
cells

Article

The Detrimental Action of Adenosine on
Glutamate-Induced Cytotoxicity in PC12 Cells Can Be
Shifted towards a Neuroprotective Role through
A1AR Positive Allosteric Modulation

Fabrizio Vincenzi 1,*,† , Silvia Pasquini 1,†, Stefania Gessi 1, Stefania Merighi 1,
Romeo Romagnoli 2 , Pier Andrea Borea 3 and Katia Varani 1

1 Department of Morphology, Surgery and Experimental Medicine, Pharmacology Section,
University of Ferrara, 44121 Ferrara, Italy; psqslv@unife.it (S.P.); gss@unife.it (S.G.); mhs@unife.it (S.M.);
vrk@unife.it (K.V.)

2 Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy;
rmr@unife.it

3 University of Ferrara, 44121 Ferrara, Italy; bpa@unife.it
* Correspondence: fabrizio.vincenzi@unife.it; Tel.: +39-532-455214
† These authors contributed equally to this work.

Received: 30 March 2020; Accepted: 15 May 2020; Published: 18 May 2020
����������
�������

Abstract: Glutamate cytotoxicity is implicated in neuronal death in different neurological disorders
including stroke, traumatic brain injury, and neurodegenerative diseases. Adenosine is a nucleoside
that plays an important role in modulating neuronal activity and its receptors have been identified as
promising therapeutic targets for glutamate cytotoxicity. The purpose of this study is to elucidate
the role of adenosine and its receptors on glutamate-induced injury in PC12 cells and to verify
the protective effect of the novel A1 adenosine receptor positive allosteric modulator, TRR469.
Flow cytometry experiments to detect apoptosis revealed that adenosine has a dual role in glutamate
cytotoxicity, with A2A and A2B adenosine receptor (AR) activation exacerbating and A1 AR activation
improving glutamate-induced cell injury. The overall effect of endogenous adenosine in PC12 cells
resulted in a facilitating action on glutamate cytotoxicity, as demonstrated by the use of adenosine
deaminase and selective antagonists. However, enhancing the action of endogenous adenosine
on A1ARs by TRR469 completely abrogated glutamate-mediated cell death, caspase 3/7 activation,
ROS production, and mitochondrial membrane potential loss. Our results indicate a novel potential
therapeutic strategy against glutamate cytotoxicity based on the positive allosteric modulation
of A1ARs.
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1. Introduction

Glutamate cytotoxicity is one of the main contributing factors in different pathologies of the
central nervous system (CNS), including neurodegenerative diseases, cerebral ischemia, and traumatic
brain injury. Excitotoxicity results from excessive release of the neurotransmitter glutamate, which in
turn stimulates different subtypes of synaptic and extra-synaptic receptors in neurons, leading to Ca2+

overload, oxidative stress, mitochondrial dysfunctions and eventually neuronal death [1]. Given the
relevant role of glutamate receptors in cytotoxicity, the initial therapeutic approach was based on
the use of glutamate receptors antagonists, in particular N-Methyl-d-Aspartate (NMDA) receptor
blockers [2]. However, glutamate receptors antagonists failed to show efficacy in clinical trials of stroke
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or traumatic brain injury. In addition, glutamate receptor blockade seems to interfere with physiological
neuronal function and cause relevant adverse effects at potentially therapeutic concentrations [3,4].
Glutamate toxicity can also occur through a Ca2+- and receptor-independent, oxidative-mediated cell
injury. In particular, it has been postulated that glutamate accumulation can reverse the action of the
cystine (CySS)/glutamate antiporter (Xc-), inhibiting the uptake of CySS [5]. As CySS is intracellularly
reduced to cysteine for glutathione (GSH) synthesis, by depleting neurons of CySS and eventually
GSH, elevated extracellular concentrations of glutamate leads to free radical accumulation and cell
death by oxidative stress [6]. Excitotoxicity and glutamate oxidative toxicity are causal factors in the
neuropathology of several neurological disorders. Therefore, new therapeutic strategies aimed at
reducing glutamate-induced cytotoxicity are strongly warranted.

Adenosine is a ubiquitous endogenous purine nucleoside that regulates almost all aspects of
cellular and tissue physiology through the interaction with four G protein-coupled receptors (GPCR)
named A1, A2A, A2B, and A3 adenosine receptors (ARs) [7]. In the CNS, by activating A1ARs,
adenosine reduces Ca2+ influx and increases the conductance of K+ and Cl− ions thereby inducing
presynaptic inhibition and the reduction of neuronal excitability and excitatory neurotransmitters
release [8,9]. Several papers in the literature report the neuroprotective effect of A1AR activation on
glutamate-induced cytotoxicity and related disorders such as cerebral ischemia [10–13]. On the other
hand, activation of A2AARs has been shown to exert a detrimental effect on various neurodegenerative
diseases mainly through increasing glutamate release, suggesting that their blockade could represent a
valuable tool for excitotoxicity-related pathologies [14–16]. Among ARs, the A2B subtype is the least
studied and remains the most enigmatic even if recent studies indicated that selective antagonists
may exert neuroprotective effects in brain ischemia [17]. The role of A3ARs in neuroprotection is
controversial although its activation has been reported to exert neuroprotective effect against glutamate
cytotoxicity in retinal ganglion cells [18,19].

Despite the neuroprotective potential of A1AR activation, the use of A1AR full agonist in the
clinic has been dampened by cardiovascular side effects and receptor desensitization [20]. A possible
approach to circumvent A1AR agonist-mediated adverse effects and receptor desensitization
is the use of positive allosteric modulators (PAMs). The possibility offered by PAMs to target
the receptor at the allosteric site might increase tissue specificity because the drug would act
in concert with locally increased adenosine under pathological conditions and have little effect
on sites where there are low basal adenosine levels [21]. To exploit their advantages, we have
designed, synthesized, and characterized different series of A1AR PAMs, some of which represent
the most potent and effective so far synthesized [22–27]. Among these, we have demonstrated
the antinociceptive and anxiolytic-like properties of the novel A1AR positive allosteric modulator
(2-Amino-4-[(4-(phenyl)piperazin-1-yl)methyl]-5-(4-fluorophenyl)thiophen-3-yl)-(4-chlorophenyl)
methanone (TRR469) in different in vivo models [28–30].

The present study aimed to determine the role of adenosine and its receptor on glutamate-induced
cytotoxicity in PC12 cells and to verify the cytoprotective effect of the positive allosteric modulator
TRR469 by potentiating the action of endogenous adenosine on A1ARs.

2. Materials and Methods

2.1. Chemicals and Reagents

The following ARs agonists and antagonists were purchased from Tocris (Bristol, UK): NECA
(5′-(N-Ethyl-carboxamido)adenosine); CGS15943 (9-Chloro-2-(2-furanyl)-[1,2,4]triazolo[1,5-c]quinazolin
-5-amine); DPCPX (1,3-Dipropyl-8-cyclopentylxanthine); 5SCH442416 (2-(2-Furanyl)-7-[3-(4-methoxy
-phenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine); PSB603 (8-(4-(4-(4-Chlorophenyl)
piperazide-1-sulfonyl) phenyl)-1-propylxanthine). CCPA (2-Chloro-N6-cyclopentyladenosine) and
MRS1523 (3-Propyl-6-ethyl-5-[(ethylthio)carbonyl]-2 phenyl-4-propyl-3-pyridine carboxylate), adenosine
deaminase (ADA), l-glutamic acid monosodium salt monohydrate, forskolin, KT5720, tert-Butyl
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hydroperoxide (TBHP), N-acetylcysteine (NAC) were obtained from Sigma-Aldrich (St. Luis, MO,
USA). Annexin V AlexaFluorTM 488 Ready Flow Conjugate, SYTOX™ AADvanced™ Dead Cell
Stain, CellROX™ Green Reagent, MitoTracker™ Red CMXRos were purchased from Life Technologies
(Monza, Italy). The A1AR positive allosteric modulator TRR469 was previously synthesized and
characterized (compound 4ad in [23]).

2.2. Cell Culture

Rat pheochromocytoma PC12 cells were purchased from American Type Culture Collection
(Manassas, VA, USA) and were maintained in DMEM High Glucose medium supplemented with
5% FBS, 10% horse serum, 2 mM l-glutamine, 100 U/mL penicillin and 100µg/mL streptomycin in a
humidified atmosphere (5% CO2) at 37 ◦C [31]. Undifferentiated PC12 cells were used as one of the
most common cell line models to study glutamate cytotoxicity [32]. For glutamate exposure, a freshly
prepared 1 M l-glutamic acid monosodium salt monohydrate solution (pH 7.0) was used.

2.3. Apoptosis Evaluation

PC12 cells were seeded in 6 well plates at a density of 2 × 105 cells/well and incubated overnight
in a humidified atmosphere (5% CO2) at 37 ◦C. Cells were pre-treated with ADA for 30 min and with
ARs agonist, antagonist, TRR469, and forskolin for 15 min before glutamate exposure for an additional
24 h. At the end of incubation, cells were detached using Accutase (Life Technologies, Monza, Italy)
and subsequently stained with Annexin V Alexa Fluor™ 488 Ready Flow Conjugate to 1 × 105 cells in
100 µL of Annexin Binding Buffer (Life Technologies). Cells were then incubated for 5 min at 25 ◦C,
followed by the addition of 1 µM SYTOX™ AADvanced™ Dead Cell Stain. Data were acquired on an
Attune NxT Flow Cytometer (Thermo-Fisher Scientific, Paisley, UK) equipped with a 488 nm laser
for excitation. Fluorescence emission was collected using a 530/30 BP filter and a 695/40 BP filter
for Annexin V Alexa Fluor™ 488 and SYTOX™ AADvanced™, respectively. PC 12 cells were gated
according to physical parameters and cell aggregates were removed from the analysis.

2.4. Activation of Caspases 3/7

PC12 cells were seeded in 6 well plates at a density of 2 × 105 cells/well and incubated overnight
in a humidified atmosphere (5% CO2) at 37 ◦C. Cells were pre-treated with TRR469 for 15 min before
glutamate exposure for an additional 24 h. At the end of incubation, cells were detached using
Accutase and subsequently stained by adding 1 µM of CellEvent™ Caspase-3/7 Green Detection
Reagent (Thermo-Fisher Scientific) to 1 × 105 cells in 1 mL of PBS and incubated for 30 min at 37 ◦C.
Data were acquired on an Attune NxT Flow Cytometer equipped with a 488 nm laser for excitation
and fluorescence emission was collected using a 530/30 BP filter. PC 12 cells were gated according to
physical parameters and cell aggregates were removed from the analysis.

2.5. ROS Production Evaluation

PC12 cells were seeded in 6 well plates at a density of 2 × 105 cells/well and incubated overnight
in a humidified atmosphere (5% CO2) at 37 ◦C. Cells were pre-treated with TRR469 for 15 min before
glutamate exposure for an additional 6 h. For the positive control, cells were treated with 200 µM
tert-Butyl hydroperoxide (TBHP) for 1 h at 37 ◦C. For the negative control, cells were pre-treated
with 2 mM N-acetylcysteine (NAC) for 1 h at 37 ◦C, before the exposure with 200 µM TBHP for an
additional hour at 37 ◦C. At the end of the treatment period, 1 µM CellROX™ Green Reagent was
added to the cells followed by an incubation of 45 min at 37 ◦C. Immediately after cell detachment,
data were acquired on an Attune NxT Flow Cytometer equipped with a 488 nm laser for excitation
and fluorescence emission was collected using a 530/30 BP filter. PC 12 cells were gated according to
physical parameters and cell aggregates were removed from the analysis.
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2.6. Mitochondrial Membrane Potential Evaluation

PC12 cells were seeded in 96 well plates at a density of 1 × 104 cells/well and incubated overnight
in a humidified atmosphere (5% CO2) at 37 ◦C. Cells were pre-treated with TRR469 for 15 min before
glutamate exposure for an additional 24 h. At the end of incubation, cells were stained with 200 nM
MitoTracker™ Red CMXRos, a red-fluorescent dye the accumulation of which is dependent upon
mitochondrial membrane potential. After 30 min of incubation, fluorescence was detected with a
Perkin Elmer EnSight Multimode Plate Reader (Perkin Elmer, Boston, MA, USA), setting the excitation
at 579 nm and the emission at 599 nm.

2.7. Statistical Analysis

Data were analyzed and plotted by using Graphpad Prism (Graphpad Software, La Jolla, CA, USA).
Statistical significances were assessed by ANOVA followed by Bonferroni multiple comparison test.
All data are reported as mean ± standard error of the mean (SEM) and differences between conditions
were considered significant at p < 0.05.

3. Results

3.1. Adenosine Is Necessary for Glutamate Cytotoxic Effect in PC12 Cells

Glutamate cytotoxicity is a primary mechanism of neuronal injury following stroke. The role of
adenosine and its receptors in an in vitro model of glutamate cytotoxicity in PC12 cells was investigated.
The percentage of apoptotic cells was analyzed by flow cytometry measuring the relative number of
Annexin V positive PC12 cells subjected to different concentrations of glutamate for 24 h. The tested
concentrations (2 mM, 5 mM, 7.5 mM, and 10 mM) determined 25%, 43%, 75%, and 87% of apoptotic
cells respectively, indicating a concentration-response effect of glutamate (Figure 1). For the majority
of the subsequent experiments, the submaximal concentration of glutamate (7.5 mM) was chosen.

To investigate the involvement of adenosine and its receptors in the cytotoxic effect of
glutamate, we first evaluate the contribution of endogenous adenosine using its degrading enzyme
adenosine deaminase (ADA). Interestingly, a 15-min pretreatment of PC12 cells with ADA reverted
glutamate-induced injury causing a complete abrogation of cell apoptosis (Figure 2). The lack of
cytotoxicity in the presence of ADA suggests that endogenous adenosine is a requisite for the glutamate
effect. To investigate if the role of adenosine was receptor-mediated, PC12 cells were treated with the
non-selective AR agonist NECA at the 10 µM concentration in the absence or in the presence of ADA.
NECA mimicked the effect of endogenous adenosine as demonstrated by the increase of the apoptotic
rate induced by glutamate in the presence of ADA, reaching a value similar to that obtained by
glutamate in the absence of ADA (Figure 2). To further corroborate the receptor-mediated contribution
of endogenous adenosine to glutamate cytotoxicity, cells were treated with the non-selective AR
antagonist CGS 15943 (10 µM). Blocking the four AR subtypes with CGS 15943 both in the presence
or in the absence of ADA resulted in the lack of glutamate-induced apoptosis in a fashion similar to
that obtained eliminating endogenous adenosine with ADA (Figure 2). This suggested that the role of
adenosine in the glutamate-induce apoptosis is mediated by the activation of ARs. To understand the
signaling pathway by which adenosine participated in the glutamate excitotoxic damage, cells were
treated with 5 µM forskolin, a specific activator of adenylate cyclase. In the presence of ADA, forskolin
re-established the glutamate-induced apoptosis, suggesting that elevated levels of intracellular cAMP
are required for the effect of glutamate (Figure 2). This led us to hypothesize that the permissive
effect of endogenous adenosine on glutamate cytotoxicity is related to high cAMP levels determined
by activation of Gs-coupled AR subtypes. Since protein kinase A (PKA) activity is dependent on
cellular levels of cAMP, we tested if PKA inhibition in the presence of endogenous adenosine could
interfere with glutamate cytotoxicity. For this purpose, PC12 cells were pre-treated for 15 min with
the PKA inhibitor KT5720 before challenging the cells with glutamate in the absence or the presence
of ADA. While in the presence of ADA and KT5720 glutamate treatment did not induce apoptosis,
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in the absence of ADA KT5720 partially but significantly reduced glutamate-induced cytotoxic effect,
decreasing the rate of apoptotic cells from 75% to 43% (p < 0.01, Figure 2).
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Figure 1. Concentration-dependent cytotoxic effect of glutamate in PC12 cells. (a) Representative
density plots of flow cytometry analysis of PC12 cells exposed to different concentrations of glutamate
for 24 h. Cells were double-stained with Annexin V Alexa Fluor™ 488 Ready Flow Conjugate and
SYTOX™ AADvanced™ Dead Cell Stain. Annexin V negative/SYTOX negative cells (bottom left
quadrant) represent living cells; Annexin V negative/SYTOX positive cells (top left quadrant) represent
necrotic cells; Annexin V positive/SYTOX negative cells (bottom right quadrant) represent early
apoptotic cells; Annexin V positive/SYTOX positive cells (top right quadrant) represent late apoptotic
cells. (b) Histogram showing the percentage of early and late apoptotic PC12 cells. Data are expressed
as mean ± SEM of three independent experiments. **, p < 0.01 vs. control; ***, p < 0.001 vs. control.
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Figure 2. Effect of NECA, CGS15943, Forskolin, and KT5720 on glutamate-induced cytotoxicity in PC12
cells in the absence (No ADA) and the presence of adenosine deaminase (ADA). (a) Representative
density plots of flow cytometry analysis of PC12 cells exposed to 7.5 mM of glutamate. Cells were
pre-treated for 15 min with 10 µM NECA, 10 µM CGS15943, 5 µM Forskolin or 5 µM KT5720 in the
absence or the presence of ADA before glutamate exposure. Cells were double-stained with Annexin V
Alexa Fluor™ 488 Ready Flow Conjugate and SYTOX™ AADvanced™ Dead Cell Stain. Annexin V
negative/SYTOX negative cells (bottom left quadrant) represent living cells; Annexin V negative/SYTOX
positive cells (top left quadrant) represent necrotic cells; Annexin V positive/SYTOX negative cells
(bottom right quadrant) represent early apoptotic cells; Annexin V positive/SYTOX positive cells
(top right quadrant) represent late apoptotic cells. (b) Histogram showing the percentage of early
and late apoptotic PC12 cells. Data are expressed as mean ± SEM of three independent experiments.
***, p < 0.001 vs. control in the absence of ADA; ##, p < 0.01 vs. glutamate 7.5 mM in the absence of
ADA; ###, p < 0.001 vs. glutamate 7.5 mM in the absence of ADA; ˆˆˆ, p < 0.001 vs. glutamate 7.5 mM in
the presence of ADA.

3.2. The Detrimental Action of Endogenous Adenosine Is Mitigated by Blocking A2A and A2BARs and Further
Exacerbated by Blocking A1ARs

To explore the role of the specific AR subtypes in the facilitating action of endogenous adenosine on
glutamate cytotoxicity, PC12 cells were pre-treated with selective antagonists before being subjected to
glutamate for 24 h. The blockade of A2AARs with SCH442416 significantly reduced glutamate-induced
cytotoxicity, decreasing the rate of the apoptotic cells by 31.6% (p < 0.05, Figure 3). An even more
pronounced effect was obtained using the selective A2BARs antagonist PSB603 that determined
a reduction in the percentage of glutamate-induced apoptotic cells by 47.2% (p < 0.01, Figure 3).
These results confirmed the detrimental action of endogenous adenosine on glutamate cytotoxicity via
activation of its Gs-coupled receptor subtypes. We then investigated the contribution of the Gi-coupled
receptor. While the blockade of A3ARs with MRS1523 did not show any effect on glutamate-induced
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apoptosis, the presence of the A1AR antagonist DPCPX caused a further increase in apoptotic rate
exerted by glutamate. As shown in Figure 3, DPCPX exacerbated the cytotoxic effect of glutamate
leading the percentage of apoptotic cells to 95.6% (p < 0.05). From this data, it is possible to deduce
that endogenous adenosine exerts opposite effects on glutamate-induced cytotoxicity, a facilitating
action by activating A2A and A2BARs that seems necessary to glutamate to induce apoptosis in PC12
cells, and a protective effect through activation of A1AR subtypes as suggested by the exacerbating
effect of DPXPC on the apoptotic rate.
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Figure 3. Effect of selective AR antagonists on glutamate-induced cytotoxicity in PC12 cells.
(a) Representative density plots of flow cytometry analysis of PC12 cells exposed to 7.5 mM of
glutamate. Cells were pre-treated for 15 min with 10 µM DPCPX, 10 µM SCH442416, 10 µM PSB603,
or 10 µM MRS1523 before glutamate exposure. Cells were double-stained with Annexin V Alexa Fluor™
488 Ready Flow Conjugate and SYTOX™ AADvanced™ Dead Cell Stain. Annexin V negative/SYTOX
negative cells (bottom left quadrant) represent living cells; Annexin V negative/SYTOX positive cells
(top left quadrant) represent necrotic cells; Annexin V positive/SYTOX negative cells (bottom right
quadrant) represent early apoptotic cells; Annexin V positive/SYTOX positive cells (top right quadrant)
represent late apoptotic cells. (b) Histogram showing the percentage of early and late apoptotic PC12
cells. Data are expressed as mean ± SEM of three independent experiments. ***, p < 0.001 vs. control;
#, p < 0.05 vs. glutamate 7.5 mM; ##, p < 0.01 vs. glutamate 7.5 mM.
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3.3. Enhancing the Effect of Endogenous Adenosine on A1ARs through PAM TRR469 Abrogates the Cytotoxic
Action of Glutamate

As a detrimental effect of A1ARs blockade on glutamate cytotoxicity has been observed,
the potential protective role of A1ARs activation by using the selective agonist CCPA at different
concentrations (from 10 nM to 10 µM) was investigated. Treatment with CCPA did not show any
significant difference in apoptotic rate exerted by 7.5 mM glutamate at all the tested concentrations,
with the exception of the 10 µM concentration, which slightly reduced it by 34.2% (p < 0.05, Figure 4).
This suggests that the A1AR agonist alone is not enough to give protection against glutamate
injury, probably for the concomitant activation of A2AARs and A2BARs by endogenous adenosine,
which exerted a predominant facilitating action on glutamate cytotoxicity.
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Figure 4. Effect of the A1AR agonist CCPA on glutamate-induced cytotoxicity in PC12 cells.
(a) Representative density plots of flow cytometry analysis of PC12 cells exposed to 7.5 mM of
glutamate for 24 h. Cells were pre-treated for 15 min with different concentrations (10 nM–10 µM)
CCPA before glutamate exposure. Cells were double-stained with Annexin V Alexa Fluor™ 488 Ready
Flow Conjugate and SYTOX™ AADvanced™ Dead Cell Stain. Annexin V negative/SYTOX negative
cells (bottom left quadrant) represent living cells; Annexin V negative/SYTOX positive cells (top left
quadrant) represent necrotic cells; Annexin V positive/SYTOX negative cells (bottom right quadrant)
represent early apoptotic cells; Annexin V positive/SYTOX positive cells (top right quadrant) represent
late apoptotic cells. (b) Histogram showing the percentage of early and late apoptotic PC12 cells.
Data are expressed as mean ± SEM of three independent experiments. ***, p < 0.001 vs. control;
#, p < 0.05 vs. glutamate 7.5 mM.
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Positive allosteric modulation represents an alternative strategy to exploit the protective effect of
A1AR activation. To verify this hypothesis, PC12 cells were pre-treated with the A1AR PAM TRR469
before the incubation in the presence of 7.5 mM glutamate. We have previously demonstrated that
TRR469 increases the affinity and potency of A1AR agonists [29]. To enhance the protective effect of
endogenous adenosine acting on A1ARs, cells were subjected to glutamate insult in the absence or the
presence of different concentrations of the A1AR positive allosteric modulator TRR 469. The presence
of TRR 469 determined a significant and concentration-dependent reduction of glutamate-induced
apoptosis, reaching a complete inhibition at the 10 µM concentration (Figure 5). The protective effect of
TRR469 was abrogated by the selective A1ARs antagonist DPCPX 10 µM, confirming the involvement
of this receptor subtype.Cells 2020, 9, x 10 of 17 
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Figure 5. Effect of the A1ARs positive allosteric modulator TRR469 on glutamate-induced cytotoxicity
in PC12 cells. (a) Representative density plots of flow cytometry analysis of PC12 cells exposed
to 7.5 mM of glutamate for 24 h. Cells were pre-treated for 15 min with different concentrations
(1 µM–10 µM) TRR469 before glutamate exposure. To test the effect of A1AR blockade, 10 µM DPCPX
was added to the cells 15 min before TRR469. Cells were double-stained with Annexin V Alexa Fluor™
488 Ready Flow Conjugate and SYTOX™ AADvanced™ Dead Cell Stain. Annexin V negative/SYTOX
negative cells (bottom left quadrant) represent living cells; Annexin V negative/SYTOX positive cells
(top left quadrant) represent necrotic cells; Annexin V positive/SYTOX negative cells (bottom right
quadrant) represent early apoptotic cells; Annexin V positive/SYTOX positive cells (top right quadrant)
represent late apoptotic cells. (b) Histogram showing the percentage of early and late apoptotic PC12
cells. Data are expressed as mean ± SEM of three independent experiments. **, p < 0.01 vs. control;
***, p < 0.001 vs. control; #, p < 0.05 vs. glutamate 7.5 mM; ###, p < 0.001 vs. glutamate 7.5 mM;
ˆˆˆ, p < 0.001 vs. glutamate 7.5 mM + TRR469 10 µM.
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3.4. TRR469 Prevented Glutamate-Induced Caspase 3/7 Activation

To better investigate the mechanism by which TRR469 protected PC12 cells from glutamate
cytotoxicity, the activation of caspase 3/7, key effectors of the apoptotic pathway, was measured.
Glutamate induced an increase of caspase 3/7 positive cells to 35.9% (p < 0.01) and 84.3% (p < 0.001)
from 8.1% in control conditions at the 2 mM and 5 mM concentration, respectively (Figure 6). Exposing
the cells to the same concentrations of glutamate in the presence of the positive allosteric modulator
TRR469 resulted in significant and complete inhibition of glutamate-induced caspase 3/7 activation
(Figure 6).
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Figure 6. Effect of the A1ARs positive allosteric modulator TRR469 on glutamate-induced caspase 3/7
activation in PC12 cells. (a) Representative histogram plot overlay of caspase 3/7 fluorescence intensity
in PC12 cells exposed to 2 mM and 5 mM of glutamate for 24 h in the absence or the presence of 10 µM
TRR469. TRR469 was added 15 min before glutamate exposure. Cells were stained with 1 µM of
CellEvent™ Caspase-3/7 Green Detection Reagent 30 min before flow cytometry analysis (b) Histogram
showing the percentage of caspase 3/7 positive PC12 cells. Data are expressed as mean ± SEM of three
independent experiments. **, p < 0.01 vs. control; ***, p < 0.001 vs. control; ##, p < 0.01 vs. glutamate
2 mM; ˆˆˆ, p < 0.001 vs. glutamate 5 mM.

3.5. TRR469 Prevented ROS Production and Mitochondrial Membrane Potential Reduction Induced
by Glutamate

Given that reactive oxygen species (ROS) production is recognized as an early step in
glutamate-induced cytotoxicity, we measured ROS level in PC12 cells following 6 h of incubation
with 7.5 mM glutamate in the absence and the presence of TRR469. As a positive control for ROS
production, 200 µM of the ROS inducer tert-Butyl hydroperoxide (TBHP) was used in the absence
and the presence of a 2 mM concentration of the antioxidant N-acetylcysteine (NAC). As expected,
TBHP significantly increased ROS production, an effect abolished by pre-treating the cells with NAC
(Figure 7a,b). ROS levels induced by glutamate reached 66.4% of that produced by TBHP. Interestingly,
the presence of TRR469 completely abrogated glutamate-induced ROS production (Figure 7a,b).

Mitochondrial dysfunction is a typical feature of glutamate cytotoxicity. In PC12 cells,
glutamate-induced loss of mitochondrial membrane potential by 35.6% (p < 0.01) and 48% (p < 0.001)
in comparison to control conditions, at 5 mM and 7.5 mM concentrations, respectively (Figure 7c).
When cells were pre-treated with the A1AR positive allosteric modulator TRR469 before glutamate,
mitochondrial membrane potential was completely restored to the control condition (Figure 7c).
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Figure 7. Effect of the A1ARs positive allosteric modulator TRR469 on glutamate-induced ROS
production and mitochondrial membrane potential loss in PC12 cells. (a) Representative histogram
plot overlay of CellROXTM fluorescence intensity in PC12 cells exposed to 7.5 mM glutamate for 6 h in
the absence or the presence of 10 µM TRR469. TRR469 was added 15 min before glutamate exposure.
As a positive control, PC12 cells were treated with 200 µM of the ROS inducer tert-Butyl hydroperoxide
(TBHP) for one hour. For the negative control, cells were pre-treated with 2 mM N-acetylcysteine
(NAC) one hour before TBHP. Cells were stained with 1 µM of CellRox™ Reagent 45 min before flow
cytometry analysis. (b) Histogram showing the CellRox™median fluorescence intensity (MFI) in PC12
cells. Data are expressed as mean ± SEM of three independent experiments. **, p < 0.01 vs. control;
***, p < 0.001 vs. control; ##, p < 0.01 vs. TBHP; ˆˆ, p < 0.01 vs. glutamate 7.5 mM. (c) Mitochondrial
membrane potential in PC12 cells reported as MitoTracker™ Red CMXRos fluorescence intensity
relative to control (set at 100%). Cells were exposed to 5 mM or 7.5 mM glutamate for 24 h before the
incubation for 30 min with MitoTracker™ Red CMXRos. TRR469 was added 15 min before glutamate
exposure. Data are expressed as mean ± SEM of three independent experiments. **, p < 0.01 vs. control;
***, p < 0.001 vs. control; ##, p < 0.01 vs. glutamate 5 mM; ˆˆ, p < 0.01 vs. glutamate 7.5 mM.

4. Discussion

Glutamate cytotoxicity is a pathological process linked to many neurological diseases and
psychiatric disorders [33]. The overactivation of glutamate receptors generates high levels of
intracellular Ca2+, followed by the generation of ROS and disruption of cell energy production.
The resulting depletion of ATP induces a collapse of transmembrane electrochemical gradients,
loss of nerve cell function, cell damage, and death primarily by caspase 3/7-mediated apoptosis [34].
Adenosine is an endogenous anti-inflammatory and retaliatory metabolite modulating neurotoxicity
both acting on neurons and immune cells expressing ARs G-protein coupled receptor subtypes [35,36].
In the present study, the modulator role of adenosine on glutamate cytotoxicity in PC12 cells has been
investigated. PC12 is a cell line derived from rat adrenal medulla pheochromocytoma with the capability
to synthesize dopamine and glutamate and has been extensively used as a tool for studying the function



Cells 2020, 9, 1242 12 of 16

of neurons and neurotoxicity [32]. We have previously performed saturation binding experiments
on PC12 cells, evaluating the density of adenosine receptors. All four adenosine receptor subtypes
were expressed in PC12 cells, with a greater density found for the A2AAR subtype in comparison with
the other AR subtypes [37]. The data obtained in this work highlight the crucial role of adenosine
and its receptors in glutamate cytotoxicity. The lack of endogenous adenosine completely prevented
glutamate-induced apoptosis, suggesting that adenosine, through a receptors-mediated mechanism,
exerts a facilitating effect on glutamate cytotoxicity. In particular, the presence of endogenous adenosine
allowed glutamate-induce cell injury through the activation of its Gs-coupled A2A and A2BARs, as
demonstrated by the decrease of apoptotic levels caused by the selective blockade of these receptor
subtypes. It is well-known that adenosine, through A2A and A2BARs, stimulates the production of
cAMP activating PKA which phosphorylates NMDA channels, thus causing the entrance of Ca2+ in
the cells leading to neuronal death [38,39]. In the present study, it has been demonstrated that the
negative effect of adenosine may be due to the increase in cAMP levels, as confirmed by the restoration,
in the absence of endogenous adenosine, of glutamate-induced apoptosis caused by the treatment with
forskolin, a direct activator of adenylate cyclase. To corroborate the fundamental role of the cAMP/PKA
signaling pathway, when PC12 cells were subjected to glutamate in the presence of the selective
PKA inhibitor KT5720, the cytotoxic effect of glutamate was significantly decreased. On the contrary,
the presence of the A1AR antagonist DPCPX exacerbated glutamate cytotoxicity, suggesting that the
stimulation of A1ARs by endogenous adenosine could have a protective effect on glutamate-mediated
cell injury.

Thus, the antithetical effect on the cAMP/PKA pathway could explain the protective effect of A1ARs
and the facilitating action of A2AARs and A2BARs on glutamate cytotoxicity. A large body of evidence
indicates that adenosine, interacting with A1ARs, could act as an endogenous neuroprotective agent
since it prevents the damage caused by various pathological conditions, in particular those characterized
by an excessive excitatory transmission [9,10,13,16]. In the present study, the treatment with the A1ARs
agonist CCPA did not fully protect cells from glutamate cytotoxicity, probably due to the concomitant
activation of Gs-coupled ARs by endogenous adenosine. Despite their promising therapeutic potential,
the use of A1AR agonists has been hampered by numerous side effects, poor receptor subtype
selectivity, and receptor desensitization [20]. To overcome the problems associated with the utilization
of A1AR agonists, we developed a series of positive allosteric modulators as a potential alternative
for A1AR-targeted therapies [22–27]. Positive allosteric modulators are an attractive concept in drug
targeting because of their potential advantages over conventional agonists. In particular, since positive
allosteric modulators can enhance the effect of endogenous agonists, they are expected to have a much
lower side effect potential than orthosteric agonists, a low propensity for receptor desensitization
and a high receptor subtype selectivity [40,41]. In particular, it is well established that extracellular
adenosine levels increase after ischemia or excitotoxic insults in the CNS [8]. Therefore, A1AR positive
allosteric modulators are expected to have an improved side-effect profile than orthosteric acting
agonists because they enhance the effect of elevated adenosine concentration at the site of injury, having
little effect on non-pathological sites where adenosine concentration is maintained low. TRR469 is
one of the most potent positive allosteric modulators for A1ARs so far synthesized. In our previous
work, it has been observed the anti-nociceptive effects of TRR469 in models of acute and chronic
pain [28] as well as robust anxiolytic-like effects comparable to those of benzodiazepine diazepam [29].
In membranes obtained from the different mouse brain regions, it has been shown that TRR469 was
able to greatly increase the affinity of the adenosine analog CCPA. In particular, TRR469 was able
to increase CCPA affinity by 17-fold in the hippocampus, 14-fold in the amygdala, and 32 fold in
the prefrontal cortex suggesting that the effect the positive allosteric modulation could be retained
despite the heterogeneity of the different brain regions [29]. This result is particularly relevant because
one of the great advantages of positive allosteric modulators is their ability to increase endogenous
agonist affinity, enhancing the activation of the receptor in a more physiological way. The increase
of orthosteric ligand affinity by positive allosteric modulation can arise from an increase in ligand
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association rate and/or a decrease in ligand dissociation rate. At the molecular level, the allosteric
two-state model, an extension of the simpler allosteric ternary complex model, describes how the
positive allosteric modulator biases the conformational equilibria of GPCR to favor the active state
(the agonist high-affinity state) over the inactive one [42]. In this background, we tested the effect of
TRR469 in the in vitro model of glutamate cytotoxicity. The results of the present study revealed that
TRR469 was able to completely protect PC12 cells from the cytotoxic effect of excessive glutamate
concentrations. The effect of TRR469 was concentration-dependent and mediated by the activation
of A1ARs by endogenous adenosine as demonstrated by the use of the selective antagonist DPCPX
that abolished TRR469 cytoprotection. The significantly greater effect of TRR469 respect to the A1AR
agonist CCPA is most likely due to the enhanced activation of A1AR in the presence of the positive
allosteric modulator. In particular, while the protective effect of CCPA could be masked by the
endogenous adenosine-mediated detrimental activation of A2AAR and A2BAR, the presence of TRR469,
increasing the affinity of adenosine for the A1AR subtype, can shift the action of adenosine towards a
protective role, overcoming its effect on Gs-coupled subtypes. As the activation of caspases 3 and 7
is a typical hallmark of glutamate-induced cytotoxicity, the reduction of their activation by TRR469
further confirmed the cytoprotective action of the A1AR positive allosteric modulator. A large number
of works in the literature reports that the neurotoxic effect of glutamate in PC12 cells involves the
generation of ROS and mitochondrial dysfunction [43–45]. Accordingly, in our experimental conditions,
glutamate significantly increased ROS production, an effect that was completely abrogated by the
presence of TRR469. Furthermore, the A1AR positive allosteric modulator prevented the loss of
mitochondrial membrane potential in glutamate-exposed cells. The cytotoxic effect of glutamate in
PC12 cells has been primarily linked to oxidative stress rather than direct NMDA receptors activation.
This mode of cytotoxicity induced by glutamate in PC12 cells, called oxidative glutamate toxicity,
is corroborated by the results obtained in the present work. In particular, the cytotoxic effect in PC12
cells requires elevated concentrations of glutamate, which induces cellular responses typical of the
mechanisms involving oxidative stress such as the loss of mitochondrial transmembrane potential and
ROS accumulation. The protective effect of TRR469 in PC12 cells suggests the therapeutic potential
of A1 positive allosteric modulators against glutamate-induced delayed neuronal death that occur
independently of receptor activation.

In conclusion, the results of the present work indicate that the A1AR positive allosteric modulator
TRR 469 as a potentially attractive therapeutic tool in the treatment of neurological disorders
characterized by glutamate cytotoxicity. This strategy could allow enhancing the protective effects
of endogenous adenosine through A1ARs activation possibly avoiding the issue related to the use of
A1AR agonist.
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