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Abstract: Casein kinase 2 (CK2) is a highly ubiquitous and conserved serine/threonine kinase that
forms a tetramer consisting of a catalytic subunit (CK2«) and a regulatory subunit (CK2f3). Despite
being ubiquitous, CK2 is commonly found at higher expression levels in cancer cells, where it
inhibits apoptosis, and supports cell migration and proliferation. The Ca?*-activated chloride channel
TMEM16A shows similar effects in cancer cells: TMEM16A increases cell proliferation and migration
and is highly expressed in squamous cell carcinoma of the head and neck (HNSCC) as well as
other malignant tumors. A microscopy-based high-throughput screening was performed to identify
proteins that regulate TMEM16A. Within this screen, CK2 was found to be required for proper
membrane expression of TMEM16A. small interfering (si) RNA-knockdown of CK2 reduced plasma
membrane expression of TMEM16A and inhibited TMEM16A whole cell currents in (cystic fibrosis
bronchial epithelial) CFBE airway epithelial cells and in the head and neck cancer cell lines Cal33
and BHY. Inhibitors of CK2, such as TBB and the preclinical compound CX4549 (silmitasertib), also
blocked membrane expression of TMEM16A and Ca?*-activated whole cell currents. siRNA-knockout
of CK2 and its pharmacological inhibition, as well as knockdown or inhibition of TMEM16A by either
niclosamide or Ani9, attenuated cell proliferation. Simultaneous inhibition of CK2 and TMEM16A
strongly potentiated inhibition of cell proliferation. Although membrane expression of TMEM16A
is reduced by inhibition of CK2, our data suggest that the antiproliferative effects by inhibition of
CK2 are mostly independent of TMEM16A. Simultaneous inhibition of TMEM16A by niclosamide
and inhibition of CK2 by silmitasertib was additive with respect to blocking cell proliferation, while
cytotoxicity was reduced when compared to solely blockade of CK2. Therefore, parallel blockade
TMEM16A by niclosamide may assist with anticancer therapy by silmitasertib.

Keywords: TMEM16A; anoctamin 1; CaZ* activated Cl~ channel; Casein kinase 2; CK2; cancer;
proliferation

1. Introduction

Casein kinase 2 (CK2) is a highly ubiquitous and conserved serine/threonine kinase that
forms a tetramer consisting of a catalytic subunit (CK2«) and regulatory subunit (CK24) [1]. CK2
phosphorylates hundreds of substrates. It contributes to a large number of cellular processes, but its
main functions are related to cell growth, proliferation, and cell survival [2]. It supports cell proliferation
and survival by antagonizing caspase activity and by potentiating survival signals. A multitude of
mechanisms may contribute to these antiapoptotic functions [3]. A common inhibitor of CK2 that
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has been frequently used in previous studies is 4,5,6,7-tetrabromobenzotriazole (TBB) [4]. The orally
bioavailable selective inhibitor of CK2, CX4945 (silmitasertib), has been shown to be antiproliferative
and anti-angiogenic. It has the potential to be the first oral CK2 inhibitor that may advance from
clinical trials to treatment of cancer patients [5,6].

TMEM16A belongs to a family of Ca?*-activated phospholipid scramblases and ion channels [7,8].
The 10 TMEM16 paralogs (ANO1-10; TMEM16A-K) are broadly expressed in epithelial and
non-epithelial tissues [9]. TMEMI16A is a CI~ selective anion channel [10] with well-described
functions in a number of tissues. TMEM16A is upregulated during cellular dedifferentiation and in
cultured cells. It increases proliferation in many different tissues [11-20], and is expressed at high
levels, particularly in head and neck cancers [15,16,21]. We recently identified niclosamide as a potent
inhibitor of TMEMI16A [22]. Niclosamide is an anthelminthic drug approved by the U.S. Food and
Drug Administration that was also shown to inhibit Notch signaling [23], a pathway that is well known
to participate in tumorigenesis [24]. A number of antineoplastic mechanisms of niclosamide have been
described. Thus, niclosamide was shown to inhibit nuclear factor kappa B (NF-«B), Wnt/$3-catenin
signaling, the IL-6-JAK1-STAT3-pathway, GSK-3 and more [25-33]. A recent paper suggests cell cycle
arrest by niclosamide through activation of the Let-7d/CDC34 axis [34].

Niclosamide has been used in a number of preclinical studies and even in clinical trials with
patients suffering from prostate and colorectal cancer [28,30,35-39]. Apart from various anti-cancer
effects, niclosamide also inhibits the Ca?*-activated Cl~ channel TMEM16A. Blockade of TMEM16A
is likely to take part in the inhibition of cell proliferation and cancer by niclosamide [15,16,40]. The
present paper identifies a link between CK2 and TMEM16A, as CK2 supports membrane expression
of TMEM16A. Both silmitasertib and niclosamide inhibited proliferation of head and neck cancer
cells. Importantly, simultaneous application of both drugs strongly augmented their antiproliferative
effects. The data suggest a combined treatment by silmitasertib and niclosamide to strongly augment
anti-cancer potency of the individual drugs [40].

2. Material and Methods

2.1. Cell Culture

Cystic fibrosis bronchial epithelial cell lines (CFBE) were grown in minimum essential medium
(MEM) supplemented with 2 mM glutamine. CFBE stably overexpressing 3HA-TMEM16A-eGFP
were cultured in MEM supplemented with 2 mM glutamine, 2.5 pg/mL puromycin and 400 pg/mL
G418. Cal33 and BHY cells, derived from head and neck carcinoma, were grown in DMEM without
antibiotics, as described earlier [16]. All media were supplemented with 10% heat-inactivated fetal calf
serum. All cells were cultured at 37 °C in a humidified atmosphere of 5% (v/v) CO5.

2.2. RT-PCR, siRNAs

Semi-quantitative RT-PCR was performed to detect the expression of TMEM16A and CK2 in
CFBE and Cal33 cells. Total RNA was isolated using NucleoSpin RNA II columns (Macherey-Nagel,
Diiren, Germany). Total RNA (1 ng/50 pL reaction) was reverse-transcribed using random primers
(Promega, Mannheim, Germany) and Reverse Transcriptase RNase H Minus (Promega, Mannheim,
Germany). Each RT-PCR reaction contained sense and antisense primers for the respective gene (0.5 uM)
or for GAPDH (0.5 pM), 0.5 uL cDNA and GoTaq Polymerase (Promega, Mannheim, Germany). After
2 min at 95 °C, cDNA was amplified during 30 cycles for 30 s at 95 °C, 30 s at 57 °C and 1 min at 72 °C.
PCR products were visualized by loading on peqGREEN (Peqlab, VWR, Germany) containing agarose
gels and analyzed using Meta Morph Version 6.2 (Molecular Devices, USA). The siRNAs—Silencer™
Select Negative Control siNEG1 (s813), siTMEM16A (HS5182856) and siCSNK2A2 (CK2«’, s3640) were
purchased from ThermoFisher.
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2.3. Patch Clamping

Cells grown on glass-coated cover slips were mounted on the stage of an inverted microscope
(Zeiss, Munich, Germany) and kept at 37 °C. Patch pipettes were filled with a cytosolic-like solution
containing (mM) KCl 30, K-gluconate 95, NaH;PO4 1.2, NayHPO, 4.8, EGTA 1, Ca-gluconate 0.758,
MgCl, 1.03, D-glucose 5, ATP 3, pH 7.2. Patch-clamp experiments were performed in the fast
whole-cell configuration. The bath was perfused continuously with Ringer solution (mM): NaCl 145,
KH,POy4 0.4, KoHPO,4 1.6, D-glucose 5, MgCl, 1, Ca-gluconate 1.3, pH 7.4, containing 50 nM TRAM34
(Abcam, ab141885) at a rate of 8 mL/min. Patch pipettes had an input resistance of 2-4 M() and whole
cell currents were corrected for serial resistance. Currents were recorded using a patch clamp amplifier
(EPC 7, List Medical Electronics, Darmstadt, Germany), the LIH1600 interface and PULSE software
(HEKA, Lambrecht, Germany) as well as Chart software (AD Instruments, Spechbach, Germany).
In regular intervals, membrane voltage (Vc) was clamped in steps of 20 mV, from —100 to +100 mV
from a holding voltage of =100 mV. Current density was calculated by dividing whole-cell currents by
cell capacitance.

2.4. Western Blotting

Protein was isolated from CFBE and Cal33 cells using a sample buffer containing 50 mM Tris-HCl,
150 mM NaCl, 50 mM Tris, 100 mM dithiothreitol, 1% Nonidet P-40, 0.5% deoxycholate sodium
and 1% protease inhibitor mixture (Sigma, Taufkirchen, Germany). Samples were separated by
7% SDS-PAGE and transferred to nitrocellulose membranes (GE Healthcare, Munich, Germany).
Membranes were blocked with 5% NFM/TBST or 5% NFM/PBST at room temperature for 1 h and
incubated overnight at 4 °C with rabbit monoclonal anti-DOG1 antibody (SP31, Novus, Braunschweig,
Germany; 1:500, 1% NFM/TBST) and mouse monoclonal anti-Calnexin antibody (BD Biosciences;
1:5000, 5% NFM/PBST). The mouse anti-CK2«” antibody (sc-514403, SantaCruz, USA) was used at
1:500 dilution. Subsequently, the membranes were incubated with HRP-conjugated goat anti-mouse or
anti-rabbit, or donkey anti-goat IgG at RT for 2 h. Immunoreactive signals were visualized using a
super-signal chemiluminescence substrate detection kit (Pierce Biotechonology, Rockford, IL, USA).

2.5. Immunocytochemistry

Cells were grown on glass coverslips and fixed with methanol and acetone (4:1) for 10 min at
—20 °C. After washing 3 times with PBS supplemented with CaCl, (0.7 mM) and MgCl, (1.1 mM),
cells were blocked with 3% bovine serum albumin (BSA) in PBS for 30 min at room temperature (RT),
and incubated with anti-DOG1 primary antibody (1:200) in 1% BSA overnight at 4 °C. Binding of the
primary antibody was visualized by incubation with a secondary antibody conjugated with Alexa 488
(1:500) in 1% BSA for 1 h at RT (Life Technologies, A-21206). Nuclei were stained with Hoechst 33342
(0.1 pg/mL PBS, Aplichem, Darmstadt, Germany). Cells were mounted on glass slides with mounting
medium (DAKO Cytomation, Hamburg, Germany) and examined with an Axiovert 200 microscope
equipped with ApoTome and AxioVision (Zeiss, Germany). Cellular distribution of endogenous
TMEM16A was analyzed in CFBE or Cal33 cells in the presence or absence of CK2«’. Membrane and
cytosolic expression were quantified in each cell by analyzing fluorescence intensities in the regions of
interest (ROI) using the software Image]. Membrane regions were validated using high-resolution DIC
image, that allowed us to clearly identify the plasma membrane of each cell.

2.6. Measurement of [ Ca?*];

Measurement of the global cytosolic Ca?* changes were performed as described recently [41]. In
brief, cells were loaded with 5 uM Fura-2, AM (Molecular Probes) in OptiMEM (Invitogen) with 0.02%
pluronic (Molecular Probes) for 1 h at RT and 30 min at 37 °C. Fura-2 was excited at 340/380 nm, and
the emission was recorded between 470 and 550 nm using a CCD-camera (CoolSnap HQ, Visitron
Systems, Germany). Control of experiment, imaging acquisition and data analysis were done with the
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software package Meta-Fluor (Universal imaging, USA). [Ca?*]; was calculated from the 340/380 nm
fluorescence ratio after background subtraction. The formula used to calculate [CaZ*]; was [Ca2*]; =
Kd X (R — Ripin)/(Rmax — R) X (St/Sp2), where R is the observed fluorescence ratio. The values Ryax and
Rpin (maximum and minimum ratios) and the constant Sg/Sy, (fluorescence of free and Ca?*-bound
Fura-2 at 380 nm) were calculated using 1 umol/liter ionomycin (Calbiochem), 5 pmol/liter nigericin,
10 pumol/liter monensin (Sigma) and 5 mmol/liter EGTA to equilibrate intracellular and extracellular
Ca?* in intact Fura-2-loaded cells. The dissociation constant for the Fura-2eCa?* complex was taken as
224 nmol/L.

2.7. Proliferation and Cell Death Assay

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT, M2128, Sigma-Aldrich,
Taufkirchen, Germany), was dissolved in PBS to a final concentration of 5 mg/mL. The solution was
filtered and stored at —20 °C, protected from the light. To determine proliferation, Cal33 cells or
BHY cells (1.5 x 10° cells) were seeded into 96-well plates and allowed to adhere overnight. The
next day, cells were transfected with siRNAs (siTMEM16A, siCSNK2A2 or “scrambled” non-targeting
siRNA) and/or treated with drugs (20 uM CX-4945, 0.5 uM niclosamide, 1 pM Ani9, 10 uM Eact or
DMSO). Every 2 days, cells were again transfected and/or the medium with drugs was replaced, and
experiments were performed. The medium was removed and 10 uL of MTT were added per well,
together with 90 pL of new medium. MTT produces a yellowish solution that is converted to dark blue
water-insoluble MTT formazan by mitochondrial dehydrogenases of living cells, therefore allowing
the quantification of the living cells per well. After 2 h of incubation at 37 °C, the blue crystals were
solubilized with DMSO and the intensity was measured colorimetrically at 570 nM using the plate
reader NOVOstar (BMG Labtech, Offenburg, Germany).

2.8. Materials and Statistical Analysis

The CK2 inhibitors CX-4945 (silmitasertib) and TBB (4,5,6,7-Tetrabromobenzotriazole) were
purchased from Cayman Chemicals and Sigma, respectively. Niclosamide was from Sigma (Germany).
Data are reported as means + SEM. Student’s t-test (for paired or unpaired samples as appropriate) or
ANOVA were used for statistical analysis. A value of p < 0.05 was accepted as a significant difference.

3. Results

3.1. High-Throughput Assay Identifies CK2 as a Regulator of TMEM16A

A microscopy-based assay has been performed to identify novel regulators of the Ca?*-activated
CI” channel TMEM16A [42]. siRNA screening for interactors of TMEM16A was performed in CFBE
airway epithelia cells overexpressing double-tagged TMEM16A. CFBE cells were chosen because we
intended to identify proteins that could be targeted in order to improve TMEM16A function, and
thus Ca?-dependent Cl~ secretion in cystic fibrosis airway epithelial cells [43]. We identified CK2
as a positive regulator of TMEM16A. Because TMEM16A is particularly known to be upregulated in
head and neck squamous cell carcinomas (HNSCC), where CK2 also has a pro-cancerous role [43],
we examined the hypothesis that CK2 promotes proliferation of the HNSCC cell lines Cal33 and
BHY through activation of TMEM16A, which would have consequences for the treatment of HNSCC.
siRNA-knockdown of the broadly expressed casein kinase 2 subunit CK2«’ was found to downregulate
membrane expression of overexpressed TMEM16A containing a C-terminal green fluorescence protein
(GFP) and an extracellular (human influenza hemagglutinin) HA tag (Figure 1A-C). Membrane
expression was detected using an extracellular HA tag and binding of a fluorescent antibody to
the extracellular HA tag. We examined whether endogenously expressed TMEMI16A is equally
regulated by CK2 and used CFBE cells that express only endogenous TMEM16A. Indeed, plasma
membrane expression of endogenous TMEM16A was significantly inhibited upon knockdown of
CK2«x’ (Figure 1D,E). This effect of knockdown of CK2x’ was specific in as much as membrane
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expression of the common housekeeper ATPase Na*/K*-ATPase was not affected by the knockdown
(Supplementary Figure S1).
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Figure 1. CK2 controls membrane expression of TMEMI16A in CFBE airway epithelial cells.
(A) Expression of double-tagged (eGFP and extracellular HA-tag) TMEM16A in CFBE airway
epithelial cells. Membrane localized TMEM16A (Alexa647 positivity) was detected by an extracellular
anti-HA-Alexa647-conjugated antibody. (B,C) RT-PCR and densitometric analysis indicating successful
knockdown of CK2«/’, #significant inhibition (unpaired f-test; p = 0.01). (D,E) Immunocytochemistry of
TMEM16A expressed endogenously in CFBE cells. Membrane expression was reduced by knockdown

of CK2o, #significant inhibition (unpaired t-test; p = 0.000000002). Mean + SEM. In parentheses are
numbers of experiments.

3.2. Knockdown or Inhibition of CK2 Inhibits Activation of TMEM16A

TMEM16A is a Ca®*-activated Cl~ channel that is activated through stimulation of G-protein
coupled receptors (GPRCs) that couple to phospholipase C, such as ATP-activated purinergic receptors.
Stimulation of CFBE cells with extracellular ATP does increase intracellular Ca?*, which in turn will
activate TMEM16A [42,44]. As shown in Figure 2, ATP activated TMEM16A whole cell currents in
CFBE cells. Activation was strongly suppressed by preincubation of the cells for 30 min with the CK2
inhibitor TBB (Figure 2A). The summary of these experiments is shown in Figure 2B as current/voltage
relationships of ion currents activated in control cells (left) and in TBB-treated cells (right). We also
found that the CK2 inhibitor CX4945 suppressed ATP-induced whole cell currents even more potently
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than TBB (Figure 2C,D). In contrast, acute application of CX4945 to pre-activated TMEM16A did
not clearly inhibit whole cell currents. Finally, knockdown of CK2«’ (siCK2a) strongly attenuated
TMEM16A currents stimulated by ATP (Figure 2E,F). Similar to knockdown of CK2«’ (Figure 1D),
CX4945 also inhibited membrane expression of TMEM16A (Figure 2EG).
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Figure 2. Inhibitors of CK2 inhibit TMEM16A in CFBE airway epithelial cells. (A-F) Whole cell current
overlay recorded in patch clamp experiments and current/voltage relationships. ATP (100 pM) activated
TMEM16A whole cell CI™ currents that were strongly inhibited by the CK2-inhibitors TBB (10 uM;
#significant inhibition, unpaired t-test; p = 0.01, (A,B)) and CX4945 (20 uM; #significant inhibition,
unpaired t-test; p = 0.02; (C,D)), and siRNA-knockdown of CK2«’ (#significant inhibition, unpaired
t-test; p = 0.0001; (E,F)). (G,H) Plasma membrane (PM) expression of endogenous TMEM16A in CFBE
cells and inhibition of PM expression by the CK2-inhibitor CX4945 (#significant inhibition, unpaired

t-test; p = 0.000000000007). Mean + SEM #significant inhibition (p < 0.05; unpaired t-test). In parentheses
are numbers of experiments.
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3.3. CK2 Regulates Membrane Expression of TMEM16A in Cal33 Head and Neck Cancer Cells

TMEM16A is strongly expressed in head and neck cancer cells. The coding sequence of TMEM16A
is located in the tumor-associated amplicon 11q13. High expression levels for TMEM16A correlate
with poor survival of patients with head and neck cancers [16]. Our previous studies demonstrated
the proliferative effect of TMEM16A in different head and neck cancer cell lines such as Cal27, Cal33
and BHY, as well as growth of soft tissue cancer in nude mice [15,16,40]. We therefore analyzed
CK2-dependent regulation of TMEM16A-expression in Cal33 cells using siRNA for CK2a’, which
potently suppressed CK2a” mRNA as well as protein (Figure 3A-C). However, siRNA-knockdown
of CK2o did not affect total expression of TMEM16A, as shown by Western blotting (Figure 3D). In
contrast and similar to CFBE cells, knockdown of CK2«’ clearly reduced plasma membrane expression
of TMEM16A in Cal33 cells (Figure 3E,F). Accordingly, TMEM16A currents activated by ATP were also
inhibited by knockdown of CK2«’ (Figure 3G). However, attenuation of TMEM16A currents was less
pronounced than in CFBE cells, which is due to excessive levels of TMEM16A-expression in Cal33
cells [16].
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Figure 3. Role of CK2 for plasma membrane expression of TMEM16A in Cal33 head and neck cancer
cells. (A,B) RT-PCR and densitometric analysis indicating successful knockdown of CK2«’ by siRNA
for CK2«’ in Cal33 head and neck cancer cells (#significant inhibition, unpaired ¢-test; p = 0.01).
Knockdown of CK2«’ did not inhibit transcription of TMEM16A. (C,D) Western blot analysis indicating
successful knockdown of CK2«’ but unaffected expression of TMEM16A. (EF) Plasma membrane (PM)
expression of TMEM16A expressed endogenously in Cal33 cells and inhibition of PM expression by
knockdown of CK2«’ (#significant inhibition, unpaired t-test; p = 0.00000002). (G) Current/voltage
relationships of ATP-activated TMEM16A whole cells currents, indicating inhibition of TMEM16A by
knockdown of CK2o’ (#significant inhibition, unpaired t-test; p = 0.01). Mean + SEM. In parentheses
are numbers of experiments.
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3.4. Inhibition of CK2 and TMEM16A Inhibits Cell Proliferation

Knockdown of TMEM16A attenuates cell proliferation [16], and this was also observed in the
present study with Cal33 cells (Figure 4A). siRNA-knockdown of CK2«’ inhibited cell proliferation
equally well. Notably, combined knockdown of both TMEM16A and CK2«’ had a more pronounced
inhibitory effect on cell proliferation (Figure 4A). It suggests that CK2 and TMEM16A control cell
proliferation in part by independent mechanisms. This was also found when CK2 was inhibited by
CX4945 instead of siRNA-knockdown. CX5945 alone inhibited proliferation similar to siRNA-CK2a//,
but CX4945 + siRNA-TMEM16A abolished proliferation completely (Figure 4B).
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Figure 4. Inhibition of proliferation by knockdown of CK2«” and TMEM16A. (A) Cell proliferation
assessed in MTT assays and shown as absorbance. Both siRNA-knockdown of CK2«” and TMEM16A
inhibited cell proliferation (#significant inhibition, unpaired t-tests; p = 0.0001). Simultaneous
knockdown of CK2«’ and TMEM16A had a more pronounced inhibitory effect on cell proliferation
(#significant inhibition, unpaired t-test; p = 0.0015). (B) Inhibition of cell proliferation by the
CK2-inhibitor CX4945 (20 uM) and additional inhibitory effect of TMEM16A-knockdown (#significant
inhibition, unpaired t-test; p = 0.0001). Mean + SEM. In parentheses are numbers of experiments.

As outlined above, niclosamide is a potent inhibitor of TMEM16A and an anticancer drug. It also
inhibited proliferation of Cal33 cells in the present study (Figure 5A). Again, the combination of
niclosamide together with CX4945 completely inhibited cell proliferation (Figure 5A). We performed
similar studies in BHY cells, another head and neck cancer cell line [16], in order to validate the results
obtained in Cal33 cells. Application of only CX4945 or niclosamide inhibited cell proliferation by
about 50%. In contrast, simultaneous application of CX4945 and niclosamide essentially abolished
proliferation (Figure 5B). Interestingly, the activator of TMEM16A, Eact [45], further augmented
proliferation of BHY cells (Figure 5B).
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Figure 5. Blockers of CK2 and TMEMI16A inhibit proliferation of Cal33 and BHY head and neck
cancer cells. (A) Blocking CK2 by CX4945 (20 uM) and blocking TMEM16A by niclosamide (0.5 uM)
inhibited proliferation of Cal33 cells. Simultaneous application of both blockers had an additive
effect (#significant inhibition, unpaired t-tests; p = 0.0001). (B) Enhanced cell proliferation of BHY
cells induced by the TMEM16A-activator, Eact. Blocking CK2 by CX4945 (20 uM) and blocking
TMEM16A by niclosamide (0.5 M) inhibited proliferation of BHY cells. Simultaneous application of
both blockers had an additive effect (#significant inhibition, unpaired t-tests; p = 0.000015). Mean +
SEM. In parentheses are numbers of experiments.

3.5. Inhibition of TMEM16A and Inhibition of CK2 Attenuates Receptor-Mediated Increase in the Intracellular
Ca?* Concentration

TMEM16A has a pronounced impact on intracellular Ca?* ([Ca®*];) signaling, as reported earlier,
which is explained by its interaction with the endoplasmic reticulum (ER) inositolphosphate receptor
IP3R and possibly by the impact of TMEM16A-mediated Cl~ transport on Ca?* signaling [40,46,47].
Because intracellular Ca?* is a major regulator of cell proliferation, we examined if inhibition
of TMEM16A by niclosamide exerts similar effects on intracellular Ca?* signaling in Cal33 cells.
Niclosamide did not change basal intracellular Ca?* concentrations but strongly attenuated Ca?*
rise, induced by 10 and 100 uM ATP, respectively (Figure 6). It is notable that the CK2-inhibitor
CX4945 also strongly reduced intracellular Ca?* levels. This previously unrecognized effect of CX4945
on intracellular Ca?* is likely to contribute to its antiproliferative/anticancer effects. Simultaneous
inhibition of TMEM16A and CK2 did not further increase the inhibitory effect on [CaZ*];. Taken
together, blocking CK2 and TMEM16A inhibits cell proliferation, partially by overlapping mechanisms.
Because inhibition of both pathways significantly augments inhibition of cell proliferation, it may be
considered to use CX4945 and niclosamide simultaneously in patients with cancer.
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Figure 6. Blockers of CK2 and TMEM16A inhibit receptor-mediated CaZ* signaling. (A,B) Original
recordings and summaries for basal and ATP-induced intracellular Ca?* concentrations in Cal33 cells.
Increase of intracellular Ca?* by 10 and 100 uM ATP, respectively. Both CX4945 (20 uM; #significant
inhibition, ANOVA; p = 0.0004) and niclosamide (1 uM; #significant inhibition, ANOVA; p = 0.0002)
largely reduced ATP-induced Ca?* increase. Mean + SEM. In parentheses are numbers of experiments.

4. Discussion

CK2 and TMEM16A Regulate Cell Proliferation

In the present study, we have shown that the ubiquitous and constitutively active kinase CK2
controls membrane expression of the Ca?*-activated Cl1~ channel, TMEM16A, in vitro. High-throughput
screening was performed by stably expressing a TMEM16A construct (3HA-TMEM16A-eGFP) in
CFBE cells, that contains a hemagglutinin tag (YPYDVPDYA) inserted in triplicate (3HA) between
His?® and Asn®, i.e., in the first extracellular loop of TMEM16A. This extracellular HA-tag, if
present, can be immuno-detected in non-permeabilized cells, as the antibody binds only to the plasma
membrane-localized TMEM16A. Images were acquired using an automated widefield epifluorescence
microscope. It means that cells were illuminated from above and the whole specimen was exposed to
the light source, explaining this type of membrane staining [42]. The results identify TMEM16A as
another ion channel that is regulated by CK2.

Earlier studies demonstrated that the cystic fibrosis transmembrane conductance regulator (CFTR)
requires CK2 to be fully active [48-51]. We and others also demonstrated that CK2 positively regulates
the epithelial Na* channel, ENaC, which is important to control renal Na* excretion [52,53]. For both
CFIR and ENaC, consensus sides for CK2-dependent phosphorylation have been found. We searched
for putative CK2 phosphorylation sites in human TMEM16A (abcd isoform) using PROSCAN/PROSITE
databases, and identified 10 putative CK2 phosphorylation sites. Two stronger consensus CK2 sides
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were located at the N-terminus and one was located at the C-terminus of TMEM16A. The N-terminus is
relevant for membrane trafficking. Its elimination abolished expression. Truncation of the C-terminus
reduced ATP-activated whole cell currents in our previous report [54,55]. This could suggest a role of
CK2 phosphorylation for activation of TMEM16A. However, it is currently unclear whether these sides
are truly phosphorylated by CK2. For example, a serine is located at position 42 within the N-terminus
and may possibly affect membrane targeting when phosphorylated. 542 phosphorylation could
also change the interaction of TMEM16A with accessory proteins, such as the ezrin—radixin—-moesin
network [56].

A role of CK2 has been found for several other ion channels and transporters [51,57,58]. As for
TMEM16A, also for CFTR and ENaC, CK2 was shown to support their intracellular processing and
trafficking to the plasma membrane [52,59]. In this context, it is noteworthy that CK2 phosphorylates
Sec31 and regulates ER-To-Golgi trafficking [60]. Also, peripheral steps of membrane fusion, exocytosis
and insertion of proteins into the plasma membrane via the synaptosomal-associated protein receptor
(SNARE) machinery is controlled by CK2 [61]. Transcription of TMEM16A is under the control of the
transcription factor signal transducer and activator of transcription 6 (STAT6), while CK2 is known to
affect STAT6 activity [62,63]. However, we did not find evidence for reduced expression of TMEM16A
by inhibition of CK2. Taken together, inhibition of CK2 is likely to inhibit TMEMI16A activity, in
part by inhibition of plasma membrane expression and probably by inhibition of intracellular Ca®*
signaling [54].

An essential result of the present study is that co-application of niclosamide enhanced the
anti-proliferative effect of CX4945 remarkably (Figure 5), but at the same time, lowered the
cytotoxic (cell death) effect exerted by CX4945 (Supplementary Figure S2). The inhibitory effect
of niclosamide on cell proliferation was validated by Ani9, another more specific inhibitor of TMEM16A
(Supplementary Figure S3). Therefore, combined inhibition of CK2 and TMEM16A by CX4945 and
niclosamide respectively, would maybe reduce the concentration of CX4945 required in a cancer
patient. While our present data only demonstrate inhibitory effects of CX4945 in vitro, our previous
experiments also demonstrated the role of TMEM16A for cancer growth in vivo [15,16]. Although
CX4945 was used at M concentrations in the present in vitro study, additional experiments show that
it also inhibits proliferation at nanomolar concentrations (Supplementary Figure 54). Taken together,
we may speculate that co-application of niclosamide together with CX4945 could allow for further
reduction of the CX4945 dosage in vivo, to maybe reach effective picomolar concentrations that would
come close to the concentrations used in monoclonal antibody therapy. This could reduce unwanted
side effects of an anti-cancer therapy by inhibitors of CK2 [64].

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/5/1138/s1.
Figure S1: CK2 does not affect membrane expression of Na*/K*-ATPase. Supplementary Figure S2: CX4945, but
not niclosamide, induces cell death. Supplementary Figure S3: The TMEM16A inhibitor Ani9 inhibits proliferation.
Supplementary Figure S4: Inhibition of cell proliferation by different concentrations of CX4945.
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Abbreviations

ATP adenosine triphosphate

BSA bovine serum albumin

CaCC calcium (Ca?*)-activated CI~ channel

CFBE cystic fibrosis bronchial epithelial (cells)

CK2 casein kinase 2

CX4549 silmitasertib

DMSO dimethyl sulfoxide

ER endoplasmic reticulum

GPCR G-protein coupled receptor

HA hemagglutinin

MTT 3-(4,5-dimethylthiazol-2-yl1)-2,5- diphenyl-2H-tetrazolium bromide
PBS phosphate buffered saline

PM plasma membrane

RT room temperature

Scrbld “scrambled” non-targeting siRNA

TBB 4,5,6,7- tetrabromobenzotriazole

TMEM16A anoctamin 1

References

1. Litchfield, D.W. Protein kinase CK2: Structure, regulation and role in cellular decisions of life and death.

10.

11.

12.

13.

Biochem. J. 2003, 369, 1-15. [CrossRef]

Borgo, C.; Ruzzene, M. Role of protein kinase CK2 in antitumor drug resistance. J. Exp. Clin. Cancer Res. Cr
2019, 38, 287. [CrossRef] [PubMed]

Trembley, ].H.; Wang, G.; Unger, G.; Slaton, J.; Ahmed, K. Protein kinase CK2 in health and disease: CK2:
A key player in cancer biology. Cell. Mol. Life Sci. 2009, 66, 1858-1867. [CrossRef] [PubMed]

Ruzzene, M.; Penzo, D.; Pinna, L.A. Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB)
induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1)
in Jurkat cells. Biochem. J. 2002, 364, 41-47. [CrossRef] [PubMed]

Siddiqui-Jain, A.; Drygin, D.; Streiner, N.; Chua, P; Pierre, F; O’Brien, S.E.; Bliesath, J.; Omori, M.; Huser, N.;
Ho, C.; et al. CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival
and angiogenic signaling and exhibits antitumor efficacy. Cancer Res. 2010, 70, 10288-10298. [CrossRef]
Zheng, Y.; McFarland, B.C.; Drygin, D.; Yu, H.; Bellis, S.L.; Kim, H.; Bredel, M.; Benveniste, E.N. Targeting
protein kinase CK2 suppresses prosurvival signaling pathways and growth of glioblastoma. Clin. Cancer Res.
Off. ]. Am. Assoc. Cancer Res. 2013, 19, 6484-6494. [CrossRef]

Kunzelmann, K;; Tian, Y.; Martins, ].R.; Faria, D.; Kongsuphol, P.; Ousingsawat, J.; Thevenod, F.; Roussa, E.;
Rock, J.R.; Schreiber, R. Anoctamins. Pflug. Arch. Eur. ]. Physiol. 2011, 462, 195-208. [CrossRef]
Pedemonte, N.; Galietta, L.J. Structure and Function of TMEM16 Proteins (Anoctamins). Physiol. Rev. 2014,
94, 419-459. [CrossRef]

Schreiber, R.; Uliyakina, I.; Kongsuphol, P.; Warth, R.; Mirza, M.; Martins, ].R.; Kunzelmann, K. Expression
and Function of Epithelial Anoctamins. J. Biol. Chem. 2010, 285, 7838-7845. [CrossRef]

Paulino, C.; Neldner, Y.; Lam, A.K.; Kalienkova, V.; Brunner, ].D.; Schenck, S.; Dutzler, R. Structural basis for
anion conduction in the calcium-activated chloride channel TMEM16A. Elife 2017, 6, €26232. [CrossRef]
Almaca, J.; Tian, Y.; AlDehni, F.; Ousingsawat, J.; Kongsuphol, P.; Rock, J.R.; Harfe, B.D.; Schreiber, R.;
Kunzelmann, K. TMEM16 proteins produce volume regulated chloride currents that are reduced in mice
lacking TMEM16A. J. Biol. Chem. 2009, 284, 28571-28578. [CrossRef] [PubMed]

Ayoub, C.; Wasylyk, C.; Li, Y.; Thomas, E.; Marisa, L.; Robe, A.; Roux, M.; Abecassis, J.; de Reynies, A.;
Wasylyk, B. ANO1 amplification and expression in HNSCC with a high propensity for future distant
metastasis and its functions in HNSCC cell lines. Br. J. Cancer 2010, 103, 715-726. [CrossRef] [PubMed]
Stanich, J.E.; Gibbons, S.J.; Eisenman, S.T.; Bardsley, M.R.; Rock, J.R.; Harfe, B.D.; Ordog, T.; Farrugia, G.
Anol as a regulator of proliferation. Am. ]. Physiol. Gastrointest. Liver Physiol. 2011, 301, G1044-G1051.
[CrossRef] [PubMed]


http://dx.doi.org/10.1042/bj20021469
http://dx.doi.org/10.1186/s13046-019-1292-y
http://www.ncbi.nlm.nih.gov/pubmed/31277672
http://dx.doi.org/10.1007/s00018-009-9154-y
http://www.ncbi.nlm.nih.gov/pubmed/19387548
http://dx.doi.org/10.1042/bj3640041
http://www.ncbi.nlm.nih.gov/pubmed/11988074
http://dx.doi.org/10.1158/0008-5472.CAN-10-1893
http://dx.doi.org/10.1158/1078-0432.CCR-13-0265
http://dx.doi.org/10.1007/s00424-011-0975-9
http://dx.doi.org/10.1152/physrev.00039.2011
http://dx.doi.org/10.1074/jbc.M109.065367
http://dx.doi.org/10.7554/eLife.26232
http://dx.doi.org/10.1074/jbc.M109.010074
http://www.ncbi.nlm.nih.gov/pubmed/19654323
http://dx.doi.org/10.1038/sj.bjc.6605823
http://www.ncbi.nlm.nih.gov/pubmed/20664600
http://dx.doi.org/10.1152/ajpgi.00196.2011
http://www.ncbi.nlm.nih.gov/pubmed/21940901

Cells 2020, 9, 1138 13 0f 15

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Wang, M.; Yang, H.; Zheng, L.Y.; Zhang, Z.; Tang, Y.B.; Wang, G.L.; Du, YH.; Lv, X.F; Liu, J.; Zhou, ].G;
et al. Downregulation of TMEM16A Calcium-Activated Chloride Channel Contributes to Cerebrovascular
Remodeling during Hypertension through Promoting Basilar Smooth Muscle Cell Proliferation. Circulation
2012, 125, 697-707. [CrossRef] [PubMed]

Duvvuri, U.; Shiwarski, D.J.; Xiao, D.; Bertrand, C.; Huang, X.; Edinger, R.S.; Rock, J.R.; Harfe, B.D.;
Henson, B.J.; Kunzelmann, K,; et al. TMEM164, induces MAPK and contributes directly to tumorigenesis
and cancer progression. Cancer Res. 2012, 72, 3270-3281. [CrossRef] [PubMed]

Ruiz, C.; Martins, J.R.; Rudin, E; Schneider, S.; Dietsche, T.; Fischer, C.A.; Tornillo, L.; Terracciano, L.M.;
Schreiber, R.; Bubendorf, L.; et al. Enhanced Expression of ANO1 in Head and Neck Squamous Cell
Carcinoma Causes Cell Migration and Correlates with Poor Prognosis. PLoS ONE 2012, 7, e43265. [CrossRef]
Mazzone, A.; Eisenman, S.T.; Strege, PR.; Yao, Z.; Ordog, T.; Gibbons, S.J.; Farrugia, G. Inhibition of Cell
Proliferation by a Selective Inhibitor of the Ca(2+)-activated Cl(-) Channel, Anol. Biochem. Biophys. Res.
Commun. 2012, 427, 248-253. [CrossRef]

Buchholz, B.; Faria, D.; Schley, G.; Schreiber, R.; Eckardt, K.U.; Kunzelmann, K. Anoctamin 1 induces
calcium-activated chloride secretion and tissue proliferation in polycystic kidney disease. Kidney Int. 2014,
85, 1058-1067. [CrossRef]

Guan, L.; Song, Y.; Gao, J.; Gao, J.; Wang, K. Inhibition of calcium-activated chloride channel ANO1 suppresses
proliferation and induces apoptosis of epithelium originated cancer cells. Oncotarget 2016, 7, 78619-78630.
[CrossRef]

Allawzi, AM.; Vang, A.; Clements, R.T.; Jhun, B.S.; Kue, N.R.; Mancini, T.J.; Landi, A.K.; Terentyev, D.;
O-Uchi, J.; Combhair, S.A.; et al. Activation of Anoctamin-1 Limits Pulmonary Endothelial Cell Proliferation
via p38-MAPK-dependent Apoptosis. Am. . Respir. Cell Mol. Biol. 2017. [CrossRef]

Carles, A.; Millon, R.; Cromer, A.; Ganguli, G.; Lemaire, F,; Young, J.; Wasylyk, C.; Muller, D.; Schultz, I.;
Rabouel, Y.; et al. Head and neck squamous cell carcinoma transcriptome analysis by comprehensive
validated differential display. Oncogene 2006, 25, 1821-1831. [CrossRef]

Miner, K.; Labitzke, K.; Liu, B.; Elliot, R.; Wang, P.; Henckels, K.; Gaida, K ; Elliot, R.; Chen, J.].; Liu, L.; et al.
Drug Repurposing: The Anthelmintics Niclosamide and Nitazoxanide Are Potent TMEM16A Antagonists
That Fully Bronchodilate Airways. Front. Pharmacol. 2019, 10, 51. [CrossRef] [PubMed]

Wang, AM.; Ku, HH,; Liang, Y.C.; Chen, Y.C.; Hwu, YM.; Yeh, T.S. The autonomous notch signal pathway
is activated by baicalin and baicalein but is suppressed by niclosamide in K562 cells. J. Cell. Biochem. 2009,
106, 682-692. [CrossRef] [PubMed]

Meurette, O.; Mehlen, P. Notch Signaling in the Tumor Microenvironment. Cancer Cell 2018, 34, 536-548.
[CrossRef]

Kim, S.Y; Kang, ].W.; Song, X.; Kim, B.K.; Yoo, Y.D.; Kwon, Y.T.; Lee, Y.J. Role of the IL-6-JAK1-STAT3-Oct-4
pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell. Signal. 2013, 25, 961-969.
[CrossRef]

Jin, Y.; Lu, Z,; Ding, K; Li, J.; Du, X.; Chen, C.; Sun, X.; Wu, Y.; Zhou, J.; Pan, J. Antineoplastic mechanisms
of niclosamide in acute myelogenous leukemia stem cells: Inactivation of the NF-kappaB pathway and
generation of reactive oxygen species. Cancer Res. 2010, 70, 2516-2527. [CrossRef]

Ren, X.; Duan, L.; He, Q.; Zhang, Z.; Zhou, Y.; Wu, D.; Pan, J.; Pei, D.; Ding, K. Identification of Niclosamide
as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med. Chem. Lett. 2010, 1, 454-459.
[CrossRef]

Osada, T.; Chen, M.; Yang, X.Y.; Spasojevic, I.; Vandeusen, ].B.; Hsu, D.; Clary, B.M.; Clay, TM.; Chen, W.;
Morse, M.A ; et al. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor
responses in tumors with activating APC mutations. Cancer Res. 2011, 71, 4172-4182. [CrossRef] [PubMed]
Wang, L.H.; Xu, M.; Fu, L.Q.; Chen, X.Y.; Yang, F. The Antihelminthic Niclosamide Inhibits Cancer Stemness,
Extracellular Matrix Remodeling, and Metastasis through Dysregulation of the Nuclear beta-catenin/c-Myc
axis in OSCC. Sci. Rep. 2018, 8, 12776. [CrossRef] [PubMed]

Arend, R.C.; Londono-Joshi, A.L; Gangrade, A.; Katre, A.A.; Kurpad, C.; Li, Y,; Samant, R.S.; Li, PK,;
Landen, C.N,; Yang, E.S.; et al. Niclosamide and its analogs are potent inhibitors of Wnt/beta-catenin, mTOR
and STAT3 signaling in ovarian cancer. Oncotarget 2016, 7, 86803-86815. [CrossRef] [PubMed]


http://dx.doi.org/10.1161/CIRCULATIONAHA.111.041806
http://www.ncbi.nlm.nih.gov/pubmed/22215857
http://dx.doi.org/10.1158/0008-5472.CAN-12-0475-T
http://www.ncbi.nlm.nih.gov/pubmed/22564524
http://dx.doi.org/10.1371/journal.pone.0043265
http://dx.doi.org/10.1016/j.bbrc.2012.09.022
http://dx.doi.org/10.1038/ki.2013.418
http://dx.doi.org/10.18632/oncotarget.12524
http://dx.doi.org/10.1165/rcmb.2016-0344OC
http://dx.doi.org/10.1038/sj.onc.1209203
http://dx.doi.org/10.3389/fphar.2019.00051
http://www.ncbi.nlm.nih.gov/pubmed/30837866
http://dx.doi.org/10.1002/jcb.22065
http://www.ncbi.nlm.nih.gov/pubmed/19160421
http://dx.doi.org/10.1016/j.ccell.2018.07.009
http://dx.doi.org/10.1016/j.cellsig.2013.01.007
http://dx.doi.org/10.1158/0008-5472.CAN-09-3950
http://dx.doi.org/10.1021/ml100146z
http://dx.doi.org/10.1158/0008-5472.CAN-10-3978
http://www.ncbi.nlm.nih.gov/pubmed/21531761
http://dx.doi.org/10.1038/s41598-018-30692-3
http://www.ncbi.nlm.nih.gov/pubmed/30143678
http://dx.doi.org/10.18632/oncotarget.13466
http://www.ncbi.nlm.nih.gov/pubmed/27888804

Cells 2020, 9, 1138 14 0f 15

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Ahn, SY,; Yang, ].H.; Kim, N.H.; Lee, K.; Cha, Y.H.; Yun, ].S.; Kang, H.E.; Lee, Y.; Choi, J.; Kim, H.S;
et al. Anti-helminthic niclosamide inhibits Ras-driven oncogenic transformation via activation of GSK-3.
Oncotarget 2017, 8, 31856-31863. [CrossRef] [PubMed]

Chen, B.; Wei, W.; Ma, L.; Yang, B.; Gill, RM.; Chua, M.S.; Butte, A.].; So, S. Computational Discovery
of Niclosamide Ethanolamine, a Repurposed Drug Candidate That Reduces Growth of Hepatocellular
Carcinoma Cells In Vitro and in Mice by Inhibiting Cell Division Cycle 37 Signaling. Gastroenterology 2017,
152,2022-2036. [CrossRef] [PubMed]

Li, Y;; Li, PK,; Roberts, M.].; Arend, R.C.; Samant, R.S.; Buchsbaum, D.]. Multi-targeted therapy of cancer by
niclosamide: A new application for an old drug. Cancer Lett. 2014, 349, 8-14. [CrossRef] [PubMed]

Han, Z.; Li, Q.; Wang, Y,; Wang, L.; Li, X,; Ge, N.; Wang, Y.; Guo, C. Niclosamide Induces Cell Cycle Arrest in
G1 Phase in Head and Neck Squamous Cell Carcinoma Through Let-7d/CDC34 Axis. Front. Pharmacol. 2018,
9, 1544. [CrossRef]

Wang, Y.; Wang, S.; Wu, Y; Ren, Y.; Li, Z,; Yao, X.; Zhang, C.; Ye, N.; Jing, C.; Dong, ].; et al. Suppression
of the Growth and Invasion of Human Head and Neck Squamous Cell Carcinomas via Regulating STAT3
Signaling and the miR-21/beta-catenin Axis with HJC0152. Mol. Cancer Ther. 2017, 16, 578-590. [CrossRef]
Liu, C,; Lou, W,; Zhu, Y,; Nadiminty, N.; Schwartz, C.T.; Evans, C.P,; Gao, A.C. Niclosamide inhibits androgen
receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer.
Clin. Cancer Res. Off. ]. Am. Assoc. Cancer Res. 2014, 20, 3198-3210. [CrossRef]

Wieland, A.; Trageser, D.; Gogolok, S.; Reinartz, R.; Hofer, H.; Keller, M.; Leinhaas, A.; Schelle, R.; Normann, S.;
Klaas, L.; et al. Anticancer effects of niclosamide in human glioblastoma. Clin. Cancer Res. Off. ]. Am. Assoc.
Cancer Res. 2013, 19, 4124-4136. [CrossRef]

Schweizer, M.T.; Haugk, K.; McKiernan, J.S.; Gulati, R.; Cheng, H.H.; Maes, ].L.; Dumpit, R.E; Nelson, P.S.;
Montgomery, B.; McCune, ].S.; et al. A phase I study of niclosamide in combination with enzalutamide in
men with castration-resistant prostate cancer. PLoS ONE 2018, 13, e0198389. [CrossRef]

Burock, S.; Daum, S.; Keilholz, U.; Neumann, K.; Walther, W.; Stein, U. Phase II trial to investigate the safety
and efficacy of orally applied niclosamide in patients with metachronous or sychronous metastases of a
colorectal cancer progressing after therapy: The NIKOLO trial. BMC Cancer 2018, 18, 297. [CrossRef]
Kunzelmann, K.; Ousingsawat, J.; Benedetto, R.; Cabrita, I.; Schreiber, R. Contribution of Anoctamins to Cell
Survival and Cell Death. Cancers 2019, 19, 382. [CrossRef]

Ousingsawat, J.; Wanitchakool, P.; Kmit, A.; Romao, A.M.; Jantarajit, W.; Schreiber, S.; Kunzelmann, K.
Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7-receptors in macrophages.
Nat. Commun. 2015, 6, 6245. [CrossRef] [PubMed]

Lerias, J.R.; Pinto, M.C.; Botelho, H.M.; Awatade, N.T.; Quaresma, M.C.; Silva, I.A.L.; Wanitchakool, P,;
Schreiber, R.; Pepperkok, R.; Kunzelmann, K.; et al. A novel microscopy-based assay identifies extended
synaptotagmin-1 (ESYT1) as a positive regulator of anoctamin 1 traffic. Biochim. Biophys. Acta 2018.
[CrossRef] [PubMed]

Yu, M.; Yeh, J.; Van Waes, C. Protein kinase casein kinase 2 mediates inhibitor-kappaB kinase and aberrant
nuclear factor-kappaB activation by serum factor(s) in head and neck squamous carcinoma cells. Carncer Res.
2006, 66, 6722-6731. [CrossRef] [PubMed]

Schreiber, R.; Ousingsawat, J.; Wanitchakool, P.; Sirianant, L.; Benedetto, R.; Reiss, K.; Kunzelmann, K.
Regulation of TMEM16A/ANO1 and TMEM16F/ANOS6 ion currents and phospholipid scrambling by Ca*
and plasma membrane lipid. ]. Physiol. (London) 2018, 596, 217-229. [CrossRef] [PubMed]

Namkung, W.; Yao, Z.; Finkbeiner, W.E.; Verkman, A.S. Small-molecule activators of TMEMI16A, a
calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. FASEB
J. 2011, 25, 4048-4062. [CrossRef]

Jin, X.; Shah, S.; Liu, Y.; Zhang, H.; Lees, M.; Fu, Z; Lippiat, ].D.; Beech, D.J.; Sivaprasadarao, A.; Baldwin, S.A;
et al. Activation of the Cl- Channel ANO1 by Localized Calcium Signals in Nociceptive Sensory Neurons
Requires Coupling with the IP3 Receptor. Sci. Signal. 2013, 6, ra73. [CrossRef]

Cabrita, I.; Benedetto, R.; Fonseca, A.; Wanitchakool, P; Sirianant, L.; Skryabin, B.V.; Schenk, LK,
Pavenstadt, H.; Schreiber, R.; Kunzelmann, K. Differential effects of anoctamins on intracellular calcium
signals. FASEB J. 2017, 31, 2123-2134. [CrossRef]


http://dx.doi.org/10.18632/oncotarget.16255
http://www.ncbi.nlm.nih.gov/pubmed/28418865
http://dx.doi.org/10.1053/j.gastro.2017.02.039
http://www.ncbi.nlm.nih.gov/pubmed/28284560
http://dx.doi.org/10.1016/j.canlet.2014.04.003
http://www.ncbi.nlm.nih.gov/pubmed/24732808
http://dx.doi.org/10.3389/fphar.2018.01544
http://dx.doi.org/10.1158/1535-7163.MCT-16-0606
http://dx.doi.org/10.1158/1078-0432.CCR-13-3296
http://dx.doi.org/10.1158/1078-0432.CCR-12-2895
http://dx.doi.org/10.1371/journal.pone.0198389
http://dx.doi.org/10.1186/s12885-018-4197-9
http://dx.doi.org/10.3390/cancers11030382
http://dx.doi.org/10.1038/ncomms7245
http://www.ncbi.nlm.nih.gov/pubmed/25651887
http://dx.doi.org/10.1016/j.bbamcr.2017.11.009
http://www.ncbi.nlm.nih.gov/pubmed/29154949
http://dx.doi.org/10.1158/0008-5472.CAN-05-3758
http://www.ncbi.nlm.nih.gov/pubmed/16818647
http://dx.doi.org/10.1113/JP275175
http://www.ncbi.nlm.nih.gov/pubmed/29134661
http://dx.doi.org/10.1096/fj.11-191627
http://dx.doi.org/10.1126/scisignal.2004184
http://dx.doi.org/10.1096/fj.201600797RR

Cells 2020, 9, 1138 15 of 15

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Treharne, K.J.; Xu, Z.; Chen, J.-H.; Best, O.G.; Cassidy, D.; Gruenert, D.C.; Hegyi, P.; Gray, L.; Sheppard, D.N.;
Kunzelmann, K.; et al. Inhibition of protein kinase CK2 closes the CFTR CI- channel, but has no effect on the
cystic fibrosis mutant F508-CFTR. Cell Physiol. Biochem. 2009, 24, 347-360. [CrossRef]

Pagano, M.A.; Arrigoni, G.; Marin, O.; Sarno, S.; Meggio, F.; Treharne, K J.; Mehta, A.; Pinna, L.A. Modulation
of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with
cystic fibrosis pathogenesis. Biochemistry 2008, 47, 7925-7936. [CrossRef]

Tosoni, K.; Stobbart, M.; Cassidy, D.M.; Venerando, A.; Pagano, M.A ; Luz, S.; Amaral, M.D.; Kunzelmann, K,;
Pinna, L.A.; Farinha, C.M.; et al. CFTR mutations altering CFTR fragmentation. Biochem. . 2012, 449, 295-305.
[CrossRef]

Kunzelmann, K.; Mehta, A. CFTR: A hub for kinases and cross-talk of cAMP and Ca. FEBS J. 2013, 280,
4417-4429. [CrossRef] [PubMed]

Bachhuber, T.; Almaca, J.; AlDehni, F.; Mehta, A.; Amaral, M.D.; Schreiber, R.; Kunzelmann, K. Regulation
of the epithelial Na+ channel by protein kinase CK2. |. Biol. Chem. 2008, 283, 13225-13232. [CrossRef]
[PubMed]

Berman, ].M.; Mironova, E.; Stockand, J.D. Physiological Regulation of the Epithelial Na+ Channel by Casein
Kinase II. Am. J. Physiol. Ren. Physiol. 2018. [CrossRef] [PubMed]

Tian, Y.; Kongsuphol, P.; Hug, M.].; Ousingsawat, J.; Witzgall, R.; Schreiber, R.; Kunzelmann, K.
Calmodulin-dependent activation of the epithelial calcium-dependent chloride channel TMEM16A. FASEB ].
2011, 25, 1058-1068. [CrossRef]

Kunzelmann, K.; Kongsuphol, P.; AlDehni, F; Tian, Y.; Ousingsawat, J.; Warth, R.; Schreiber, R. Bestrophin and
TMEM16—Ca2+ activated Cl- channels with different functions. Cell Calcium 2009, 46, 233-241. [CrossRef]
Perez-Cornejo, P.; Gokhale, A.; Duran, C.; Cui, Y.; Xiao, Q.; Hartzell, H.C.; Faundez, V. Anoctamin 1
(Tmem16A) Ca2+-activated chloride channel stoichiometrically interacts with an ezrin-radixin-moesin
network. Proc. Natl. Acad. Sci. USA 2012, 109, 10376-10381. [CrossRef]

Adelman, J.P; Maylie, J.; Sah, P. Small-conductance Ca2+-activated K+ channels: Form and function.
Annu. Rev. Physiol. 2012, 74, 245-269. [CrossRef]

Ibrahim, S.H.; Turner, M.].; Saint-Criq, V.; Garnett, J.; Haq, L.].; Brodlie, M.; Ward, C.; Borgo, C.; Salvi, M.;
Venerando, A.; et al. CK2 is a key regulator of SLC4A2-mediated CI(-)/HCO3(-) exchange in human airway
epithelia. Pflug. Arch. Eur. ]. Physiol. 2017, 469, 1073-1091. [CrossRef]

Luz, S.; Kongsuphol, P.; Mendes, A.L; Romeiras, E; Sousa, M.; Schreiber, R.; Matos, P; Jordan, P.; Mehta, A.;
Amaral, M.D,; et al. Contribution of CK2 and spleen tyrosine kinase (SYK) to CFTR trafficking and
PKA-induced activity. Mol. Cell Biol. 2011, 31, 4392-4404. [CrossRef]

Koreishi, M.; Yu, S.; Oda, M.; Honjo, Y.; Satoh, A. CK2 phosphorylates Sec31 and regulates ER-To-Golgi
trafficking. PLoS ONE 2013, 8, e54382. [CrossRef]

Gerst, J.E. SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell. Mol. Life Sci. 1999, 55,
707-734. [CrossRef] [PubMed]

Mazzone, A.; Gibbons, S.J.; Bernard, C.E.; Nowsheen, S.; Middha, S.; Almada, L.L.; Ordog, T.; Kendrick, M.L.;
Reid, L.K,; Shen, K.R,; et al. Identification and characterization of a novel promoter for the human ANO1
gene regulated by the transcription factor signal transducer and activator of transcription 6 (STAT6). FASEB
J. 2015, 29, 152-163. [CrossRef]

Chen, Y,; Liu, W.; Wang, Y.; Zhang, L.; Wei, J.; Zhang, X.; He, F.; Zhang, L. Casein Kinase 2 Interacting
Protein-1 regulates M1 and M2 inflammatory macrophage polarization. Cell. Signal. 2017, 33, 107-121.
[CrossRef] [PubMed]

Lee, M.C.; Chen, Y.K,; Hsu, YJ.; Lin, B.R. Niclosamide inhibits the cell proliferation and enhances the
responsiveness of esophageal cancer cells to chemotherapeutic agents. Oncol. Rep. 2020, 43, 549-561.
[CrossRef] [PubMed]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1159/000257427
http://dx.doi.org/10.1021/bi800316z
http://dx.doi.org/10.1042/BJ20121240
http://dx.doi.org/10.1111/febs.12457
http://www.ncbi.nlm.nih.gov/pubmed/23895508
http://dx.doi.org/10.1074/jbc.M704532200
http://www.ncbi.nlm.nih.gov/pubmed/18308722
http://dx.doi.org/10.1152/ajprenal.00469.2017
http://www.ncbi.nlm.nih.gov/pubmed/29021227
http://dx.doi.org/10.1096/fj.10-166884
http://dx.doi.org/10.1016/j.ceca.2009.09.003
http://dx.doi.org/10.1073/pnas.1200174109
http://dx.doi.org/10.1146/annurev-physiol-020911-153336
http://dx.doi.org/10.1007/s00424-017-1981-3
http://dx.doi.org/10.1128/MCB.05517-11
http://dx.doi.org/10.1371/journal.pone.0054382
http://dx.doi.org/10.1007/s000180050328
http://www.ncbi.nlm.nih.gov/pubmed/10379359
http://dx.doi.org/10.1096/fj.14-258541
http://dx.doi.org/10.1016/j.cellsig.2017.02.015
http://www.ncbi.nlm.nih.gov/pubmed/28212865
http://dx.doi.org/10.3892/or.2019.7449
http://www.ncbi.nlm.nih.gov/pubmed/31894334
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Material and Methods 
	Cell Culture 
	RT-PCR, siRNAs 
	Patch Clamping 
	Western Blotting 
	Immunocytochemistry 
	Measurement of [Ca2+]i 
	Proliferation and Cell Death Assay 
	Materials and Statistical Analysis 

	Results 
	High-Throughput Assay Identifies CK2 as a Regulator of TMEM16A 
	Knockdown or Inhibition of CK2 Inhibits Activation of TMEM16A 
	CK2 Regulates Membrane Expression of TMEM16A in Cal33 Head and Neck Cancer Cells 
	Inhibition of CK2 and TMEM16A Inhibits Cell Proliferation 
	Inhibition of TMEM16A and Inhibition of CK2 Attenuates Receptor-Mediated Increase in the Intracellular Ca2+ Concentration 

	Discussion 
	References

