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Abstract: Amyloid β (Aβ) is a peptide fragment of the amyloid precursor protein that triggers the
progression of Alzheimer’s Disease (AD). It is believed that Aβ contributes to neurodegeneration
in several ways, including mitochondria dysfunction, oxidative stress and brain insulin resistance.
Therefore, protecting neurons from Aβ-induced neurotoxicity is an effective strategy for attenuating
AD pathogenesis. Recently, applications of stem cell-based therapies have demonstrated the ability to
reduce the progression and outcome of neurodegenerative diseases. Particularly, Nanog is recognized
as a stem cell-related pluripotency factor that enhances self-renewing capacities and helps reduce the
senescent phenotypes of aged neuronal cells. However, whether the upregulation of Nanog can be an
effective approach to alleviate Aβ-induced neurotoxicity and senescence is not yet understood. In the
present study, we transiently overexpressed Nanog—both in vitro and in vivo—and investigated the
protective effects and underlying mechanisms against Aβ. We found that overexpression of Nanog
is responsible for attenuating Aβ-triggered neuronal insulin resistance, which restores cell survival
through reducing intracellular mitochondrial superoxide accumulation and cellular senescence.
In addition, upregulation of Nanog expression appears to increase secretion of neurotrophic factors
through activation of the Nrf2 antioxidant defense pathway. Furthermore, improvement of memory
and learning were also observed in rat model of Aβ neurotoxicity mediated by upregulation of
Nanog in the brain. Taken together, our study suggests a potential role for Nanog in attenuating the
neurotoxic effects of Aβ, which in turn, suggests that strategies to enhance Nanog expression may be
used as a novel intervention for reducing Aβ neurotoxicity in the AD brain.
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1. Introduction

Alzheimer’s disease (AD) is a common neurodegenerative disease accounting for half of all
dementia cases. Although the pathogenesis of AD is quite complex and not fully understood,
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the increase of extracellular senile plaques in the brain acts as a central hallmark of disease progression.
It is known that the major protein component of the senile plaques is a short peptide called amyloid
β (Aβ) which causes neuronal cell death and thus leading to dementia [1]. Although several toxic
pathways were implicated, it is known that Aβ plays a causative role of mitochondrial dysfunction
and oxidative stress that in turn leads to neuronal dysfunction and apoptosis [2]. The deposition
of Aβ is a significant pathologic feature seen in the aging brain [3], indicating Aβ may accelerate
neuronal senescence [4]. In particular, the dysregulation of mitochondrial turnover is involved in brain
senescence, demonstrating that impairment of mitochondrial function and increased oxidative damage
also play an important role in AD-related pathology [5]. Actually, there is strong evidence that the
greatest risk factor for AD is the increasing age [6]. This indicates therapeutic strategies to reduce Aβ

toxicity can focus on slowing down or reversing the effects of neuronal aging [7]. Emerging evidence
suggests that neuron aging is affected by the cell microenvironment and elicited by Aβ accumulation,
which was shown to induce cellular senescence via generation of excessive levels of reactive oxygen
species (ROS) [8]. In contrast, the potential of stem cell-based approaches in slowing down the aging
process is relevant for neuroprotection in AD [9]. For, example, stem cells were demonstrated to serve
as a protective source for neurotrophic factors secretion in attenuating Aβ-induced cytotoxicity and
apoptosis [10]. Therefore, safeguarding the survival of neuronal cells by enhancing specific stemness
gene expression may play a role in reducing toxic impact of Aβ in the brain.

It is known that type 2 diabetes (T2D) is another important non-genetic risk factor of AD, suggesting
that alterations in insulin signaling may also be involved in AD pathogenesis [11]. In fact, recent studies
have confirmed that insulin signaling is indeed impaired in the AD brain [12]. Particularly, impairments
in brain insulin signaling transduction is associated with Aβ accumulation [13], indicating Aβ may
contribute to brain insulin resistance. Previously, we have demonstrated that a pluripotency-associated
miRNA miR-302 plays a neuroprotective role against Aβ toxicity [14]. We reported that the
upregulation of miR-302 can suppress Aβ-induced insulin signaling blockade and maintain the
intracellular redox balance toward cell survival. In addition, miR-302 also alleviated Aβ-mediated
mitochondrial dysfunction thus diminishing oxidative and senescence-associated damages in neuronal
cells. Interestingly, our data also revealed that genetic or pharmacologic stimulation of miR-302
upregulates high Nanog expression. Since Nanog is known as a transcriptional factor that enhances
self-renewal, pluripotency [15] and antiaging [16] in stem cell biology, it is likely that Nanog itself may
contribute to protect neuronal cells against Aβ toxicity. However, whether the upregulation of Nanog
can be an effective way to reduce Aβ neurotoxicity is not yet understood. Therefore, in this study we
investigated the protective mechanisms of Nanog. Our results showed that overexpression of Nanog
is responsible for attenuating Aβ-triggered neuronal insulin resistance, which promotes cell survival
through reducing intracellular ROS production and cellular senescence. This indicates upregulation of
Nanog may promote survival of neuronal cells by attenuating Aβ neurotoxicity.

2. Materials and Methods

2.1. Materials

The human wild-type Nanog (#28221) expression vector was acquired from Addgene (Cambridge,
MA, USA). All chemicals were purchased from Sigma (München, Germany). Primary antibodies
used in this study: β-actin (NB600-501), Akt (sc-8312), p-Akt (sc-33437), GSK3β (sc-8257), p-GSK3β
(sc-11757), Nrf2 (sc-722), caspase 3 (sc-7148) and poly (ADP-ribose) polymerase (PARP) (sc-7150) were
obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA); SOD1 (#2770S) and Sirt1 (GTX61042)
were purchased from GeneTex (Irvine, CA, USA); tau (05-348), p-tau (MAB5450) and p-Tyr (05-321)
were obtained from Millipore (Bedford, MA, USA); Nanog (#4903), IRS-1 (194320) and p-IRS-1 (05–1087)
were purchased from Cell Signaling Technology (Danvers, MA, USA). Aβ1-42 was synthesized by
LifeTein (Somerset, NJ, USA) and soluble Aβ oligomers were prepared according to our previously
described [17]. Briefly, Aβ was first dissolved in hexafluoroisopropanol (HFIP), distributed in aliquots,
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dried and stored at −80 ◦C. The day before the experiment, Aβ was dissolved in sterile dimethyl
sulfoxide (DMSO), then diluted with PBS (pH 7.4) at a final concentration of 100 µM, vortexed and
incubated at 4 ◦C for 24 h.

2.2. Cell Culture, Transfection and Viability Assay

SK-N-MC cells (human neuroblastoma cell line) were obtained from the American Type Culture
Collection (Bethesda, MD, USA). Cells were cultured in Minimal Eagle’s Medium (MEM; Gibco)
supplemented with 10% fetal calf serum, antibiotics (100 units/mL penicillin, 100 µg/mL streptomycin),
2-mM l-glutamine and kept in a humidified air containing 5% CO2 at 37 ◦C. Transient transfections
were carried out using Lipofectamine 3000 reagent (Thermo Fisher Scientific, Waltham, MA, USA),
according to manufacturer’s instruction. For viability assays, cells were treated with tetrazolium salt
methyl-thiazol-tetrazolium (MTT) for 30 min, and then analyzed spectrophotometrically at 550 nm.
Viability was determined as percent of control cells treated with vehicle alone.

2.3. mRNA Expression Analysis by Reverse-Transcription Quantitative PCR (qPCR)

Total mRNA was extracted from cultured cells or rat brain tissues using RNeasy Kit (Qiagen,
Germantown, MD, USA). mRNAs were reverse-transcribed into cDNAs using TProfessional
Thermocycler Biometra (Göttingen, Germany) following the manufacturer’s recommendations. qPCR
was performed on an ABI 7300 Sequence Detection System (Applied Biosystems, Foster City, CA,
USA), using Power SYBR Green PCR Master Mix (Applied Biosystems). The following temperature
parameters were used: initial denaturation at 95 ◦C for 10 min, 40 cycles of denaturation at 95 ◦C for
15 s, annealing at 60 ◦C for 1 min and dissociation stage at 95 ◦C for 15 s, 60 ◦C for 15 s and 95 ◦C for
15 s. The following primer pairs were used: forward 5′-GACGT GTGAA GATGA GTGAA ACTGA-3′

and reverse 5′-GTTTC CAAAC AAGAA AAATC CTATG AG-3′ for Nanog, forward 5′-GCTGG
CGATT CATAA GGATA GAC-3′ and reverse 5′-TATAC AACAT AAATC CACTA TCTTC CCCT-3′

for brain-derived neurotrophic factor (BDNF), forward 5′-TGCTT CCGGA GCTGT GATCT-3′ and
reverse 5′-CGGAC AGAGC GAGCT GACTT-3′ for insulin-like growth factor 1 (IGF-1). The mRNA
levels were normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) using primer pairs
with forward 5′-TGGTAT CGTGG AAGGA CTCAT GAC-3′ and reverse 5′-ATGCC AGTGA GCTTC
CCGTT CAGC-3′. Each cDNA sample was tested in triplicate. Values of relative mRNA expression
were obtained by using Sequence Detection Systems software (Sequence Detection Systems 1.2.3-7300
Real-Time PCR System; Applied Biosystems) with a cycle threshold (delta-delta Ct) method.

2.4. Western Blot Analysis

Whole extracts of cells and rat brain tissues were prepared using Gold Lysis buffer (50-mM
Tris-HCl, pH 8.0, 5-mM ethylenediaminetetraacetic acid, 150-mM NaCl, 0.5% Nonidet P-40, 0.5-mM
phenylmethylsulfonyl fluoride and 0.5-mM dithiothreitol). Equal protein amounts from whole lysates
were separated by 8–10% sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and then
transferred to polyvinylidene difluoride membranes (Millipore). The membranes were probed with
primary antibodies followed by secondary antibodies conjugated with horseradish peroxidase. Images
were acquired using Amersham ECL reagents and AI600 imager system (GE Healthcare, Chicago,
IL, USA).

2.5. DAPI Staining on Nuclei

Cells were fixed in ice-cold methanol with 4% paraformaldehyde for 24 h. After that cells were
incubated with 4’,6-diamidino-2-phenylindole (DAPI) solution (1 ng/mL in McIlvaine’s buffer, pH 7.0)
for 15 min at room temperature and observed with a fluorescent microscope (DP80/BX53, Olympus,
Tokyo, Japan) for apoptotic fragmented nuclei.
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2.6. Detection of Superoxide by Dihydroethidium (DHE) Staining

DHE is a cell-permeable fluorogenic probe that reacts with superoxide to form ethidium and
emits red fluorescence. At the end of experiments, cells were rinsed with PBS solution and then
incubated in fresh media containing 10-µM DHE solution for 30 min in the dark at room temperature.
After incubation, cells were washed twice with PBS and observed by using an inverted fluorescence
microscope (DP72/CKX41, Olympus). All images were used the same fluorescent conditions and
exposure time.

2.7. Analysis of Mitochondrial Membrane Potential by JC-1 Staining

Cells were incubated with fresh media containing 1 µM JC-1 and at 37 ◦C for 30 min. At the end of
incubation, cells were washed to remove the staining medium. Fluorescence images were collected by
using an inverted fluorescence microscope (DP72/CKX41, Olympus), and results were represented by
the ratio of average red/green fluorescence intensity. Image Pro Plus 6.0 (Media Cybernetics, Rockville,
MD, USA) software was used to measure red and green fluorescence and five random non-adjacent
fields in each group were used for statistical analysis.

2.8. SA-β-Galactosidase Staining

Cells were rinsed with 1-mM MgCl2 in PBS (pH 6.0) and then stained for SA-β-galactosidase using
a senescence β-galactosidase staining kit (Cell Signaling Technology, Danvers, MA, USA) according to
the manufacturer’s instructions. After that, cells were washed twice with PBS and images were taken
using a microscope (BX53, Olympus). SA-β-galactosidase positive cells were quantified by counting
five random non-adjacent fields in each group.

2.9. Experimental Animals

12-week-old male Wistar rats were kept on a 12:12-h light/dark cycle with light from 7 a.m. to
7 p.m. and housed individually with free access to food and water. Rats were randomly divided into
four groups, with six rats for each group. All animal experiments were approved by the Institutional
Animal Care and Use Committee of Chung Shan Medical University, Taiwan (CSMU No. 2086) and
performed in accordance with the guidelines and regulations of the Institutional Animal Care and
Use Committee. In Nanog overexpression studies, the human wild-type Nanog coding sequence
was amplified and cloned into the recombinant adeno-associated viral serotype 2 (rAAV2) vector.
Intracerebral injection protocol and vector preparation were in reference to our previous studies [18].
For stereotaxic intracerebroventricular (i.c.v.) injections, rats were anesthetized with Zoletil (10 mg/kg,
i.p.; Vibac Laboratories, Carros, France) and mounted in a stereotaxic frame (Stoelting Co., Ltd.,
Chicago, IL, USA). The rAAV-Nanog vector solution of 10 µL was injected into the left lateral cerebral
ventricle with the following coordinates, 0.8 mm posterior to the bregma, 1.5 mm lateral from the
midline and 3.8 mm ventral from the skull. Aβ1–42 solution of 5 µL (2 µg/µL, 10 µg each side) was
injected into each side of hippocampus CA2 by using the following stereotaxic coordinates: 2.8 mm
posterior to the bregma, 2.6 mm left/right to the midline and 3.0 mm ventral to the bregma. All the
injections were performed within 5 min and following the needle remained in the target location for
10 min to avoid reflux along the needle tract. After 6 weeks of intracerebral injection, behavioral testing
was performed. After that the animals were sacrificed. Brains were dissected and collected and then
homogenized and fixed immediately.

2.10. T-Maze Test and Object Recognition Behavior Tests

Working memory was assessed using a T-maze test. The rats learned to find food rewards in
the T-maze using their working memory, and the percentage of correct responses and time latency
were recorded. After 6 weeks of injection, rats were subjected to behavioral tests performed as per
our previous studies [19]. Each rat underwent two training sessions (on days 1 and 2) and one test
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session (on day 3); each training session consisted of nine trials. For object recognition tests, each rat
was subjected to three exposure sessions at 24 h intervals (during days 4–6). Four different objects
that were novel to the rats were presented before the experiment. Each rat was allowed to explore the
objects in the open box for 5 min on three consecutive days. After 5 min of the last exposure session,
one of the old objects was replaced by a novel one, and the animal was returned to the open box for a
5-min test session. Times spent exploring objects during exposure and test sessions were recorded.
All data were collected by a SMART video tracking system (SMART v3.0, Panlab SL, Barcelona, Spain).

2.11. Statistical Analysis

All data are presented as means ± standard error of the mean (±SEM). Unpaired Student’s
t-test performed correlations between two groups. For multiple comparisons, data were analyzed by
one-way ANOVA with Dunnett’s post hoc multiple comparisons. F, DFn, DFd and p indicated the
value of the F-test, the degrees of freedom of the numerator and denominator and the significance,
respectively. Each group was compared with the indicated group. Data were analyzed by SPSS v25.0
statistical software (SPSS, Inc., Chicago, IL, USA). Differences were considered statistically significant
while using * attached to indicate p < 0.05 and ** to indicate p < 0.01.

3. Results

3.1. Overexpression of Nanog Significantly Reduced Aβ-Mediated Cytotoxicity

To evaluate whether Nanog plays a role in enhancing neuroprotective effects against Aβ toxicity,
we transiently transfected SK-N-MC neuronal cells with Nanog overexpression vector. Figure 1a
confirms the results of qPCR that Nanog-transfected cells expressed markedly a higher Nanog mRNA
level compared to mock-transfected cells (p < 0.01), indicating a successful overexpression of Nanog
in SK-N-MC cells. western blot analysis also confirmed a significant induction of Nanog protein
expression in transfected cells (Figure 1b). We next investigated whether overexpression of Nanog
exerts protective effects against Aβ-induced neuronal death. As shown in Figure 1c by phase-contrast
microscopy, treated with Aβ for 24 h caused marked cell death, whereas the overexpression of Nanog
seemed to promote cell survival. Accordingly, MTT assays showed that treatment of cells with Aβ

reduces cell viability in mock-transfected cells. Conversely, this cytotoxicity was significantly attenuated
by Nanog overexpression (F(3, 12) = 14.07, p < 0.01, Figure 1d). To further determine which mode of
cell death is induced by Aβ, results of DAPI staining showed that incubation of cells with Aβ appears
to increase apoptotic nuclei fragmentation (F(3, 16) = 22.51, p < 0.01, Figure 1e). Similarly, alternative
approaches by western blotting demonstrated that Aβ markedly increased cleavage of caspase 3
and poly (ADP-ribose) polymerase (PARP), two typical markers of apoptosis as shown in Figure 1f.
However, these Aβ-induced apoptotic changes were effectively suppressed by overexpression of
Nanog, suggesting Nanog overexpression significantly reduced Aβ-mediated cytotoxicity.
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Figure 1. Overexpression of Nanog suppresses Aβ-induced apoptosis in human neuronal cells
(SK-N-MC). Quantification of Nanog expression using real-time PCR (a) and western blot (b). At 24 h
post-transfection, both mRNA and protein levels of Nanog were significantly upregulated, indicating
the successful overexpression of Nanog; (c) treatment with 2.5 µM of Aβ1–42 for 24 h markedly induced
morphologic changes and cell death and overexpression of Nanog prevented these effects by Aβ;
(d) tetrazolium salt methyl-thiazol-tetrazolium (MTT) assays demonstrated that overexpression of
Nanog significantly protected against Aβ-induced cytotoxicity; (e) overexpression of Nanog markedly
reduced Aβ-induced nucleus fragmentation, determined using 4’,6-diamidino-2-phenylindole (DAPI)
staining. The percentage of apoptotic cells was calculated from five random fields; (f) western blotting
results revealed that overexpression of Nanog inhibited Aβ-induced caspase-3 and polymerase (PARP)
cleavages, two hallmarks of apoptosis. Values were expressed as means ± SEM from at least three
independent experiments. The significance of differences was determined through unpaired Student’s
t-test or multiple comparisons with Dunnett’s post hoc test at * p < 0.05 and ** p < 0.01 compared with
the indicated groups. Scale bar represents 20 µm.

3.2. The Protection from Aβ-Induced Apoptosis by Nanog is Dependent on Insulin Signaling in SK-N-MC
Neuronal Cells

Our previous study has shown that Aβ toxicity is involved in the blockade of insulin signaling in
neuronal cells [14]. To determine whether overexpression of Nanog prevents Aβ-impaired neuronal
insulin signaling, we performed western blotting to detect the level of insulin receptor substrate 1
(IRS-1) phosphorylation at Ser307, a typical marker linked to the severity of insulin resistance. As shown
in Figure 2a, the serine-phosphorylated IRS-1 increased in cells with 2.5 µM Aβ treatment for 24 h,
suggesting neuronal insulin signaling transduction is impaired by Aβ. Conversely, overexpression of
Nanog caused a markedly decreased expression of serine-phosphorylated IRS-1. Similar results were
also noted for tyrosine phosphorylation of IRS-1 that overexpression of Nanog dramatically enhances
it in Aβ-treated group. Since the marker of insulin resistance was observed to be changed, in the next
step we investigated if Nanog would affect downstream Akt activity. As shown in Figure 2b, Akt Ser473

phosphorylation was greatly diminished by Aβ. However, the reduced Akt Ser473 phosphorylation
could be restored by overexpression of Nanog, suggesting Nanog can reverse Aβ-induced neuronal
insulin signaling blockade. It is known that the phosphorylation at the residue Ser9 of glycogen
synthase kinase 3β (GSK3β) by Akt can inhibit its kinase activity and the inhibition of GSK3β reduces
tau hyperphosphorylation [20]. To elucidate the protective effect of Nanog against Aβ-induced cell
death, the Ser9 phosphorylation levels of GSK3β were also evaluated. The results showed that the
Ser9 phosphorylation of GSK3β was markedly suppressed by Aβ, indicating Aβ-inhibited IRS-1/Akt
pathway results in GSK3β activation. However, the Aβ-blocked Ser9 GSK3β phosphorylation can be
reversed by Nanog overexpression. This Nanog-mediated protection was also confirmed by inhibiting
tau Thr231 phosphorylation—a crucial pathologic hallmark of AD (Figure 2c). In order to further
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investigate the role of IRS-1/Akt signaling in Nanog-mediated neuroprotection, the PI3-kinase inhibitor
LY294002 was used as a negative control. As demonstrated in Figure 2d, LY294002 significantly blocked
Nanog-prevented cell death by Aβ. MTT viability assays also displayed similar results that LY294002
significantly reduces the protective effects of Nanog (F(2, 9) = 13.49, p < 0.01, Figure 2e). Accordingly,
the results of DAPI staining and western blots demonstrated that LY294002 downregulates the
anti-apoptotic efficacy of Nanog (Figure 2f,g). Taken together, these results suggest that overexpression
of Nanog effectively represses Aβ-induced tau phosphorylation and apoptosis by returning neuronal
insulin signaling.
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Figure 2. Overexpression of Nanog inhibits Aβ-induced tau phosphorylation and cytotoxicity by
restoring impaired insulin signaling; (a) western blots showed that treatment with 2.5 µM of Aβ for
24 h induces a marked increase of insulin receptor substrate 1 (IRS-1) Ser307 phosphorylation, a major
marker of insulin resistance. However, overexpression of Nanog greatly inhibited this phosphorylation;
(b) western blot analysis of Ser473 phosphorylated Akt confirmed that overexpression of Nanog reverses
Aβ-induced insulin signaling blockade; (c) western blot results indicated that overexpression of Nanog
inhibits Aβ-induced tau phosphorylation at Thr231 and increases the phosphorylation of glycogen
synthase kinase 3β (GSK3β) at Ser9; (d) Bright field images showed that Nanog-induced protection
is abolished by the co-treatment with LY294002 (20 µM), a specific inhibitor of PI3-kinase; (e) MTT
assays showed the LY294002 co-treatment inhibits the protective effect of Nanog; (f) LY294002 markedly
reduced Nanog-induced anti-nucleus fragmentation effects determined by using DAPI staining. The
arrows indicated apoptotic cells with nuclear fragmentation; (g) western blots showed that LY294002
markedly prevents the reduction of caspase-3 and PARP cleavages, suggesting the protection by
Nanog is dependent on insulin signaling. Values were expressed as means ± SEM from at least
three independent experiments. The significance of differences was determined through multiple
comparisons with Dunnett’s post hoc test at * p < 0.05 and ** p < 0.01 compared with the indicated
groups. Scale bar represents 20 µm.
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3.3. Aβ-Induced Superoxide Accumulation and Mitochondrial Dysfunction are Attenuated by
Nanog Overexpression

Upon the basis of the above findings, we suggested that the protective effect of Nanog against Aβ is
likely related to the restoration of insulin signaling blockade in neuronal cells. Therefore, we investigated
whether Nanog protects cells from Aβ-induced oxidative stress by using the superoxide indicator
dihydroethidium (DHE). As shown in Figure 3a, treatment with Aβ for 16 h caused a marked increase of
superoxide accumulation and this increase was counteracted by overexpression of Nanog. It is known
that the cellular redox state is mainly regulated by nuclear factor erythroid 2–related factor 2 (Nrf2),
which can stimulate the expression levels of endogenous antioxidant enzymes such as superoxide
dismutase 1 (SOD1) [21]. As expected, western blot results demonstrated that overexpression of
Nanog effectively restores Aβ-induced reduction of Nrf2 and SOD1 levels (Figure 3b). However,
co-treatment with LY294002 markedly attenuated Nanog-associated antioxidative effects including
superoxide downregulation and Nrf2/SOD1 restoration, suggesting the involvement of insulin signaling
in Nanog-mediated antioxidant activity. Because Aβ-induced mitochondrial dysfunction is known
to cause oxidative damage in neurodegeneration [22], the role of Nanog in preventing Aβ-mediated
impairment of mitochondrial membrane potential was also investigated. As shown in Figure 3c,
Aβ treatment resulted in a strong increase in green fluorescence, indicating a great loss of mitochondrial
membrane potential by Aβ. On the contrary, overexpression Nanog restored mitochondrial membrane
potential significantly, suggesting Nanog preserves mitochondrial function against Aβ-induced
mitochondrial dysfunction. Accordingly, this restoration was attenuated by co-treatment of LY294002,
implying again that insulin signaling is required for the antioxidative actions of Nanog. Some
evidence suggests that Aβ-induced oxidative stress mediates cellular senescence and contributes to
AD pathogenesis [23]. As IGF-1 and BDNF exert a critical role of neurotrophins for survival of aged
neurons that are degenerated in AD [24,25], we performed qPCR assays to determine differences
in gene expressions with or without Nanog transfection. As shown in Figure 3d overexpression
of Nanog upregulated both IGF-1 and BDNF mRNA expression, and this upregulation remained
relatively high under Aβ treatment, suggesting that Nanog-transfected cells may increase neurotrophic
factors production and improve neuronal insulin resistance caused by Aβ (FIGF-1(4, 15) = 6.05, p < 0.05;
FBDNF(4, 15) = 13.49, p < 0.01). To elucidate whether Nanog can attenuate Aβ-induced cellular
senescence, we performed SA-β-gal staining which is a common biomarker used in detecting senescent
cells. The results of Figure 3e revealed a significant increase of SA-β-galactosidase positive cells
in Aβ-treated cells, whereas Nanog effectively reduced the number of senescent cells (red arrows).
Accordingly, Aβ (1.25 µM) caused a marked decrease in the expression of sirtuin-1 (Sirt1), a protein
deacetylase that antagonizes cellular senescence (Figure 3f). This inhibition was effectively restored
by overexpression of Nanog and abolished by combined treatment with LY294002. Collectively, our
results indicate that restoration of mitochondrial function by Nanog may help reduce superoxide
accumulation and protect neuronal cells from Aβ-induced senescence.
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Figure 3. Nanog overexpression ameliorates Aβ-induced mitochondrial superoxide accumulation
and cellular senescence. (a) Dihydroethidium (DHE) staining results showed that overexpression
of Nanog reduces Aβ-induced intracellular superoxide accumulation; (b) levels of two antioxidant
signaling-related proteins nuclear factor erythroid 2-related factor 2 (Nrf2) and superoxide dismutase 1
(SOD1) were analyzed by western blotting; (c) double fluorescence staining of mitochondrial membrane
potential by JC-1 was used for detection of mitochondrial membrane potential. Green fluorescence
indicated the decreased membrane potential in 2.5 µM of Aβ-treated SK-N-MC cells after 24 h. Red
fluorescence indicated that overexpression of Nanog effectively preserves the mitochondrial membrane
potential; (d) mRNA levels of neurotrophic factors insulin-like growth factor 1 (IGF-1) and brain-derived
neurotrophic factor (BDNF) were measured by performing qPCR. mRNA levels of IGF-1 and BDNF
were significantly increased in Aβ treated Nanog-overexpressed cells; (e) representative results of
cytochemical detection of SA-β-galactosidase, a common biomarker used in detecting senescent cells.
Senescent cells (red arrows) are blue stained under a bright-field microscope; (f) levels of sirtuin-1
(Sirt1) protein in Aβ-treated cells using western blotting. Values were expressed as means ± SEM
from at least three independent experiments. The significance of differences was determined through
multiple comparisons with Dunnett’s post hoc test at * p < 0.05 and ** p < 0.01 compared with the
indicated groups. LY294002, a PI3K inhibitor for reducing insulin signaling.

3.4. Overexpression of Nanog Protects Rat Brain against Aβ-Induced Cognitive Impairments

Finally, to investigate in vivo effects of Nanog-mediated neuroprotective potential against Aβ

toxicity, we conducted an animal study based on intracerebral injection of Nanog expression vector into
12-week-old male Wistar rats. We stereotaxically delivered Nanog expression vector (rAAV-Nanog)
into the brain ventricular space and Aβ1–42 solutions were also stereotaxically injected bilaterally
into hippocampus CA2 to imitate neurotoxic actions of Aβ [18]. First, to evaluate the mRNA and
protein levels of Nanog, hippocampus and cortex were homogenized and evaluated by using qPCR.
As shown in Figure 4b, qPCR analysis revealed that the injection of Nanog expressing vector in rats
significantly increases Nanog mRNA levels (~10-fold) in hippocampus (p < 0.01) and cortex (p < 0.05).
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Next, we examined whether exposure of rat hippocampal tissues to Aβ contributes to insulin signaling
blockage. As shown in Figure 4c, western blot analysis revealed that exposure of hippocampal tissues
to Aβ significantly induces IRS-1 Ser307 and suppresses Akt Ser473 phosphorylation, indicating that
Aβ can lead to neuronal insulin resistance. However, overexpression of Nanog resulted in effective
restoration of this neuronal insulin resistance. To further assess cognitive flexibility, behavioral tests
were also performed at 6 weeks after surgery for working and recognition memory by using T-maze
and object recognition tests, respectively. As shown in Figure 4d, T-maze test results demonstrated that
the Aβ-only group shows a significantly low percentage of correct response, indicating Aβ impairs
spatial learning (F(3, 20) = 3.45, p < 0.05). Conversely, a significant improvement was noted in the
Nanog-overexpressed group. Latency to T-maze arm choice also exhibited similar results that the
Nanog group features a shorter latency traveled before reaching the target of T-maze tests (F(3, 20)
= 18.85, p < 0.01). These observations were further confirmed with findings from experiments of
object recognition test (Figure 4e), wherein the results showed that rats in the Aβ-injected group spend
significantly lower percentage of the time in exploring the novel object, indicating object recognition
is damaged (F(3, 20) = 15.21, p < 0.01). However, this recognition impairment was effective restored
in the Nanog-overexpressed group, suggesting that upregulation of Nanog in the brain may confer
neuroprotection against Aβ-induced cognitive deficits.
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Figure 4. Upregulation of Nanog in rat brains improves working and recognition memory deficits
induced by Aβ. (a) The experimental protocol of the behavioral tests; (b) six weeks after stereotaxical
injection, mRNA levels of Nanog were measured by performing qPCR. Nanog mRNA levels in
hippocampus and cortex were significantly increased in Nanog-overexpressed group; (c) western
blotting revealed that overexpression of Nanog markedly inhibited IRS-1 Ser307 and restored Akt
Ser473 phosphorylation in rat hippocampus; (d) behavioral testing was performed at 6 weeks after
stereotaxical surgery. Results showed the percentage of correct responses to select the arm with the
reward and time latency to finish each session for the T-maze test; (e) percentage of time spent exploring
new or old objects in object recognition test. Upregulation of Nanog in the brain significantly increased
the ratio of novel/familiar object exploring time compared to Aβ-injected group. Values were expressed
as means ± SEM from at least three independent experiments. The significance of differences was
determined through unpaired Student’s t-test or multiple comparisons with Dunnett’s post hoc test at *
p < 0.05 and ** p < 0.01 compared with the indicated groups. N.S.: not significant.
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4. Discussion

Downregulation of insulin signaling in the brain was considered as an important feature in the
pathogenesis of AD. In particular, defective neuronal insulin signaling is strongly linked to Aβ-induced
neurotoxicity [26]. In the brain, it is known that the insulin receptor is predominantly expressed in
some specific regions including hippocampus, hypothalamus and cerebral cortex [27]. Notably, the
principal role of insulin signaling in peripheral tissues is regulating the transport of glucose into the
cell. However, researches have revealed that brain glucose uptake is not very greatly affected by
insulin, suggesting insulin signaling may display some effects in the brain other than stimulation
of glucose uptake [28]. In fact, numerous studies have demonstrated that brain insulin signaling is
indeed involved in a broad spectrum of physiological functions. Especially in the hypothalamus, it
is important for regulation of synaptic plasticity and long-term potentiation, two pathologic events
occurring in AD progression [29]. As synaptic strength in the hippocampus is thought to be essential
for the formation of spatial learning and memory, this indicates the dysfunction of neuronal insulin
signaling may play a critical role in hippocampal synaptic plasticity impairment and cognitive decline.
In contrast, restoration of insulin signaling can protect neurons from Aβ-induced neurotoxicity. With
that, our results demonstrated that Aβ increases serine phosphorylation of IRS-1 and results in a
concomitant reduction in Akt phosphorylation, consequently inhibiting insulin signaling in neuronal
cells. On the contrary, overexpression of Nanog effectively attenuated Aβ-induced insulin signaling
blockade and, thereby, improved the cell viability by downregulating oxidative stress and apoptosis.
Interestingly, GSK3β is known as a major kinase to induce abnormal tau hyperphosphorylation, which
is another contributor to induce neuronal cell death in AD. Because Ser9 phosphorylation is involved in
the insulin signaling-mediated inhibition of GSK3β in neurons, Aβ-induced neuronal insulin resistance
is now recognized as a significant feature in the pathogenesis of AD [30]. Accordingly, our results also
demonstrated overexpression of Nanog effectively suppresses Aβ-induced tau phosphorylation and
apoptosis by returning impaired neuronal insulin signaling. This further confirms that by increasing
brain Nanog levels, insulin resistance and related cell death caused by Aβ can be reduced.

In addition, we also found when cells were incubated with Aβ, intracellular levels of Nanog
was not inhibited by Aβ. This indicates the downregulation of Nanog may not play a central role of
the process of neurodegeneration in AD brains. Actually, the aging process in the brain increases the
senescence and loss of neurons. Given that aging neuron may be a consequence with impaired insulin
signaling by Aβ, maintaining an efficient insulin sensitive in neurons can be a potential strategy for
slowing neurodegeneration such as that seen in AD. As for how Nanog exerts its neuroprotection against
Aβ toxicity, we previously showed that Nanog maintains the self-renewal of neuronal cells through
the insulin signaling pathway [14]. Some other studies also demonstrated that the transplantation of
genetically modified neuronal cells to overexpress neurotrophic factors can improve synaptic plasticity
and restore memory impairment in AD mice [31]. Since stem cells have been identified as an important
source of neurotrophic factors secretion, it is believed that maintaining the stemness of damaged
neuronal cells may help the treatment of AD [32]. In addition, a remarkable decline of hippocampal
neurogenesis during the process of aging is observed in vivo, suggesting that the increase of stemness
may promote neuronal precursor cells to differentiate into functional neurons [33]. Evidence has
also demonstrated that insulin signaling is necessary for maintaining stem cell self-renewal and
pluripotency [34]. Therefore, methods for increasing stem cell activity can be considered as a potential
approach for replacing lost cells in degenerative diseases. Since our results showed that Nanog
enhances a stem-like phenotype in human neuronal cells, the anti-Aβ mechanism through which
this occurs is worth to be used to inhibit disease progression of AD. For example, the use of some
dietary phytochemical compounds that can stimulate Nanog expression may be applied in the future
to develop the way in relieving Aβ-induced neurotoxicity [35].

Cellular redox state is regulated by antioxidant signaling involves cellular enzymatic system to
scavenge excessive ROS production. In our research, we found that the Nanog-associated ROS inhibition,
especially inhibiting the superoxide from mitochondria seems largely composed of Nrf2-regulated
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enzymes such SOD1 during Aβ incubation. It is known that Nrf2 antioxidant signaling is particularly
involved in the survival of hippocampal neural stem cells, and upregulation of Nrf2 in the aging brain
can also mitigate neurogenic decline and improve cognitive abilities [36]. Since brain Aβ deposition
increases with age, these findings support our observations that activation of Nrf2 antioxidant system
by Nanog may lead to a novel way for attenuating Aβ-induced toxicity and senescence. In addition,
co-activation of the Nrf2 and neurotrophic signaling pathway is shown to generate a synergistic effect
in slowing AD progress [37]. This finding is consistent with our current results that both the Nrf2
antioxidant system and neurotrophic pathway activated by Nanog may confer synergistic benefits to
attenuate Aβ neurotoxicity. Because genetic manipulation of specific genes was shown to enhance
antiaging properties of stem cells against exogenous stressors, upregulation of these genes such as
Nanog involved in antioxidant restoration could be a feasible method to protect neurons from oxidative
stress and associated damage [38]. Overall, the novelty of the present study lies in the cellular and
behavioral analysis of Nanog’s neuroprotection against Aβ, as well as increased Nanog may be capable
of supporting the survival and slowing aging of senescent neuronal cells. In conclusion, our results
suggested a potential role for Nanog overexpression in modulating the neurotoxic effects of Aβ, which
implies that strategies to enhance insulin signaling by overexpression of Nanog could be used as an
intervention for AD treatment.
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