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Abstract: Microbiome–host interactions play significant roles in health and in various diseases including
autoimmune disorders. Uncovering these inter-kingdom cross-talks propels our understanding of
disease pathogenesis and provides useful leads on potential therapeutic targets. Despite the biological
significance of microbe–host interactions, there is a big gap in understanding the downstream effects of
these interactions on host processes. Computational methods are expected to fill this gap by generating,
integrating, and prioritizing predictions—as experimental detection remains challenging due to feasibility
issues. Here, we present MicrobioLink, a computational pipeline to integrate predicted interactions
between microbial and host proteins together with host molecular networks. Using the concept of
network diffusion, MicrobioLink can analyse how microbial proteins in a certain context are influencing
cellular processes by modulating gene or protein expression. We demonstrated the applicability of the
pipeline using a case study. We used gut metaproteomic data from Crohn’s disease patients and healthy
controls to uncover the mechanisms by which the microbial proteins can modulate host genes which
belong to biological processes implicated in disease pathogenesis. MicrobioLink, which is agnostic of the
microbial protein sources (bacterial, viral, etc.), is freely available on GitHub.

Keywords: microbiota–host interactions; protein–protein interactions; systems biology; networks;
network diffusion; computational pipeline

1. Introduction

Microbiota–host interactions happen in almost every known organism, shaping their metabolism and
evolution [1,2]. In many ecosystems, the microbiome plays an important role as manifested by its dynamic
interactions with different hosts [3]. The community of microorganisms are almost indispensable to human
life since they modulate and influence immunity and nutrient acquisition. For example, the gastrointestinal
microbiome plays a crucial role in nutrient assimilation and energy yield by actively participating in metabolic
pathways [4]. Dysbiosis (compositional alterations) of gut microbial communities is associated with diseases
such as type 2 diabetes, obesity, and inflammatory bowel diseases like Crohn’s disease [5,6]. In addition
to infections caused by pathogenic microbes, exclusion of beneficial species from the community are also
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known to have negative impacts on the host [7]. Most of the inferences between microbial composition
changes and disease phenotypes have been based on associations and correlations, with little explanations
of the mechanisms driving the phenotypes.

Studying microbiome–host interactions and its influence on host biological mechanisms is
important for monitoring health and disease and for discovering/fine-tuning therapeutic interventions.
Such interactions are mediated by the interplay between various molecular components expressed by
the host and the microbiome. For example, bacterial molecules such as metabolites [8], proteins [9–12],
and small RNAs [13] can interact with host molecules and, through host intracellular pathways and
regulatory networks, can modulate the expression of genes in various biological processes [14–16],
thus maintaining healthy states or transition to diseased states. Besides the metabolite-mediated
interactions, protein–protein interactions (PPIs) are one of the most relevant types of molecular interplay
between microbes and host organisms [12]. Experimental techniques to test interspecies PPIs are
time consuming and have limitations imposed by cost [1,17–21]. Hence, there is a dearth of validated
interspecies PPIs in publicly available databases, and these are mostly limited to pathogens. However,
using predicted microbe–host PPIs, it is possible to build interaction networks to better understand
the cross-talk between the microbial and host proteins and how these interactions interfere with host
metabolism and physiology [22]. Recent studies have also shown how protein–protein interactions
between emerging pathogens such as COVID-19 and the host have enabled the discovery of potential
drug candidates for clinical testing and validation [23].

Various resources and pipelines which generate or store microbe–host interaction predictions
are currently available. They include PHISTO [24], PATRIC [25], Proteopathogen2 [26], VirBase [27],
and HPIDB [28]. Most of these resources store PPIs and/or genomic analysis of virulence but are limited to
pathogens [22]. Tools such as COBRA [29], RAVEN [30], NetCooperate [31], and Kbase [32] which consider
commensal microbes are based on the use of metabolomics data alone [33]. Moreover, most of the existing
resources and pipelines are confined to predicting the direct molecular interactions at the microbe–host
interface and do not infer the downstream effects on functional processes and host signalling pathways.

To fill these gaps in understanding the effect of the microbiome on the host, we introduce
MicrobioLink—a computational pipeline to analyse microbiome–host interactions at a cellular level
using network and systems biology approaches. Using MicrobioLink, it is possible to identify potential
pathways by which microbes can modulate the expression of key host molecules such as genes, proteins,
or microRNAs. In order to demonstrate the applicability of MicrobioLink, we performed a case study
investigating how the gut microbiome potentially modulates autophagy genes in Crohn’s disease (CD).
By providing custom-made lists of microbial proteins, host receptor proteins, molecular interaction networks,
and the target node sets, users can harness the functionalities of MicrobioLink to understand the mechanisms
which mediate the influence of microbial proteins derived from the individual microbes or the microbiome.

2. Materials and Methods

MicrobioLink enables users to integrate host responses into the interaction networks representing
the microbe–host interface and, thereby, to helps users to expand the list of experimentally verifiable
hypotheses. It provides the user with the option to infer indirect effects of microbial proteins on the host
by prioritizing pathways and signalling chains. This prioritization is based on various criteria such as
chain length, i.e., the number of steps between the host receptors modulated by the microbial protein
and the host target genes/proteins, host protein localization (depending on the mode of infection),
and contextual gene expression.

2.1. Compilation of Input Proteins and Genes

The first step of the workflow involves the compilation of bacterial and host proteins that can
potentially interact under the studied biological conditions (Figure 1). The bacterial proteins can
be obtained from annotated or experimentally derived bacterial proteomes or from metaproteomic
read-outs (set of proteins secreted by an entire microbial community). As for the host proteins,
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the list is compiled based on their localization: the chosen proteins must be located in a cellular
compartment which is physically accessible to the bacterial proteins. Localization based filtering
can be applied also to bacterial proteins depending on the context (based on whether the microbe
is extracellular or intracellular within the host). In the case of extracellular microbes, the provided
host proteins must be present at the extracellular matrix or plasma membrane since these locations
are more prone to interacting with extracellular, secreted, or membrane-bound bacterial proteins.
In the case of intracellular microbes, the provided host proteins must be located inside the host cell,
as in the cytoplasm for example. These host proteins provided by the user can be derived either
from experimental data or publicly available datasets (including but not limited to ProteomicsDB [34],
ComPPI [35], Human Protein Atlas (HPA) [36], and MatrixDB [37]). In addition, the localization of host
proteins can be inferred by bioinformatic tools such as PSORTdb [38], SignalP [39], and Secretome [40],
which use sequence-based features to predict the localization of the given proteins. Users can also
provide their own preprocessed lists of host proteins after localization prediction.

Subsequently, users can compile a list of important proteins or genes for the studied conditions
or related cellular processes for use as target nodes within the host. This target list can be compiled
either from a priori knowledge (derived from phenotypic observations) or contextual data obtained
from genome-wide association studies (GWAS) which correlate genetic loci to observed phenotypes,
literature search, or -omic expression datasets such as gene expression (transcriptomics) or proteomics
measured under the studied condition(s).
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2.2. Bacterial–Host Interaction Prediction

The next step in the pipeline involves the interaction prediction between the microbial and
host proteins. We use two qualitative approaches, namely domain–domain and domain–motif
methods [12,41,42], that use secondary structure-based features to predict the interactions between
microbial and host proteins. The domain–domain method is based on the assumption that microbe–host
protein pairs bearing interacting domain pairs also interact. Similarly, the domain–motif method
enables the identification of potential interactions between microbial and host proteins if the microbial
protein contains domains previously known to interact with eukaryotic motifs on the host proteins.
Gold standard information on interacting domain pairs and interacting domain–motif pairs are
retrieved from the DOMINE [43] and ELM [44] databases.

The abovementioned methods help determine which bacterial proteins, via their respective
domains, interact with host receptor proteins. For quality control purposes, the interactions are then
filtered to sterically possible sequence features [45,46]. This is performed by excluding interactions
involving motifs outside disordered regions (using IUPRED [47]) or within globular domains based
on information from PFAM [48] and InterPro [49]. Previous studies have successfully used this
structure-based approach to predict PPIs between microbial and host proteins and have validated the
PPIs experimentally [9,10,12].

2.3. Network Compilation and Path Tracing Using Diffusion

In this step, we use multi-layered network resources and network diffusion tools to trace the effect
of the interactions between microbial and host proteins on other host processes further downstream.
For this purpose, the TieDIE [50] tool, built into the pipeline, is used to infer the signaling paths
that connect the host receptors with the host target genes. TieDIE uses the network diffusion
approach to infer the signaling paths from directed multi-layered networks containing PPIs and
transcriptional regulatory interactions (TRIs) from publicly available molecular interaction databases
such as OmniPath [51] and DoRothEA [52], respectively. Users can also select from a vast number of
other molecular interaction resources which are available in the public domain. The use of high-quality
curated PPI resources such as OmniPath enables the analysis of posttranslational modifications as many
original sources in OmniPath contain such information. Furthermore, integration of proteomics and/or
phosphoproteomics data to be analyzed in the MicrobioLink pipeline can improve the computational
predictions by imparting activity information into signalling proteins and by prioritizing the predictions
(i.e., activated signalling paths) for experimental validation.

Importantly, the network diffusion approach helps in avoiding prioritization biases stemming
from network topological properties such as degree (i.e., the number of interacting first neighbours
of a particular gene or protein for example). This circumvents the positively biased inclusion of hub
proteins into signalling paths irrespective of their actual relevance in the studied condition [50]. TieDIE
also incorporates various parameters along with the input data. For example, the magnitude and
direction of differential expression of the target genes/proteins or the number of microbial proteins
predicted to bind to the host receptors can be specified into the input dataset. This information is then
used to prioritize the signaling pathways connecting the receptors to the target genes/proteins.

After network compilation, depending on the user’s discretion, a chain selection step can be
performed to select the most relevant chains for the target modulation. This can be done by filtering
the network to keep only signalling chains stimulated by bacterial proteins detected in any single
condition, especially in cases in which the users are comparing different conditions. Chain selection can
also be specified by the user depending on the dataset provided. For example, in our use case, the host
expression dataset is determined from transcriptomic datasets. Hence, we confined the interactions
immediately upstream to the target genes to transcriptional regulatory connections in order to capture
the regulatory biology underlying the modulation of the target genes’ expression.
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Finally, the obtained model can be visualized as a multi-layered network, starting with the
bacterial protein–host receptor interactions and ultimately reaching the selected host target genes
through PPIs and TRIs. A summary of the MicrobioLink pipeline is presented in Figure 1.

3. Results

To demonstrate the applicability of the MicrobioLink pipeline, we performed a case study showing
how different bacterial proteins modulate molecular processes important for the development or
progression of Crohn’s disease (CD). CD is a chronic intestinal inflammatory disease (IBD) associated
with a multitude of factors including microbial dysbiosis and dysregulation of autophagy due to
mutational effects [11,53–56]. Using MicrobioLink, we identified pathways by which autophagy could
be indirectly modulated by microbial proteins, thereby implying that host autophagy can be potentially
modulated by microbial influence independent of mutations. This also highlighted the potential role
of the microbial proteins in disease development and/or progression.

To perform this study, we first obtained the microbial proteins present only in healthy individuals
or in CD patients from a Swedish twin study [57]. In total, 336 microbial proteins from healthy
individuals and 226 proteins from CD patients were obtained (Table S1). Then, we compiled human
proteins located in the extracellular matrix and cellular membrane using matrixDB, resulting in a total
of 8008 proteins (Table S2).

After compiling the protein lists, we performed interaction predictions between microbial and
human proteins, resulting in 8478 predicted interactions involving 140 microbial proteins and 2998 host
receptor proteins (Tables S3 and S4). The predicted interactions were refined by passing them through
a disordered region-based quality control step to eliminate sterically improbable interactions. In parallel,
as potential target genes were affected by the microbial proteins, we focused on autophagy genes given
that autophagy is known to be a dysregulated process in CD [13,53,54,58,59]. In total, we selected 38
autophagy genes, encoding the core components of the autophagy machinery [60]. To detect the most
relevant target autophagy genes for CD, we used three different transcriptomic datasets (GSE9686 [61],
GSE36807 [62], and GSE75214 [63] from GEO [64]), that contained the gene expression profiles of CD
patients and healthy individuals to select the most differentially expressed core autophagy genes.
From the abovementioned profiles, we selected autophagy genes which were modulated with coherent
trends in at least two datasets. Based on these criteria, we obtained five target autophagy genes namely
WIPI1, MAP1LC3A, MAP1LC3B, ATG7, and ATG4D (Table S5).

Subsequently, contextual signaling networks that potentially mediate the signal transduction from
the host receptors to the target autophagy genes were compiled using the network diffusion model
inferred by TieDie (Figure 2A). Based on these results, we were able to infer that two of the five target
autophagy genes could be potentially modulated by the microbial proteins. We also observed a group
of host proteins that are connected to microbial proteins occurring in both CD patients and healthy
subjects. To retain specificity, we excluded the chains initiated from microbial proteins enriched in
both conditions. As a result, we obtained a network with clearly separated signalling paths exclusive
to the disease and healthy contexts as shown in Figure 2B. In a final filtering step, we retained only
those chains where the last interaction is a TRI to capture the transcriptional regulatory effect of the
expression of the target genes. Post this final filtering step, we were able to obtain a final model,
as depicted in Figure 2C.
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Figure 2. (A) Graphical representation of the signaling paths between curated receptor proteins (host
proteins predicted to be modulated by microbial proteins) and target autophagy genes: The network
compilation was performed by tracing the signaling chains from the human receptors (predicted to
interact with the bacterial proteins) to the autophagy genes using the TieDIE tool which adopts a network
diffusion [51]. For brevity, only the results corresponding to the domain–motif interaction analysis are
discussed in the case study. (B) Network representing the signalling chains after exclusion of proteins
connected with bacterial proteins detected in both CD and healthy conditions: Proteins present in both
conditions that were retained were those directly regulating the target autophagy genes. (C) Network
obtained by retaining only chains with transcriptional regulatory interactions between the intermediary
protein (3rd layer) and the target autophagy genes (4th layer): The immediate upstream proteins from
the autophagy target genes were confined to transcription factors modulating the target autophagy
genes via a transcriptional regulatory interaction.

To analyse the functional significance of the final model, we did a Gene Ontology (GO) enrichment
analysis of the human proteins to identify feature sets such as biological processes via which the target
autophagy genes are potentially modulated by the microbial proteins. Overrepresented feature sets
(Figure 3 and Table S7) included apoptosis, which is known to be upregulated in intestinal epithelial cells
(IECs) in IBD patients, leading to increased epithelial barrier permeability [65]. Apoptosis has a peculiar
interplay with autophagy, in that it is usually upregulated when autophagy is deactivated and vice
versa [66]. In our final model, we also discovered several signaling chains among host networks specific
to the healthy condition. These signalling chains included proteins such as SUMO1, PARP1, and E2F1.
SUMO1, known to induce autophagy levels [67], also activates PARP1 and subsequently E2F1, proteins
which are both known to stimulate autophagy and inhibit apoptosis [68,69]. This allowed us to propose
the hypothesis that the metaproteome-derived bacterial protein CLST058361 which was expressed in
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healthy subjects and not in CD patients could be a key protein involved in stimulating autophagy and
in decreasing apoptosis. Interestingly, CLST058361 belongs to a family of trypsin-like serine proteases
for which expression level changes are associated with IBD [70–72].
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Meanwhile, a signalling chain specific to the CD condition included MAPK3 and FOXO3, which are
key proteins for apoptosis activation and apoptosis-autophagy interplay [66,73]. This pathway was
modulated by the bacterial protein labeled as CLST14522 (containing a FOG:_FHA_domain) and
uniquely found in CD patients. Other biological processes overrepresented in CD networks included
those related to cellular differentiation and proliferation, response and generation of oxidative stress,
mitochondria-related processes, homeostasis, and immune system regulation. More comprehensive
studies are warranted to ascertain the role of these processes in how the bacterial proteins modulate
autophagy in CD (Figure 3).

In conclusion, using MicrobioLink, we obtained a mechanistic model showing how bacterial
proteins can modulate the expression of autophagy genes in the context of CD. Previous research
has shown that host autophagy, while being implicated in the pathogenesis of CD, was primarily
dysregulated by defects caused by genetic mutations [13,53,54]. MicrobioLink reveals the possibility
that autophagy can be modulated by the microbial community through signal transduction propagated
via host molecular networks. Although experimental validation is required to ascertain this putative
mechanism, we demonstrate the applicability of MicrobioLink to integrate heterogeneous datasets and
to generate testable hypotheses about microbe–host interactions.

4. Discussion

In this paper, we presented MicrobioLink—a pipeline for the analysis of the functional effects of
the microbiome on host cellular processes. MicrobioLink integrates microbiome–host protein–protein
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interaction predictions with network diffusion to infer signaling networks which capture the systemic
effects of microbial proteins on host processes.

Microbiome–host interactions have considerable impact on host signaling, and understanding
these interactions are crucial to our advances in studying disease pathogenesis and in discovering drug
targets. Various computational tools and approaches have enabled and furthered our understanding
of microbiome–host interactions. For example, NetCooperate [31] uses metabolic network modelling
to infer the nutritional interdependencies and co-feeding potential between any two microbial
species or between microbial and host species. Zanzoni et al. [74] harnessed the power of
microbe–host protein–protein interactions to infer the perturbations induced on the host by the
pathogen Fusobacterium nucleatum. However, researchers aiming to study the functional effects of
microbiome–host interactions face technological and methodological boundaries. First, the high
demand of time and cost of experimental studies makes it infeasible to test such a high number of
potential microbiome–host interactions [19]. MicrobioLink is an effective alternative to study the
molecular mechanisms by which microorganisms interact with the host cells and how these interactions
affect the host cellular mechanisms. It can be applied either as a tool for prioritizing the most relevant
noncanonical de novo pathways or for establishing hypotheses about how microorganisms can
modulate particular cellular processes. Other limitations that MicrobioLink helps overcome include
the possibility for the user to customize the pipeline depending on his/her organism or community of
interest as long as the focus of the microbial–host molecular interface are protein–protein interactions.
Due to the mechanism-driven approach of MicrobioLink, it provides the users with experimentally
testable hypotheses.

Several existing computational methods and tools to study microbe–host interactions are currently
available although they are limited to specific organisms (with a focus on pathogens) and specific
types of interactions. Therefore, to perform an analysis where the microorganism–host interaction is
unknown and to study its influence on host processes, the researcher would have to combine different
and incompatible tools. In Table 1, we benchmarked some of the key resources and compared them with
the functions of MicrobioLink. With MicrobioLink, it is possible to perform functional microbiome–host
analysis without previous knowledge about its interactions for any microorganism and host species
as long as the corresponding annotated proteomes/genomes are available. The user can provide
a protein dataset as input from a single species (proteome) or from an entire microbial community
(metaproteome). These microorganisms can be bacteria, archaea, viruses, or fungi, which makes
MicrobioLink applicable for any type of microorganism. Subsequently, the user can select a dataset
that represents the resulting host phenotype. It is possible to choose any dataset adequate for the study,
such as differentially expressed genes from transcriptomic measurements or protein expression from
proteomics. The host data can also correspond to any host, and hence, MicrobioLink can be applied for
studying the influence of the microbiome on plants, mammals, or even fungi.

For reproducibility and interoperability [75], we have implemented the pipeline within the framework
of the Docker system. Docker functions as an integrated platform with all the needed dependencies and
software packages preinstalled to execute the scripts within the pipeline. Users can thereby quickly test
different components of the pipeline within the docker container without having to search and install the
required dependencies. The datasets corresponding to the use case have also been provided within the
container so that the users can execute the pipeline readily and cross-check the results.

The pipeline can be applied to different diseases modulated by the microbiome. In the case study,
we generated a model explaining how the gut microbiome from CD patients potentially modulates
autophagy, a cellular process known to be altered and dysregulated in CD patients. Besides, the tool
can be extended to diverse diseases that are shown to be influenced by the microbiome such as diabetes,
depression, and cardiovascular disorders [76]. Moreover, beneficial effects can also be studied with
MicrobioLink. In humans, it can be applied to demonstrate how probiotic species maintain health
and homeostasis. In livestock and poultry, it can be used to study how the microbiome can influence
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productivity [77]. In plants, MicrobioLink can be used to analyse how the commensal microbiome in
the soil influences plant health and disease [78].
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Table 1. Summary of selected tools and resources used in microbe–host interaction research.

Resource/Tool Standalone Version? Description
Can User-Provided

Datasets
Be Handled?

Nonpathogenic
Species

Included/Handling?

Protein–Protein
Interactions?

Inferring
Downstream

Effects?

Microorganisms
Supported

Host Organisms
Supported

PHISTO [24] online
Web-tool for mining and

retrieving
host–pathogen interactions

no no yes no
Viral, bacterial,

fungal, and
protozoan pathogens

Human

PATRIC [25] online Genome-focussed infectious
disease research database yes no yes no Bacterial pathogens

Actinoptergii,
Arachnida,

Chromadorea,
Insecta,

and Mammalia

Proteopathogen2 [26] online

Database and web
application to store and
display fungal pathogen

proteomics data

no no no no Fungal pathogens Mammalian species

VirBase [27] online

Database of virus–host
ncRNA-associated

interactions and interaction
networks during
viral infections

no yes no no Virus Vertebrates, plants,
and arthropods

NetCoperate [31] python module

Web-based tool and software
package for determining

host–microbe and
microbe–microbe cooperative

potential from
metabolic networks

yes yes no yes Any microorganism Any host species

Kbase [32] Online, python,
and java

Software and data platform
that enables data sharing,

integration, and analysis of
microbes, plants, and their
communities by creating
workflows consisting of

a series of analysis tool runs
and code blocks

yes yes no yes Any microorganism Any host

M2IA [79] web-based server

Statistical analysis methods
for microbiome and

metabolome data integration,
including correlation analysis

and functional
network analysis

yes yes no yes Any microorganism Any host species

COMETS [80] Matlab and
a python toolbox

Modelling framework that
integrates dynamic flux
balance analysis with

diffusion to communities

yes yes no yes Any microorganism Any host species

MicrobioLink
(this paper) Python and Docker

Integrated evaluation of
microbe–host

interaction networks
yes yes yes yes Any microorganism Any host species
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Even though experimental validation of the inferences from the pipeline is out of the scope of this
work, we previously demonstrated [12] the validity of the computational inference of microbe–host
protein–protein interactions and their downstream effects by in vitro verification. As a next step
towards improving the pipeline, we are planning to establish use cases in different domains of biological
research (including aiding generation of hypotheses for experiments) wherein the microbiome plays
a crucial role in the phenotypes of different hosts such as plants as well as mammalian host species.
In particular, MicrobioLink will be very useful in studying the role of the microbiome in autoimmune
disorders, such as rheumatoid arthritis, vasculitis, multiple sclerosis, and systemic lupus erythematosus.
With MicrobioLink, we could infer the microbiome-mediated mechanisms in such disorders and
thereby point out key microbial inferences, cellular pathways transmitting normal microbial signals
affected in these disorders, and potential targets for further therapeutic interventions.

5. Conclusion

For many conditions and organisms, MicrobioLink presents novel additional functionalities
which makes it possible not only to predict microbiome-host interactions but also to infer mechanisms
driving functional effects further downstream. MicrobioLink provides an integrated approach by
embedding the host proteins modulated by the user-provided microbial proteins within molecular
interaction networks and relevant -omic datasets customized for the studied conditions and organisms.
Using MicrobioLink, it is possible to evaluate how an entire microbial community or even a single
microorganism, either a commensal or pathogen, can interfere with host processes via protein-mediated
signal transduction.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/5/1278/s1,
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protein–protein interaction predictions between microbial and human receptor proteins. Table S5. Gene expression
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the microbial proteins) and the target autophagy genes. Table S7. GO enrichment results of the human proteins
from the final network model: The 1st sheet contains all enriched gene ontology terms (biological process) in the
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assignment of proteins to the selected biological process terms enriched in the network.
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