental stages (II, V, IX, X); (G) 

magnified area from (D); (E,F) spermatids at early (II; E) and late (X; F) stages; individual images in 

the frame treatment, time of treatment, and stage of spermiogenesis were given; Scale bars = 5 m 

(A–C, E-I), 10 µm (D). 

3.2. Influence of JQ1 on Spermatids Ultrastructure During C. Vulgaris Spermiogenesis 

Ultrastructural changes in both nucleus and cytoplasm area were observed in most spermatids 

treated with JQ1 (24 h and 48 h) at a given stage in comparison to the control. In some spermatids, 

these disorders did not affect the whole cell, that is they were not observed in the nucleus but only in 

the cytoplasm. 

TEM image analysis revealed in the treated material only the sporadic occurrence of the fusion 

of two spermatid nuclei at stage II (Figure 3C) with visible continuity of the nuclear envelope (Figure 

3D). These single images were visible in 10 analysed antheridia. In the other treated spermatids at 

this stage (Figure 3B), the nuclei pattern was the same as in the control (Figure 3A). 
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Figure 3. The effect of JQ1 on C. vulgaris spermatids at stage II after 24 h treatment. (A) the control; 

(B–D) after treatment with JQ1; (C) The fusion of two spermatid nuclei on a longitudinal section; (D) 

magnification of the fusion site with visible continuity of the nuclear envelope and broken cell wall 

between spermatids; c, cytoplasm; cc, condensed chromatin; cw, cell wall; ER, endoplasmic 

reticulum; m, mitochondrion; n, nucleus; nc, non-condensed chromatin; ne, nuclear envelope; on 

individual images in the frame treatment, time of treatment and stage of spermiogenesis were given; 

Scale bars = 500 nm (A–C), 200 nm (D). 

In nuclei of certain spermatids at stages II–V, in both time variants of JQ1 treatment, condensed 

chromatin adhered to the nuclear envelope; however, non-condensed chromatin showed a looser 

configuration and in its area bright or empty spaces were visible (Figures 4B,C; 5B-D; 6C,D), but 

these were not present in the control (Figures 4A; 5A; 6A). These smaller or larger spaces, which are 

often surrounded by a clearly visible membrane that resembles nuclear reticulum (NR), were also 

visible (Figures 5B,C; 6C). After 48 h treatment with JQ1 in the central part of spermatid nucleus, 

non-condensed chromatin in the form of flocculent clusters was seen, between which bright spaces 

deprived of nuclear material more numerous than after 24 h treatment were visible (Figures 4C; 

5D,G; 6D). 

In the spermatids after treatment with JQ1 (24 h) already from stage II, both broader 

endoplasmic reticulum (ER) cisternae and thicker nuclear envelope (Figures 4B; 5B,C,F; 6B,C) in 

comparison with the control material (Figures 4A; 5A; 6A) were visible. These extended and fused 

the ER cisternae system and nuclear envelopes were filled with darker contents than in the control. 

The NR structure, similar to the extended ER cisternae system, was present in the control material on 

the spermatid nucleus area not earlier than at stage V (Figure 6A). In addition to the ER area, 

ultrastructural changes could also be seen in another part of the cytoplasm, which was characterized 

by a significant reduction, which is particularly noticeable after prolonged JQ1 treatment (Figures 
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4C; 5D,G; 6D). In its area, there are a lot of ER vesicles and probably autolytic vacuoles containing 

fragments of cytoplasm, intended for digestion and also different autophagic bodies (Figures 4B,C; 

5C,D,F,G; 6B-D). 

At stage IV, spermatid nuclei shifted to one of the side cell walls and the condensed chromatin 

adhered to the nuclear envelope. The same image was characteristic of a very early transition stage 

between IV and V, at which ER cisternae appeared (Figure 5E). Among the antheridial filaments of 

stage IV treated with JQ1 (24 h), there were those in which the arrangement of the spermatid nuclei 

was typical of this stage, however, the chromatin system in these nuclei resembled a network-like 

structure (Figure 5F) that is characteristic of the control spermatids only at stage VI (Figure 7A). 

Accelerated reorganization of chromatin into a network-like structure was also observed in some 

stage III spermatids. In some spermatids at stages V (Figure 6C) and VI, NR was found in the 

nucleus in a much larger amount and it occupied a larger area compared to the control. 

 

 

Figure 4. Ultrastructural changes in C. vulgaris spermatids at stage II; (A) the control; (B) after 24-h 

and (C) 48-h treatment with JQ1; changes in non-condensed chromatin and cytoplasm structure. In 

spermatids dilated nuclear envelope together with ER cisternae (B) and in nucleus loose spaces (B, C) 

are visible. Longitudinal section of spermatids; av, autolytic vacuole; c, cytoplasm; cc, condensed 

chromatin; cw, cell wall; ER, endoplasmic reticulum; f, flagellum; mm, microtubular manchette; n, 
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nucleus; nc, non-condensed chromatin; ne, nuclear envelope; pl, plasmodesmata; on individual 

images in the frame treatment, time of treatment and stage of spermiogenesis were given; Scale bar = 

500 nm. 

 

Figure 5. The effect of JQ1 on C. vulgaris spermatids ultrastructure at stage III (A–D) and IV (E–G); 

(A,E) the control; (B–F) after 24 h (B,C,F) and 48-h (D,G) treatment with JQ1; extended nuclear 

envelop (B,C) and bright spaces in nucleus in non-condensed chromatin (B–D,G), these spaces cover 

almost the whole central part of the nucleus (D); (C) reduced cytoplasm with dilated ER cisternae; 
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(D,G) barely visible cell wall between spermatids, strongly reduced cytoplasm, ER cisternae not 

visible, and a lot of vesicles and lytic vacuoles are present; (E–G) nuclei shifted to one of the side 

walls, net-like chromatin pattern (F) is not typical of this stage. Longitudinal section of spermatids; 

av, autolytic vacuole; c, cytoplasm; cc, condensed chromatin; cw, cell wall; ER, endoplasmic 

reticulum; f, flagellum; mm, microtubular manchette; n, nucleus; nc, non-condensed chromatin; ne, 

nuclear envelope; NR, nuclear reticulum; pl, plasmodesmata; vER, endoplasmic reticulum vesicle; on 

individual images in the frame treatment, time of treatment, and stage of spermiogenesis were given; 

Scale bar = 500 nm. 

 

 

Figure 6. Ultrastructural changes in C. vulgaris spermatids at stage V; (A) the control; (B,C) after 24 h 

and (D) 48 h treatment with JQ1; (B) Minor changes in non-condensed chromatin, however, strongly 

dilated ER cisternae and nuclear envelope are visible; (C,D) progressive changes in the nucleus, and 

the presence of NR and numerous bright spaces; in cytoplasm, the presence of swollen ER cisternae, 

many vesicles and autolytic vacuoles. Longitudinal section of spermatids; av, autolytic vacuole; c, 

cytoplasm; cc, condensed chromatin; cw, cell wall; ER, endoplasmic reticulum; f, flagellum; m, 

mitochondrion; n, nucleus; nc, non-condensed chromatin; ne, nuclear envelope; NR, nuclear 

reticulum; pl, plasmodesmata; vER, endoplasmic reticulum vesicle; on individual images in the 

frame treatment, time of treatment and stage of spermiogenesis were given; Scale bar = 500 nm. 
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Analysis of micrographs revealed in the same antheridial filament sporadic side-by-side 

occurrence of spermatids at two different stages of spermiogenesis (VI and VIII) (Figure 7C). 

 

Figure 7. The effect of JQ1 on C. vulgaris spermatids ultrastructure at stage VI; (A) the control, 

nucleus with net-like chromatin structure; (B,C) after 24-h treatment with JQ1; (B) chromatin 

structure as in the control, swollen nuclear envelope and ER cisternae; (C) spermatids in the same 

antheridial filaments at distant developmental stages (VI and VIII); disturbed net-like chromatin 

structure in nucleus at stage VI and longer loosely arranged chromatin fibrils with spaces between 

them at stage VIII. Longitudinal section of spermatids; av, autolytic vacuole; c, cytoplasm; cc, 

condensed chromatin; cw, cell wall; ER, endoplasmic reticulum; f, flagellum; m, mitochondrion; n, 

nucleus; nc, non-condensed chromatin; ne, nuclear envelope; p, plastid; vER, endoplasmic reticulum 

vesicle; on individual images in the frame treatment, time of treatment and stage of spermiogenesis 

were given; Scale bar = 500 nm. 

At stage VI (JQ1 24 h), the whole area of spermatid nucleus was uniform and filled with short 

chromatin fibrils arranged in different directions, between which there were lighter areas (Figure 

7C). It was difficult to distinguish here between condensed and non-condensed chromatin, which in 

the control created a characteristic network-like arrangement (Figure 7A). Chromatin was not 

disturbed in all spermatids at stage VI. Some spermatids in which disorders were only visible in the 

cytoplasm were observed (Figure 7B). 

At stage VIII and the last spermiogenesis stages (IX, X), instead of parallelly arranged long 

chromatin fibrils (Figure 8A), condensing chromatin was observed in the form of shorter or longer 

bands or spots, between which there were areas partially lacking fibrils (Figures 8B,C,E–G). 
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Figure 8. The effect of JQ1 on C. vulgaris spermatid ultrastructure at stages VIII (B–F) and IX (G,H) 

after 24-h JQ1 treatment; (A) the control, nucleus with long parallel chromatin fibrils; (B,C,E–G) 

disturbances in chromatin structure, and shorter or longer chromatin fibrils in the form of clusters 

separated by brighter areas; (C–H) changes in the cytoplasm area, numerous vesicles and large 

autolytic vacuoles containing fragments of cytoplasm; (H) spermatid with correctly condensed 

chromatin but with changes in cytoplasm. Longitudinal section of spermatids. Nucleus on 

cross-section (H); av, autolytic vacuole; c, cytoplasm; cw, cell wall; f, flagellum; m, mitochondrion; n, 

nucleus; vER, endoplasmic reticulum vesicle; on individual images in the frame treatment, time of 

treatment and stage of spermiogenesis were given; Scale bar = 500 nm. 
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These changes became more pronounced after 48-h treatment with JQ1 (Figure 9) and are 

visible both on longitudinal and cross sections (Figure 9B). 

 

Figure 9. Ultrastructural changes in C. vulgaris spermatids after 48-h JQ1 treatment at stages VIII 

(A,B) and IX (C); (A–C) short chromatin fibrils with loose arrangement and bright spaces, these 

disturbances are visible on longitudinal and cross sections of the nucleus; cytoplasm with numerous 

vesicles and autolytic vacuoles containing fragments of cytoplasm, there is a barely visible cell wall 

between spermatids. Longitudinal section of spermatids; av, autolytic vacuole; c, cytoplasm; cw, cell 

wall; f, flagellum; n, nucleus; vER, endoplasmic reticulum vesicle; on individual images in the frame, 

time of treatment and stage of spermiogenesis were given; Scale bar = 500 nm. 

Similarly as before, the disturbed cytoplasm was visible. A lot of bright spaces and numerous 

autolytic vacuoles were found (Figures 8C–H; 9) that were not present in the control material (Figure 

8A). However, in the treated material there were also spermatids that had the correct chromatin 

structure, but a disturbed cytoplasm (Figure 8H). The changes presented above were also visible at 

the final stage of spermiogenesis (X). Spermatozoid in the control material had strongly condensed 

chromatin and reduced cytoplasm (Figure 10A,C), in contrast to that after treatment with JQ1 

(Figure 10B,D). 

At all stages after 48 h treatment with JQ1, lack of cohesion of cellular structures of spermatids 

could be seen; it was difficult to notice cell walls in the antheridial filament cells and sometimes to 

recognize the typical structure of these spermatids (Figures 4C; 5D,G; 6D; 9C). However, inhibitor 

JQ1 did not change the spermatid nucleus shape and microtubular manchette. 
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Figure 10. The effect of JQ1 (24h) on C. vulgaris spermatozoids ultrastructure at stages X; (A,C) the 

control, very dense chromatin and reduced cytoplasm closely adjacent to the nucleus; (B,D) after 

treatment with JQ1, disturbances in chromatin structure, long bands chromatin fibrils loosely 

arranged with light spaces, cytoplasm with vesicles and autolytic vacuoles. Nuclei on longitudinal 

(A,B) and cross (C,D) section; av, autolytic vacuole; c, cytoplasm; cw, cell wall; ER, endoplasmic 

reticulum; f, flagellum; m, mitochondrion; mm, microtubular manchette; n, nucleus; p,plastid; on 

individual images in the frame were placed treatment, time of treatment on individual images in the 

frame treatment, time of treatment, and stage of spermiogenesis were given; Scale bar = 500 nm. 

4. Discussion 

Spermatogenesis in the green algae Chara is the object of research that has been conducted for 

many years also in our department [1,19]. Previous studies showed that in spermiogenesis of this 

genus there were some similarities to this process in vertebrates, mainly mammals and invertebrates 

[3,19,28,30]. However, there is still little data in the literature on the role that bromodomains play in 

the process of spermatogenesis in algae, thus, in this paper, this issue is mainly discussed on the 

basis of animal material. 

BRD proteins take part in many cellular processes. Studies concerning the contribution of 

bromodomains and their inhibitors to chromatin epigenetic modifications include not only sperm 

cells but also different cancer cell lines [22,37–39]. The latest research conducted on human 

hepatocyte carcinoma (Hep G2 cell line) concerned the influence of bromodomain inhibitor JQ1 on 

lipid homeostasis [40]. 

During spermiogenesis, spermatids undergo the transformation from somatic cells into 

generative ones. In C. vulgaris, antheridial filaments containing spermatids, which are developing 

inside a complicated cell complex, antheridium, are used as the research model; however, in animal 

studies, mainly cell lines are used. The correct differentiation of spermatids in C. vulgaris is a 
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complex process that requires the interaction of many elements and participation of the chromatin 

remodeling factor. In this alga Brg1 protein, a functional homologue of Swi2/Snf2 catalytic subunit of 

the SWI/SNF chromatin remodeling complex was shown [19]. Western blot analysis revealed two 

isoforms of Brg1 in the antheridial filament cells extract, and immunofluorescent and immunogold 

studies showed the presence of this protein at spermiogenesis stages I–VII. At these stages, Brg1 

coexists with histone H4 acetylation at the Lys 12 position [30], and similar to most plant proteins, 

contains one bromodomain at the C-terminus [7,41]. 

Bromodomains participate in the spermatogenesis control system [42]. Studies of this process 

using bromodomain inhibitors i.e., highly specific JQ1, showed that it suppressed the expression of 

many genes that play essential roles in germ cells [24,43,44]. This inhibitor does not affect the 

proliferative properties of spermatogonia, but influences later stages of their development, 

spermatocytes and spermatids [37]. JQ1 blocks the differentiation of mouse sperm cells [25,43] and 

causes a decrease in the number of round spermatids and spermatozoa [37]. 

In human cutaneous T-cell lymphoma cell lines, this inhibitor inhibits proliferation, retaining 

cells in the G0/G1 phase and reducing their number in the S phase. The impact of the inhibitor is 

stronger in interaction with the histone deacetylase inhibitor SAHA [39]. A similar cell cycle arrest 

was observed in mice glioma stem cells [45]. JQ1 inhibits tumor growth and induces apoptosis, 

which is used in the epigenetic therapy of cancer [39,44,46,47]. Some BET inhibitors have also been 

tested in the treatment of different rheumatic diseases [48]. 

In the case of the examined algae, the effect of JQ1 on the proliferative phase of spermatogenesis 

was not analysed. However, a significant percentage decrease in spermatid count at stage 64/sp and 

at the early stages of spermiogenesis I–III, which is similar to mouse round spermatids, was 

observed. In Chara, the cell cycle lacks G1 phase (type S + G2 + M). Based on the above information, it 

can be assumed that, as in cell lines, also in the case of this alga, JQ1 may inhibit proliferation and the 

reduction of S phase leads to decreased spermatid number at stages 64/sp–III. In addition, after 

treatment with JQ1 in the same antheridium, asynchronous spermatid differentiation was observed, 

which might be the result of changes in the earlier proliferative phase. Because previous studies 

revealed at stages 64/sp–III the most intensive positive immunoreaction with the anti-Brg1 antibody 

[19], it seems that the decrease in the spermatid number may result from disturbance in their 

differentiation caused by blocking the bromodomain function. There are no data concerning the JQ1 

inhibitory effect on Brg1 protein in spermatids. Studies on pancreatic cancer cells showed that JQ1 

inhibited Brg1-mediated functions [49]. 

The studies conducted on male reproductive cells of mammals (man and mouse) showed that 

bromodomain inhibitor JQ1 blocked BRDT, and the effects of its activity depended on the time of 

application and its dose. JQ1 affected the developmental stages of these cells already during meiosis 

and successive post-meiotic stages [43,50]. In the studied alga, it was not possible to examine how 

JQ1 treatment affected meiosis, because Chara has a different type of meiosis (to plants and 

mammals), which occurs only after fertilization. During spermiogenesis, after treatment with JQ1, a 

decrease in the number of sperm cells was accompanied by changes of their motility. As a result of a 

long-term daily treatment of mouse with JQ1, a reduced volume of testis and of seminiferous tubules 

area was observed. Disturbances during the developmental stages of male reproduction cells in mice 

did not concern all cells. These changes were visible on histochemical sections of testis tubules and 

finally led to the formation of incorrect round spermatids, as well as multinucleated symplasts [43]. 

In C. vulgaris spermatids after JQ1 treatment, ultrastructural changes concerning the whole cell 

area were not present in all cells. It is interesting that the fusion of two spermatid nuclei at stage II 

was also observed. Studies on root meristem cells of Narcissus revealed that this fusion might occur 

as a result of the incomplete primary septum formation, separating these two cells, in telophase [51]. 

It can be hypothesized that, just like multinucleated spermatids [52], this image in alga may indicate 

some degree of degeneration of spermatids caused by JQ1. 

Studies on pancreas tumor cells showed that JQ1 caused DNA damage, the marker of which is 

γH2AX. The number of fluorescent foci of γH2AX increased in JQ1 in a dose-dependent manner 

[44,47]. At C. vulgaris, DNA double-stranded breaks occur at the middle stages of spermatid 
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differentiation and are necessary for the correct rearrangement the chromatin structure from 

nucleosomal to that connected with protamines. Their lack leads to disturbances in nucleoprotein 

exchange and chromatin condensation at stages VI–VIII of spermiogenesis [3]. 

No ultrastructural studies have been conducted so far on spermatids treated with 

bromodomain inhibitors. On the TEM level, only the impact of a potent bromodomain inhibitor, 

I-BET-151, on changes in cardiomyocyte mitochondria of male rodents, was shown [22]. This paper 

is the first presentation of the ultrastructural analysis of the spermatids treated with JQ1 that showed 

disturbances in the chromatin system, already at the early spermiogenesis stages and lasting until its 

end. Simultaneously, a significant decrease in cytophotometrically measured Feulgen intensity at 

stage X was observed, which might be related to the degeneration of DNA content in these 

spermatids, thus leading to the formation of defective mature spermatozoids. An abnormal DNA 

content, which is associated with disturbed chromatin condensation, was also revealed in some 

spermatids in mice treated with different insecticides. Studies on spermatozoa of infertile animals 

and humans showed that DNA values were either much lower or higher in comparison to fertile 

ones [53]. 

The prolonged treatment with JQ1 (48 h) led to the formation of spermatids altered to such an 

extent that it was sometimes difficult to recognize individual cell structures. Compared to the earlier 

research [3,28], such pronounced changes in the structure of chromatin and the cytoplasm of 

spermatids have not been observed so far. JQ1 blocks binding bromodomain to acetylated histones, 

and this is why changes in the chromatin condensation could be caused by a disturbance in the 

exchange of nuclear proteins. An interesting TEM observation concerns the ER system in 

spermatids. During C. vulgaris spermiogenesis, ER is most developed at the advanced stage V [1]; 

however, after JQ1 treatment already at the earlier stages of spermiogenesis (II–IV), both distended 

ER cisternae and the nuclear envelope connected to them were visible. Since ER plays an essential 

role in cellular processes, primarily in protein assembly, it can be assumed that the observed images 

were caused by a disturbance in the proper functioning of this cellular domain as a result of JQ1. 

Studies conducted on different human cancer cell lines showed that BET inhibitors i.e., JQ1, induced 

apoptosis [39,44,54]. It was also revealed that this bromodomain inhibitor might induce ER stress, 

which then leads to apoptosis [55]. Electron microscopic observations showed thicker and fused ER 

in fibroblasts [56], dilated ER in rat in diaphragm muscle [57], and hepatocytes [58] also as a result of 

ER stress, similarly as in Chara. In internodal cells of C. vulgaris thallus, the action of heavy metals 

(mercury) also caused the appearance of dilated ER cisternae [59]. In root tips of Arabidopsis vacuoles 

indicating ER stress-dependent autophagy [60] and in human spermatozoa autophagy vesicles 

under stressful conditions [61] were observed. On the basis of the above information and the 

presented TEM image analysis, it can be assumed that the disturbances in ER system and formation 

of numerous autolytic vacuoles in the cytoplasm of spermatids was the result of JQ treatment. It is 

known that ER is a site of protamine synthesis [36], and as a result of activation of ER stress response 

factors, further translation is inhibited [62,63]. Probably the currently observed changes in algae are 

also associated with the inhibition of the ubiquitin/26S proteasome system, which plays an 

important role in the spermiogenesis of C. vulgaris. Thus, its dysfunction makes the proper exchange 

of histones into protamines impossible [28]. Studies on mouse spermatids revealed that a lack of the 

proteasome activator PA200 only delayed nucleohistone disappearance [64]; however, under the 

influence of JQ1, it can be expected that the function of this activator, containing a 

bromodomain-like region, will be blocked. 

The current studies broaden the knowledge about algae Charophyta spermiogenesis. The 

results obtained revealed the essential role of bromodomains in this process. The blockage of their 

proper functioning caused such pronounced disturbances that have not been seen so far after 

treatment with different inhibitors. These changes both in the nucleus and cytoplasm of spermatid 

may confirm that JQ1 inhibitor interferes with the spermatid differentiation on many 

interdependent levels. This issue has not been analyzed in detail on the ultrastructural level until 

now. 
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