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Abstract: The recent development and broad application of sequencing techniques at the single-cell 
level is generating an unprecedented amount of data. The different techniques have their individual 
limits, but the datasets also offer unexpected possibilities when utilized collectively. Here, we 
applied snRNA-seq in whole adult murine hearts from an inbred (C57BL/6NRj) and an outbred 
(Fzt:DU) mouse strain to directly compare the data with the publicly available scRNA-seq data of 
the tabula muris project. Explicitly choosing a single-nucleus approach allowed us to pin down the 
typical heart tissue-specific technical bias, coming up with novel insights on the mammalian heart 
cell composition. For our integrated dataset, cardiomyocytes, fibroblasts, and endothelial cells 
constituted the three main cell populations accounting for about 75% of all cells. However, their 
numbers severely differed between the individual datasets, with cardiomyocyte proportions 
ranging from about 9% in the tabula muris data to around 23% for our BL6 data, representing the 
prime example for cell capture technique related bias when using a conventional single-cell 
approach for these large cells. Most strikingly in our comparison was the discovery of a minor 
population of cardiomyocytes characterized by proliferation markers that could not be identified 
by analyzing the datasets individually. It is now widely accepted that the heart has an, albeit very 
restricted, regenerative potential. However there is still an ongoing debate where new 
cardiomyocytes arise from. Our findings support the idea that the renewal of the cardiomyocyte 
pool is driven by cytokinesis of resident cardiomyocytes rather than differentiation of progenitor 
cells. We thus provide data that can contribute to an understanding of heart cell regeneration, which 
is a prerequisite for future applications to enhance the process of heart repair. 
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1. Introduction 

The mammalian heart is a complex organ, composed of various cell types such as 
cardiomyocytes, fibroblasts, endothelial cells, smooth muscle cells, blood cells, and others [1]. Many 
of them display significant phenotypic, functional, and genetic heterogeneity even among the same 
basic cell type suggesting that their individual characteristics are influenced by a variety of factors 
[2]. Distinct subpopulations may be crucial for the complex biological functions of specific structures 
within the heart. 

Genome-wide transcriptome analysis has substantially improved our understanding of the 
regulatory networks underlying basic cardiac biology and pathophysiological processes [3–6]. 
However, the resolution of gene expression patterns in the adult heart has long been limited to the 
level of whole tissue homogenates (“bulk”), thereby inevitably going along with loss of any 
information on cellular origin and on cell-type-specific changes in gene expression [7]. 

Recent developments in RNA amplification strategies allowed the reduction of input RNA to 
minimal amounts, enabling genome-wide sequencing even on the single-cell level. Single-cell RNA 
sequencing (scRNA-seq) offers the ability to investigate transcriptomic profiles of individual cells, 
providing information on prevalence, heterogeneity, and gene co-expression [8]. Along with the 
expansion of scRNA-seq technologies and applications with increasing sensitivity, accuracy, and 
throughput, new bioinformatics analysis tools (e.g., Seurat, Harmony, MTGO-SC) were developed 
and tailored to the specific needs [9,10]. 

The advent of scRNA-seq paved the way for comprehensive studies on heart biology without 
reliance on the cell surface or genetic lineage tracing markers. Such markers are usually imperfect 
and may conceal heterogeneity that exists, even within populations of similar cell types [8]. The usage 
of transcriptome data based on the global gene expression of individual cells renders the classification 
of cell types particularly quantitative and data-driven, allowing to unravel such heterogeneities, 
reveal novel cell populations, and identify cellular hierarchies [11–14]. 

The computational grouping of cells with respect to their subtypes or states is achieved by using 
unsupervised clustering methods such as Uniform Manifold Approximation and Projection (UMAP). 
The comprehensive information facilitates the discovery of novel markers defining a tissue or cell 
type in a hypothesis-free manner as shown in experiments disclosing the cellular composition of 
complex tissues [14–16]. Single-cell transcriptomics provides a global and unbiased insight in the 
cellular composition of tissues and interaction of distinct cell types, both at steady-state and in 
dynamic processes such as development and regeneration [8]. 

Recently, the Tabula Muris Consortium analyzed several organs from mice using single-cell 
sequencing to generate a dataset controlled for age, environment, and epigenetic effects to compile a 
compendium of cell types, referred to as a “tabula muris” [17]. This enabled the direct comparison of 
cell-type composition between organs and the comparison of shared cell types across them. The 
compendium comprises single-cell transcriptomic data from 100,605 cells isolated from 20 organs of 
C57BL/6JN mice including whole hearts [17]. 

However, the need for viable intact single cells can be problematic for solid organs or tissues 
that have highly interconnected processes. The unique difficulty of dissociating the adult mammalian 
heart tissue without damaging constituent cells, particularly cardiomyocytes, poses an immediate 
technical hurdle [18]. This, in addition to their large and irregular shape, renders most high 
throughput single-cell techniques vulnerable to severe technical bias [19]. 

To enable single-cell analysis also of large cells or cells with complex morphology, robust high 
throughput single-nucleus RNA sequencing (snRNA-seq) methods have been developed recently 
[1,2,20–24]. Although snRNA-seq usually detects a lower number of RNA molecules than scRNA-
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seq, as it excludes transcripts in the cytoplasm, it holds several technical advantages when applied to 
tissues difficult to dissociate, such as the mammalian heart. 

First, snRNA-seq bypasses the preparation of intact single-cell suspensions and thus can be used 
to study frozen and fixated primary tissues [20,25]. Second, snRNA-seq can minimize the bias of 
recovering only cells that are easily dissociated or cells of a certain size optimal for platform-specific 
cell capture. Moreover, it can reduce the impact of aberrant transcriptional changes induced by 
enzymatic dissociation [1,26]. Although differences in type and proportion of RNA between the 
cytosol and nucleus do exist [23], it has been shown that nuclear transcriptomes are representative of 
the whole cell [21,25,26]. 

However, there is a particularity of the heart tissue that needs to be taken into account when 
relying on single-nucleus sequencing. In adult mice, ~85–90% of the cardiomyocytes are binucleated 
[27], so that the number of nuclei does not directly reflect the number of cells. Moreover, this 
binucleation has implications for cell proliferation. Cardiomyocyte polyploidization was identified 
as a barrier to heart regeneration [28] and it was demonstrated that binucleated cardiomyocytes that 
reentered the cell cycle fail to complete cytokinesis [29], rendering the regeneration of heart tissue 
after injury deficient. 

For biomedical studies, inbred mouse lines such as C57BL/6 are commonly used. However, since 
human populations are genetically diverse, inbred lines may only partially contribute to an 
understanding of the molecular basis of a given healthy or diseased phenotype. By contrast, results 
from outbred mice are based on a broader genetic background and thus could be considered as more 
robust [30,31]. Therefore, we compare the tabula muris data not only with single-nuclei data of the 
respective inbred strain (C57BL/6NRj) but also with an outbred strain (Fzt:DU), to assess the extent 
of the technical bias and reveal biological differences in an integrative analysis. 

2. Materials and Methods 

2.1. Animals 

For the tabula muris project, five hearts from 10–15 weeks old C57BL/6JN mice (three female 
and two male) had been used as described from the Tabula Muris Consortium [17]. 

For our approach, ten 10-week old male C57BL/6NRj were shipped from Janvier Labs to the 
central laboratory animal husbandry of the University Medicine Rostock, where they were 
euthanized by cervical dislocation the next day. 

Fzt:DU mice were bred inhouse by the Service Group Lab Animal Facility. Four 12-week old 
male mice were euthanized for the extraction of the hearts. All mice were handled in accordance with 
Directive 2010/63/EU on the protection of animals. A notification about the killing of vertebrates for 
scientific purposes as per § 4 (3) TSchG was sent to the institutional animal welfare officer according 
to the German animal protection laws. 

2.2. Isolation of Single Cells and Single Nuclei 

A detailed description of the heart cell isolation procedure for the tabula muris can be found in 
their supplementary information of the online version under “A detailed discussion of organ cell 
types“ [17]. 

Single nuclei were isolated as previously described [11]. In brief, whole hearts were harvested 
whereby the pulmonary artery and vena cava were removed as far as possible. The hearts were then 
pooled for each strain before using the Nuclei PURE Prep nuclei isolation kit (Sigma-Aldrich, St. 
Louis, MO, USA) according to the manufacturer´s instructions. For this, tissue samples were rinsed 
with ice-cold PBS and minced thoroughly with a scalpel. Remaining blood was removed by rinsing 
with PBS before the tissue chunks were further homogenized in chilled lysis solution using a gentle 
MACS dissociator. Lysate samples were mixed with chilled sucrose cushion solution and layered on 
1.8 M sucrose cushion solution for density gradient centrifugation for 45 min at 30.000 × g and 4 °C. 
Nuclei pellets were resuspended in chilled PBS containing 1% BSA and 0.2 U/µl RNase inhibitor and 
cell debris were removed by using 40 µm Flowmi cell strainers. After another centrifugation for 8 
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min at 600 × g and 4 °C, nuclei were resuspended in Nuclei PURE storage buffer, snap-frozen in liquid 
nitrogen, and stored at −80 °C until processing. 

2.3. Single-Cell and Single-Nucleus Sequencing 

Single-cell sequencing for the tabula muris project was previously described [17]. In brief, single 
cells were captured in droplet emulsions using the GemCode Single-Cell Instrument (10x Genomics), 
and scRNA-seq libraries were constructed as per the 10x Genomics protocol using GemCode Single-
Cell 3′ Gel Bead and Library V2 Kit. The samples were diluted in PBS with 2% FBS to a concentration 
of 1.000 cells per µl. Cells were loaded in each channel with a target output of 5.000 cells per sample. 
All reactions were performed in the BioRad C1000 Touch Thermal cycler with 96-Deep Well Reaction 
Module. Amplified cDNA and final libraries were evaluated on a Fragment Analyzer using a High 
Sensitivity NGS Analysis Kit (Advanced Analytical). Equal volumes of 16 libraries were pooled for 
sequencing on the NovaSeq 6000 Sequencing System (Illumina). 

Sequencing of Fzt:DU and C57BL/6NRj samples were conducted by Genewiz (GENEWIZ 
Germany GmbH, Leipzig, Germany). Similar to the tabula muris project, single nuclei were captured 
in droplet emulsions on the 10xGenomics system and sequenced on the NovaSeq 6000 Sequencing 
System (Illumina, San Diego, CA, USA). In contrast to the tabula muris sequencing, cells were loaded 
with a target output of 10,000 cells per sample and the snRNA-seq libraries were constructed using 
Library V3 chemistry. 

2.4. Computational Data Analysis 

Typical data processing of scRNA-seq involves quality control, normalization, confounding 
factor identification, dimensionality reduction, and cell-gene level analysis [32]. Preprocessing of the 
raw data was conducted by using the CellRanger Software (v.3.1.0) provided by 10x Genomics. The 
snRNA-seq fastq data files were aligned with STAR [33] (v.2.7) to the mm10 genome (Ensembl release 
93) index, annotated via GTF file and grouped by barcodes and UMIs resulting in a feature-barcode 
matrix. Downstream analysis was performed using Seurat [34] (v.3.1.1). After following the standard 
pipeline of normalization, finding variable features, scaling, and dimensionality reduction by 
principal-component (PC) analysis, the datasets were merged in one Seurat object to correct for batch 
effects and allow for an integrative analysis with the upstream processing algorithm Harmony [35] 
(v.1.0). The Harmony correction procedure for the newly calculated embedding’s iteratively uses its 
original value instead of the corrected value to regress out confounder effects. Based on this 
approximation, the embedding correction is restricted to a linear model of the original embedding, 
which results in a more robust normalization [35]. The integrated dataset was then used for UMAP 
clustering utilizing the formerly generated Harmony embeddings. 

To assign the underlying cell types of the generated clusters, we utilized several approaches 
accounting for the complexity of the dataset. Sets of well-known marker genes, as well as novel cell 
cluster markers recently identified by other groups working with single-nuclei data [22], were 
applied as indicated in our provided computational script. In addition, the top 100 transcripts per 
cluster and the identified cell cluster markers from our dataset served as reference points for the full 
characterization of all clusters. The experimental protocol, computational script, top 100 transcripts 
per cluster, and identified cell cluster markers can be retrieved from our publicly available 
iRhythmics FairdomHub instance (https://fairdomhub.org/studies/739). Raw snRNA-seq data is 
available in the Single-Cell Expression Atlas via array express (E-MTAB-8751, E-MTAB-8848). 

The used raw datasets served as a basis for three independent studies that successively build 
upon each other: 
#1 Study: Heart cell type composition in entire adult mammalian hearts [11]  
#2 Study: Strain-dependent differences in cell-type composition and velocity [36]  
#3 Study: Discovery of proliferative cardiomyocytes by integrative cluster analysis (this study). 
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3. Results 

Before data integration, the single-cell data from the tabula muris project were deviating, 
whereas both single-nuclei datasets appeared rather similar when looking at the first two principal 
components (PC) (Figure 1A). This naturally differing expression is supported by the violin plot 
where each point is a cell in which the specific position is based on the cell embeddings determined 
by the PC dimension reduction technique (Figure 1B). Dataset integration with Harmony resulted in 
compensation of the primarily technique-based batch effects and allowed for a direct comparison of 
the different datasets (Figure 1C,D). Although the datasets differed not only in the technique used to 
generate them but also in the detected number of features, it was possible to achieve a well-suited 
integrated embedding for subsequent downstream analysis. 

 

 
Figure 1. Clustering effects of the data integration with and without utilizing Harmony on the 
embedding in the first two principal components (PC) on the indicated datasets (BL6, red; Fzt:DU, 
green; Tabula muris, blue). (A) PCA-plot of the three investigated datasets without Harmony 
processing. (B) Violin plot of the investigated datasets without Harmony processing. (C) PCA-plot of 
the three investigated datasets with Harmony processing. (D) Violin plot of the three investigated 
datasets with Harmony processing. 
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The integrated analysis included a total of 11,672 nuclei and 628 cells representing 20,258 genes 
in which each cell exhibits an average total expression of 1,199 genes per cell. For the UMAP-
clustering, cells were colored by their initial dataset origin to visualize the contribution of different 
data sets to the various clusters (Figure 2A). Some clusters contained no cells of a certain dataset, 
other cells appeared to be unique to one dataset, but most clusters were well mixed. The analysis 
identified 21 distinct clusters, of which 16 were shared by all datasets (see supplementary material 
provided at the iRhythmics FairdomHub instance under https://fairdomhub.org/studies/739). 

 
Figure 2. Uniform Manifold Approximation and Projection (UMAP) clustering of the integrated 
datasets representing the identified cellular clusters that are colored by data origin and cell type. (A) 
snRNA-seq data from whole Fzt:DU (green, 8533 nuclei) and BL6 (red, 3139 nuclei) mouse hearts 
were integrated with scRNA-seq data from hearts of BL6 mice of the tabula muris project (blue, 628 
cells) to attain well-mixed clusters for a common downstream analysis. (B) 21 clusters were identified 
and annotated to specific cell types. 

The top five gene markers for all clusters were visualized in a dot plot (Figure 3). An extended 
visualization of the top ten gene markers per cluster and the top 100 transcripts per cluster are 
provided online at iRhythmics FairdomHub together with the experimental protocol and the 
computational script (https://fairdomhub.org/studies/739). 
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Figure 3. Dot plot of the top five markers for each identified cluster. For each cluster, the relative gene 
expression in percent is represented by the size of dots, e.g., a value of 100 means that each cell within 
this cell type expressed this gene. The average expression level for the listed genes is indicated by the 
color. 

In the integrated dataset, the main cell types comprise populations of cardiomyocytes (30.0%), 
fibroblasts (26.2%), and endothelial cells (20.3%) containing ~3,700, ~3,200, and ~2,500 nuclei/cells 
respectively (Figure 2B). However, their numbers severely differed between the individual datasets. 
For example, cardiomyocyte proportions range from only about 9% in the tabula muris data to 
around 23% for the BL6 data, assuming a binucleation rate of 85–90%. 

Cardiomyocyte populations were identified by classical marker genes such as Actn2, Tnnc1, and 
Actc1. Cardiomyocytes that were characterized by high levels of markers for a mature sarcomere 
structure such as Myomegalin and cardiac myosin binding protein c as well as markers for contractile 
function such as Ryr2 but could not be clearly assigned to a ventricular or atrial type, were named 
“mature cardiomyocytes.” Cardiomyocytes characterized by low levels of these genes were 
considered “immature cardiomyocytes.” 

When exploring the subpopulations, we failed to detect mature cardiomyocytes in the tabula 
muris dataset. However, we found some differentiated ventricular and atrial cardiomyocytes with 
the atrial cells constituting the major population. In contrast, BL6 showed the highest proportion of 
mature cardiomyocytes, but less could be assigned to clearly ventricular or atrial origin when 
compared with the Fzt:DU data. 

In total, Fzt:DU have fewer cardiomyocytes (15.5%, considering binucleation) than BL6, but 
remarkably an endothelial cell population was found that shows markers clearly related to 
cardiomyocyte function (e.g., Gja1, Atp2a2, Ttn, Ryr2, and Myh6) suggesting a trans-differentiation 
process from an endothelial cell-like phenotype towards a cardiomyocyte-like phenotype in the 
Fzt:DU hearts [11]. 

We discovered an additional small population of cells (0.4%; 48 cells/nuclei) located next to the 
immune cell populations in the UMAP embedding, suggesting related features (Figure 2B). Indeed, 
cells of this small population share some common markers with monocytes such as Maf, C1qa, and 
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Lyz2 (Figure 3). However, this population also clearly displays cardiomyocyte markers in 
comparable expression levels to other cardiomyocyte populations (Figure 4A–C). 

Surprisingly, this population is characterized by markers related to mitosis and cytokinesis, such 
as Marker of Proliferation Ki-67 (Mki67) as well as the kinesin-like motor proteins Centrosome-
associated protein E (Cenpe) and Kinesin Family Member 23 (Kif23), that both accumulate in the G2 
phase of the cell cycle. All other cardiomyocyte populations identified in this study do not express 
any of these markers (Figure 4D–F). 

 
Figure 4. Violin plot of cardiomyocyte cell markers and markers for proliferation. (A–C) Three typical 
cardiomyocyte markers are expressed in comparable levels in all clusters considered as 
cardiomyocyte populations. (D–F) Markers for proliferation and cytokinesis are only expressed in 
one of the clusters, resulting in the annotation as “proliferative cardiomyocytes”. 

To confirm that this population does not merely undergo mitosis resulting in binucleation 
instead of cytokinesis, we checked for Sept7, Anln, and Aurkb, all of which encode proteins involved 
in the assembly of the cleavage furrow during cytokinesis [37,38]. In fact, all of these genes were 
expressed by the bona fide “proliferative cardiomyocytes” (Figure 5). In contrast, Anln and Aurkb 
expression was almost not detectable in the other cardiomyocyte populations (average expression 
level <0,1), and Sept7 was expressed only in low levels from immature cardiomyocytes and atrial 
cardiomyocytes (Figure 5). 

 
Figure 5. Heatmap of cytokinesis marker expression in cardiomyocyte clusters. (A) Expression levels 
of three factors involved in cleavage furrow assembly during cytokinesis are shown for each 
individual cell in the cardiomyocyte clusters. (B) Expression of cytokinesis markers averaged for each 
cardiomyocyte cluster shows the result more clearly, demonstrating the notable expression of 
cytokinesis markers exclusively in the “proliferative cardiomyocyte cluster”. 
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Because of the similarities between this cluster and the monocyte population, noticeable in 
Figure 3, and the fact that cardiomyocytes are usually considered postmitotic [39], we needed to fully 
rule out that this cluster is, in fact, a proliferative monoblast population. To this end, we investigated 
a variety of well-known monocyte and monoblast markers (Cd74, Cd68, Emr1, Cd14, H2-Eb1, and 
Cd33) and found the cells of the respective cluster to be negative for all of them as visualized as violin 
plot in Figure 6. 

 
Figure 6. Violin plot of monoblast markers in the proliferating cardiomyocyte population and 
immune cells. Proliferative cardiomyocytes show no significant expression of the indicated typical 
monoblast markers. 

To explore whether this population might reflect resident cardiac stem cells or another 
progenitor cell type, we checked for typical stem cell markers. While we could not detect any c-kit or 
Isl1- positive cells in our dataset, we did find cells expressing Cd34, Pdgfra, or Ly6a/Sca1 (Figure 7). 
However, these cells are mainly members of the immature cardiomyocyte cluster. 

When examining Cd34 more closely, we found the average expression of this relatively 
unspecific marker to be comparable or even higher in other cell clusters such as the fibroblast or the 
endothelial cell populations, respectively (supplementary data provided online at iRhythmics 
FairdomHub, https://fairdomhub.org/studies/739). 
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Figure 7. Violin plot of stem cell markers in the cardiomyocyte populations. Typical stem cell markers 
are expressed in low levels in immature cardiomyocytes, but not in “proliferative cardiomyocytes” 
except for Cd34, which showed moderate expression in several cell clusters of the integrated dataset. 

For snRNA-seq there is no possibility for a viability test before sequencing due to the isolation 
protocol. However, in an attempt to assess the potential impact of apoptosis on our results, we 
checked for the expression of apoptosis-related proteins such as those of the Bcl-2 family and 
inhibitors of apoptosis proteins (IAPs). We could not observe any remarkably increased expression 
of pro-apoptotic proteins in our data. When investigating the cardiomyocyte populations, we found 
no pro-apoptotic p53 or Bak and levels of the anti-apoptotic Bcl-xL and Mcl1 were comparable. We 
observed a slightly elevated Bax expression (average expression = 1.42) in the proliferative 
cardiomyocytes in comparison to average expression of around 0.35 in the other cardiomyocyte 
populations. However, expression levels of the antiapoptotic Bcl-2 were a seven-fold increase in 
proliferative cardiomyocytes (average expression = 2.0 compared to around 0.29 in other 
cardiomyocyte populations) and expression of the IAP survivin was even 100-fold increased (average 
expression = 2.23 compared to around 0.02 in other cardiomyocyte populations). 

4. Discussion 

This study underlines how significantly the applied technology affects the outcome of cluster 
analyses and how technical limitations regarding cell capture techniques may lead to an 
underrepresentation of individual cell types such as cardiomyocytes due to their large cell size and 
irregular shape [19]. The Tabula Muris Consortium analyzed several organs from mice using single-
cell sequencing to compile a compendium of cell types, referred to as a “Tabula Muris,” knowing that 
cardiomyocytes will be underrepresented in their heart data [17]. Here, we directly compared their 
single-cell RNA sequencing data with our single-nuclei sequencing approach, especially better suited 
for cardiomyocytes, to likewise assess the extent of technical bias and investigate the effect of such 
integrative cells to nuclei clustering towards cell type identification. The generated comprehensive 
information also facilitates the discovery of novel markers defining a tissue or cell type in a 
hypothesis-free manner, refines cell type subpopulations, and validates existing markers obtained 
from other tissues [14–16]. 

It has previously been shown that single-nuclei techniques have several advantages over single-
cell sequencing, while still retaining sufficient information for cluster analysis and matching results 
from whole-cell RNA in neuronal cells [21]. In line with these findings, our data accurately represent 
the cellular composition of the adult murine heart by relying on single-nucleus RNA sequencing. Our 
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integrative analysis of the two single nuclei and one single-cell sequencing samples required the 
computational integration of these datasets via Harmony. This was a first essential processing step 
because the datasets were assayed with two different, yet comparable approaches in which actual 
biological differences might be interspersed with technical differences [23,40]. The results shown in 
Figure 1 highlight the necessity of such an approach, because after the Harmony processing the 
dimension of the embeddings values was greatly improved and aligned for a proper downstream 
comparison. 

Considerable differences became apparent after assigning the clusters to cell types and 
subpopulations. The most frequent cell types were cardiomyocytes, fibroblasts, and endothelial cells, 
but their cell numbers differed severely between the individual datasets. For example, cardiomyocyte 
proportions ranged from about 9% in the tabula muris data to around 23% for the BL6 data, when 
taking binucleation into account. Not only do total cell numbers differ, but there is also a clear 
overrepresentation of atrial cardiomyocytes in the tabula muris data. We attribute this to their smaller 
size allowing them to pass through the microfluidics easier than e.g., ventricular cardiomyocytes, 
thereby representing the prime example for cell capture techniques related bias. 

On the other hand, our BL6 data showed the highest proportion of mature cardiomyocytes, but 
less could be assigned to clearly ventricular or atrial origin when compared with the tabula muris 
data. The reason for this is not completely understood, but a deficiency of snRNA-seq when it comes 
to the specification of subpopulations cannot be excluded and even seems reasonable taking into 
account the limitations introduced by exclusively working with nuclear RNA. 

Beyond comparison, we demonstrated that the integration of datasets results in an even more 
informative pool enabling deeper insights also with respect to the underlying individual data sets. 
Interestingly, we were able to identify a minor cell population (0.4%) in the integrated dataset that 
could not be detected when analyzing the datasets individually. For example, only two cells of the 
tabula muris dataset were identified when checking for the sample origins in this cluster, thus not 
being sufficient to constitute an own cell cluster in the original dataset. However, the pooling of such 
small populations from several datasets allows for their detection and exploration after all. 

Cells of the newly detected cluster are expressing cardiomyocyte markers, but do not cluster 
together with other cardiomyocyte populations. Although the cells are located next to the immune 
cell populations in the UMAP embedding and share some common features with monocytes, an 
affiliation to them could be excluded due to the absence of Cd33, Cd74 (Figure 6), and other typical 
immune cell markers. 

Strikingly, this population is characterized by markers related to mitosis and cytokinesis such 
as marker of proliferation Ki-67 (Mki67), centrosome-associated protein E (Cenpe) and kinesin family 
member 23 (Kif23). All other cardiomyocyte populations identified in this study do not express any 
of those markers, as would be expected from cardiomyocytes, usually considered as being post-
mitotic [39]. 

Mki67 is commonly used to detect and quantify proliferating cells since it stabilizes individual 
mitotic chromosomes during all phases of mitosis. CENPE is a kinesin-like motor protein that 
accumulates in the G2 phase of the cell cycle and Kif 23 is a component of the centralspindlin complex 
required for the myosin contractile ring formation during cytokinesis. CENPE and Kif23 are both 
markers for late phases of mitosis and cytokinesis, but they are also present at earlier stages [37,38] 
and therefore, as with Mk67, there are no sufficient markers for complete cell division. 

It is known that cardiomyocytes can undergo mitosis, which usually results in binucleation 
instead of a complete cell division. Because the aforementioned genes are markers for both mitosis 
and cytokinesis, we checked for additional, more specific genes. 

During complete cytokinesis, a contractile ring assembles, which includes a network of actin and 
myosin filaments as well as septins and anillin. The cleavage furrow is formed under the regulation 
of several kinases such as Plk1 and Aurora B thereby acting as key regulators of cytokinesis [37,38]. 
Genes for septin7 and anillin as well as the genes for the mitotic kinases are expressed in considerable 
amounts by the cells of this cluster, thereby confirming their proliferative status. 
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When checking for apoptosis-related factors to evaluate the impact of potential cell death during 
the isolation process, we found the IAP survivin to be severely upregulated in this proliferative cell 
cluster. Knockout of survivin was shown to lower mitotic rate without increased apoptosis and 
survivin-deficient cardiomyocytes displayed marked DNA polyploidy indicative of consecutive 
rounds of DNA replication without cell division [41]. In contrast, overexpression of survivin rescued 
the cell-cycle defect in cardiomyocytes in spinal muscular atrophy mouse models as seen by the 
proportions of cells in the G0/G1, S, and G2/M phases of the cell cycle [42]. These data indicate that 
survivin is not only an antiapoptotic factor but also a critical regulator of cell division, particularly in 
cardiomyocytes. The increased expression of survivin in the small cardiomyocyte cluster identified 
in our data further strengthens the belief that these cardiomyocytes are able to undergo full 
cytokinesis. Vice versa the transcriptome data underline the postulated role of survivin in controlling 
cardiomyocyte numbers. 

To explore whether this population might, in fact, represent a cardiac stem cell population, we 
checked for typical stem cell markers such as c-kit, Isl1, Cd34, Pdgfra, or Ly6a/Sca1 (Figure 6). Except 
for Cd34 there was no relevant expression of any for these genes and inspecting Cd34 more closely, 
we found that the average expression was comparable or even higher in other cell clusters such as 
the fibroblasts populations or the endothelial cell populations, respectively. These data reveal no 
evidence for stem cell-like characteristics in proliferative cardiomyocytes. 

It is now widely accepted that the heart has a regenerative potential [43]. However, it is still 
debated where new cardiomyocytes arise from. Our data suggest that there are cardiomyocytes that 
undergo cytokinesis, which is why we termed the identified cluster “proliferative cardiomyocytes.” 
In accordance with other studies relying on different techniques, we propose that new 
cardiomyocytes in adult hearts mainly arise from differentiated cardiomyocytes rather than from 
resident stem cells [29,44,45]. A graphical illustration of our results can be viewed in Figure 8. 

 
Figure 8. Graphical illustration of the workflow for identification of bona fide proliferative 
cardiomyocytes. Single-cell and single-nucleus sequencing data of whole adult murine hearts from 
inbred (C57BL/6NRj) and outbred (Fzt:DU) mouse strains were computationally integrated via 
Harmony. The integrated dataset allowed for novel insights on the mammalian heart cell composition 
revealing a minor population of cardiomyocytes characterized by proliferation markers and therefore 
referred to as “proliferative cardiomyocytes.” During in-depth gene expression analysis, we found 
additional markers specific for cytokinesis to be upregulated, suggesting that proliferative 
cardiomyocytes not only undergo binucleation but also complete cytokinesis. We did not detect 
relevant expression of any stem cell marker, thus supporting the idea that the renewal of the 
cardiomyocyte pool is driven by cytokinesis of resident cardiomyocytes rather than differentiation of 
stem cells. 
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Furthermore, our study provides information on the frequency of these potentially dividing 
cells. In comparison with other estimations in humans [44,46] the number of proliferative 
cardiomyocytes seems to be quite high (0.4% of all nuclei and 1.3% of all cardiomyocyte nuclei). 
Indeed, not all cells of the “proliferative cardiomyocytes cluster” express all of the proliferation 
markers. Therefore, we cannot exclude that some cells in this population have re-entered the cell cycle 
but did not complete karyokinesis, and cytokinesis. 

Considering 50% of the cluster (compare dot size in (Figure 3)) as cardiomyocytes truly re-
entering the cell cycle and approximately 50% of them completing cytokinesis, as implied by data of 
Bersell et al. [29], gives a more realistic approximation in our data of around 0.3% of cardiomyocyte 
nuclei being derived from cells which undergo complete cell division. 

Although snRNA-seq bypasses the cell capture technique related bias, it still has one drawback 
with respect to cardiomyocytes in particular: We cannot distinguish between mononucleated and 
binucleated cardiomyocytes in our analysis, thus precluding the direct calculation of cardiomyocyte 
cell numbers and constraining us to base our evaluation on previously determined binucleation rates. 

However, for proliferative cardiomyocytes there are contradicting studies about the frequency 
of dividing binuclear cells. Whereas most studies suggest that proliferating cardiomyocytes were 
predominantly mononucleated and only mononucleated cardiomyocytes could complete cytokinesis 
[27,29], there are also studies claiming that mono- and bi-nucleated cardiomyocytes are in fact almost 
equally able to proliferate [45]. In the absence of fully verified data on the proportion of mono- and 
bi-nuclear cells capable to proliferate, we cannot draw an exact conclusion on the actual cell count of 
our identified proliferative cardiomyocyte subpopulation based on the nuclei numbers. 

There are highly sensitive plate-based approaches such as Smart-Seq2 [47] and CEL-Seq2 [48] 
that may allow for microscopic exploration of cells before the sequencing process. This would enable 
visual control of binucleation on the one hand and cell division processes on the other hand. 
However, these are low throughput systems and due to the very rare occurrence of proliferative 
cardiomyocytes, it would be subject to chance whether a proliferative cell could be detected per plate 
at all, thus rendering plate-based systems rather unsuitable for the identification of such rare cell 
species at present. 

In a systematic comparison of single-cell RNA-sequencing methods, it was found that the high 
throughput system 10x Chromium had the best, consistent performance [49], which is why we relied 
on this technique. It allowed us to explore the distribution and features of cell populations in entire 
mammalian hearts. With the ongoing development of single-cell sequencing technologies, it will in 
the future certainly be possible to inspect cells also in high throughput systems visually thereby 
enabling even more comprehensive data. 

5. Conclusion 

This study illustrates how significantly the applied technology affects the outcome of cluster 
analyses and demonstrates how the power of cluster analysis can be increased by integrating multiple 
data sets. 

In summary, our data support the hypothesis of other groups postulating that there is a turnover 
of cardiomyocytes in the postnatal heart. Moreover, our findings suggest that the renewal of the 
cardiomyocyte pool is driven by cytokinesis of resident cardiomyocytes rather than differentiation of 
progenitor cells. Our comprehensive sequencing data can contribute to an increased understanding 
of heart cell biology and regeneration. 
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