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Abstract: In order to break tumor resistance towards traditional treatments, we investigate the 

response of tumor and immune cells to a novel, cytokine-armed oncolytic adenovirus: Ad5/3-d24-

E2F-hTNFa-IRES-hIL2 (also known as TILT-123 and OAd.TNFa-IL2). There are several pattern 

recognition receptors (PRR) that might mediate adenovirus-infection recognition. However, the role 

and specific effects of each PRR on the tumor microenvironment and treatment outcome remain 

unclear. Hence, the aim of this study was to investigate the effects of OAd.TNFa-IL2 infection on 

PRR-mediated danger- and pathogen-associated molecular pattern (DAMP and PAMP, 

respectively) signaling. In addition, we wanted to see which PRRs mediate an antitumor response 

and are therefore relevant for optimizing this virotherapy. We determined that OAd.TNFa-IL2 

induced DAMP and PAMP release and consequent tumor microenvironment modulation. We show 

that the AIM2 inflammasome is activated during OAd.TNFa-IL2 virotherapy, thus creating an 

immunostimulatory antitumor microenvironment. 

Keywords: aenovirus; virotherapy; immunotherapy; AIM2; oncolytic virus; TILT-123; 

immunological cell death; DAMP; PAMP 

 

1. Introduction 

By selective replication in tumor cells, oncolytic viruses create an immunostimulatory tumor 

microenvironment, which has been widely documented to be essential for successful cancer 

immunotherapy 1,2. Besides tumor-bursting lytic capabilities, oncolytic viruses have additional, 

intrinsic immune-activating properties, thus utilizing two separate mechanisms to stop tumor 

growth. Furthermore, most oncolytic viruses can relatively easily be modified to augment their 

intrinsic antitumoral effects 3. For example, Amgen’s herpes virus Talimogene Laherparepvec 

(Imlygic), which is modified to encode Granulocyte Macrophage Colony-Stimulating Factor (GM-

CSF), has shown good efficacy melanoma, and it has been approved for clinical use in the USA and 

the EU 4,5. 
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Similarly, the immunostimulating properties of the adenovirus studied here have been 

enhanced by the addition of two cytokine coding genes: IL-2 and TNFa. Consequently, when 

expressed, these two cytokines increase T-cell infiltration and stimulation in a tumor 6, both of 

which have been associated with positive patient outcomes 7,8. However, the exact molecular 

mechanism behind the noted antitumor efficacy of virotherapy and OAd.TNFa-IL2 virus specifically 

is still poorly understood. Therefore, in order to shed light on this issue, the molecular mechanisms 

causing antitumoral effects were mapped in this study.  

Several receptors and sensors have been identified as in-cell alarm systems, which inform the 

cell of foreign entities, like viruses, capsid proteins, or extranuclear DNA. These receptors are called 

pattern recognition receptors (PRR). The engagement of these receptors creates a signal that activates 

the innate immune system, enhancing antigen processing and stimulating the adaptive immune 

system. Simultaneously, these signals prime and enhance antitumoral immunity. Therefore, PRR-

receptors such as Toll-like receptors (TLR), nucleotide-binding oligomerization domain-like 

receptors (NOD-like receptors), the stimulator of interferon genes (STING) pathway and 

inflammasomes, such as absent in melanoma 2 (AIM2), have been shown to play an important role 

in the intratumoral signaling and tumor growth inhibition and might thus have a marked effect on 

patient outcome 9–11. For example, TLR9 recognizes intracellular cytosomal non-methylated DNA, 

such as adenovirus DNA. The activation of this receptor’s downstream signaling cascade leads to the 

activation of NFκB signaling and eventual cytokine release (such as TNFa, IL-6, and IL-12). The effects 

of NFκB-signaling on patient outcome are yet to be determined, but some studies indicate that 

chronic activation promotes a tumor growth-favorable environment. For example, studies have 

shown that NFκB activity can promote tumor cell, can suppress apoptosis, and can enhance vascular 

growth. growth12,13. Furthermore, it can energize the immune system in certain circumstances 13. 

However, contradicting results for its role in cancer has also been documented; one recurring theme 

in immunology is that chronic proinflammatory signaling can contribute to carcinogenesis, while 

acute signaling can cause antitumor immune responses14. 

Inflammasomes, such as AIM2, are proteins that, upon stimulation, multimerize and react to 

intracellular oddities, such as cytosolic DNA. Binding of dsDNA to the HIN domain of AIM2 releases 

the amino-terminal pyrin domain (PYD), leading to the recruitment and multimerization of 

apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) proteins and 

to the recruitment and activation of caspase-1, which in turn modifies gasdermin and IL-1beta to their 

active forms 15,16. De Konig et al. showed a tumor-suppressive role for AIM2 when they studied 

both epithelial and melanocytic lesions 17. Furthermore, a lack of AIM2 expression has been 

suggested to cause poor patient outcome in colorectal cancer 11. Additionally, AIM2 activation has 

an NFκB-inhibiting and consequently cell growth-impeding function. However, thorough research 

still needs to be done on the role of AIM2 in order to avoid erroneous generalized conclusions. 

Here, we studied danger- and pathogen-associated molecular pattern (DAMP and PAMP, 

respectively) signaling in the context of OAd.TNFa-IL2 virotherapy. We screened receptors and 

signaling cascades activated upon OAd.TNFa-IL2 infection, which could be responsible for 

OAd.TNFa-IL2 -induced antitumor efficacy. The results give insight into the biology and clinical use 

of adenoviruses, TNFa, and IL-2. 

2. Results 

2.1. OAd.TNFa-IL2 Induces Immunostimulating Microenvironmental Changes Through DAMP and PAMP 

Release and Expression 

To determine if OAd.TNFa-IL2 virotherapy affects the innate immunity and the 

microenvironment, we measured three established DAMP- and PAMP-reporter molecules also called 

alarmins: calreticulin, HMGB1, and extracellular ATP. We used three cell lines representing different 

cancer types: lung adenocarcinoma A549, ovarian cancer OVCAR-3, and melanoma SK-MEL-28. 

Early, medium, and late time points (6 h, 24 h, and 48 h postinfection) were selected to determine 

both immediate and long-term effects of the infection. OAd.TNFa-IL2 induced alarmin release at 
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several time points (Supplementary Figure S1). The infection induced significant cell surface 

expression of calreticulin at 6 h compared to mock treated cells p = 0.0032 (Figure 1A). Extracellular 

ATP levels were raised 24 h after infection (OAd.TNFa-IL2 vs. mock p = 0.002) (Figure 1B) and 

extracellular HMGB1 levels were raised after 48 h (OAd.TNFa-IL2 vs. mock p = 0.0114). These results 

indicate that OAd.TNFa-IL2 might create an immunostimulating signal through DAMP and PAMP 

release in the tumor. 

 

Figure 1. OAd.TNFa-IL2 induces alarmin release associated with danger- and pathogen-

associated molecular pattern (DAMP and PAMP, respectively) signaling. Different cell lines were 

infected with an unarmed oncolytic adenovirus (OAd), Ad5/3-E2F-d24-hIL2 (OAd.IL2), Ad5/3-E2F-

d24-hTNFa (OAd.TNFa), or Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (OAd.TNFa-IL2) 100 VP/ cell. The 

release of DAMP and PAMP molecules (A) calreticulin was measured by flow cytometry, and (B) 

ATP and (C) HMGB1 were measured by ELISA. The data are presented as mean + SEM; the group 

size was n > 4. Statistical significance was determined by Kruskal–Wallis test; groups were compared 

to mock. *p < 0.05; **p < 0.01; ***p < 0.001. 

2.2. Oncolytic Adenovirus Therapy Affects the Transcriptome Landscape of Both Cancer and Immune Cells 

Since alarmin release and the presence of OAd.TNFa-IL2 can activate several different receptors 

and downstream signaling molecules, mRNA sequencing was employed to pinpoint which DAMP- 

and PAMP-signaling cascades in both cancer cells (SK-MEL-28 melanoma cells) and dendritic cells 

(DCs) are reactive to OAd.TNFa-IL2 virotherapy. Adenovirus infection caused an upregulation of 

several toll-like receptor signaling cascades: TLR1, 2, 3, 5, 7, and 9. Additionally, inflammasome 

receptor AIM2 was upregulated in unfiltered RNA sequencing results in both SK-MEL-28 and DC 

(Supplementary Table S1). However, once the results were filtered for the possible bias of the 

sequencing system, only a few DAMP- and PAMP-signaling cascade genes were upregulated. Of 

note, AIM2 was upregulated in SK-MEL28 also after filtering (Supplementary Table S1). 

Additionally, cytokines IL-1beta and IL-18, which are released after AIM2 activation, were also highly 

upregulated compared to mock. Therefore, we further investigated the role of AIM2 during our 

virotherapy regime. 

Table 1 presents the most upregulated genes during OAd.TNFa-IL2 adenovirus infection. 

Interestingly, OAd.TNFa-IL2 -encoded cytokines IL-2 and TNFa were the two most expressed genes 

in SK-MEL-28 cells during infection. This indicates active virus replication and multiplication, 

plausibly ending in a cancer cell lysis. There was an over 11-fold increase in the expression levels of 

IL-2 and TNFa during infection as compared with noninfected SK-MEL-28 cells. Regarding DCs, 

which are not malignant cells, it has been recorded that, while 5/3 chimeric, d24 adenoviruses can be 

internalized by these cells, this does not lead to productive replication, since the virus is tumor 

selective 18. This notion is supported by our results, as IL-2 and TNFa mRNA levels in dendritic 

cells were up 1.6-fold for IL-2 while the TNFa expression was not upregulated significantly. This 

implies that the replication of OAd.TNFa-IL2 is cancer-cell specific as designed and does not harm 

normal cells such as DCs.  
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The third most affected gene in SK-MEL-28 cells was ubiquitin, which has a role in protein 

degradation and successful adenovirus replication. Ubiquitin showed over 9-fold higher expression 

in infected cells compared to mock-treated cells.  

The genes that were subjected to the highest gene expression level changes in DCs were less well 

known. Myotrophin was the most upregulated gene in infected DCs with almost 10-fold increase in 

expression. Although the effect of myotrophin in DCs is not well studied, the expression seems to 

have an inhibitory effect on NFκB signaling, which in turn has in some cancer studies been seen as a 

beneficial trait 19. Moreover, the gene expression level of CXCL9, a potent leukocyte chemotaxis 

molecule, was up threefold in DCs. Overall, these gene expression changes indicate that OAd.TNFa-

IL2 induces favorable changes in the tumor by affecting both the innate response through the infected 

cells and the adaptive immune system. 

Table 1. In vitro assessment of intracellular virus-induced signaling in OAd.TNFa-IL2-infected SK-

MEL-28 melanoma cells or dendritic cells (DCs), evaluated by RNA-sequencing: Top 8 genes 

showing the most marked upregulation in RNA expression levels as measured through RNA-

sequencing (Poisson distribution filtering applied) are listed. Note that the virus codes for TNFa and 

IL-2 but transgene expression is linked to replication, which only occurs in tumor cells. 

SK-MEL-28 

Gene  Abbreviation 

Log2 Ratio (Infected 

versus uninfected 

cancer cells) 

Up- or 

Downregulation  
p-value 

Interleukin 2 IL-2 11.620 Up 0 

Tumor necrosis factor alfa TNFa 11.388 Up 0 

Ubiquitin UBD 9.958 Up 
1.284006 × 10-

182 

Histone H2A type 1  HIST1H2AI 9.935 Up 1.307986 × 10-08 

Chemokine (C-C motif) ligand 2 CCL2 9.527 Up 6.97892 × 10 -71 

Abhydrolase domain containing 

14A and aminoacylase 1 (read-

through transcription) 

ABHD14A-ACY1 8.991 Up 1.422174 × 1018 

Myotrophin MTPN 8.969 Up 1.681326 × 10-38 

Interleukin 32 IL32 8.394 Up 9.93188 × 10-74 

         

DC 

Gene Abbreviation 

Log2 Ratio 

(Infected versus 

uninfected DC) 

Up or Down 

-Regulation 
p-value 

Myothrophin MTPN 9.629 Up 3.8971 × 10-65 

Locus101929802 LOC101929802 6.931 Up 9.91084 × 10-14 

Locus102724994 LOC102724994 6.919 Up 8.93212 × 10-07 

Zink finger816-Zink finger321P ZNF816-ZNF321P 6.443 Up 1.447082 × 10-05 

Heat shock 10kDa protein 1 and 

MOB family member 4, phocein 

(read-through transcription) 

HSPE1-MOB4 5.807 Up 1.447082 ×10-05 

Nuclear Pore Complex Interacting 

Protein Family Member A3 
NPIPA3 4.518 Up 1.870752 × 10-16 

Chemokine (C-X-C motif) ligand 9 CXCL9 3.0 Up 2.73386 × 10-10 

Platelet glycoprotein Ib alpha chain GP1BA 2.269 Up 7.3774 × 10-106 

2.3. NFκB-Related Genes are Downregulated During OAd.TNFa-IL2 Infection, but TLR9 Signaling is not 

Activated by OAd.TNFa-IL2 

To study the correlation of mRNA and functional protein expression, we analyzed protein levels in 

infected SK-MEL-28 cells by ELISA, NFκB pathway protein analysis, and HEK-Blue-hTLR9 cell analysis.  

ELISA results showed a higher relative expression of AIM2 6 and 48 h postinfection (Figure 2A). 

Additionally, the AIM2 protein ASC was upregulated to 119.5% compared to mock cell cultures, 

while the NFκB proteins were mostly downregulated during infection (Figure 2B). Interestingly, the 
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activation of AIM2 is enhanced by arming OAd with both TNFa and IL2, even though this trend is 

not statistically significant.  

6 24 48

 

Figure 2. Protein expression measurements: (A) The AIM2 protein levels measured from infected (100 

VP/cell) SK-MEL-28 cells with indicated viruses at several timepoints by ELISA. Kruskal–Wallis SEM 

compared to mock, *p = 0.05. (B) Infected SK-MEL28 cells were analyzed for NFκB-related protein 

expression at 48 h post infection.(p.i.) (100 VP/cell). Kruskal–Wallis SEM compared to mock, *p = 0.05. 

HEK-blue hTLR9 cells were employed to analyse if virotherapy induced TLR9 activation. 

OAd.TNFa-IL2 or cell culture supernatant collected from infected cells did not significantly induce 

TLR9 pathway activation, as evaluated with indicator HEK-blue cells (Figure 3). Additionally, the 

effect of single armed viruses on TLR9 activation was investigated. Only TNFa supernatants were 

shown to activate the TLR9 signaling cascade, plausibly through the supernatant containing the lysis 

products (including TNFa) of cells lysed by the viruses. These conclusions were supported by the 

RNA-seq results (Supplementary Table 1), indicating that TLRs are not in a main role in recognizing 

OAd.TNFa-IL2 infection and in facilitating microenvironmental changes. All in all, the results show 

that the affected cascades are mostly NFκB signaling independent and the signal is conveyed through 

receptors other than TLR9. 

 

Figure 3. Assessment of virotherapy-induced TLR9 activation in HEK-blue TLR9 cells: HEK-blue 

hTLR9 cells were treated with either viruses or supernatants collected from infected cell cultures for 

8 h and analyzed spectrophotometrically. Agonist = ODN2006 (synthetic, unmethylated CpG 

dinucleotides). The data are shown as means + SEM, n ≥ 4. Statistical significance is determined by 

Kruskal–Wallis test, treatment compared with mock *p < 0.05; ***p < 0.001. 
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2.4. Knockout of AIM2 Diminishes the Effect of Virotherapy 

In order to determine the role of AIM2 in antitumor efficacy and its effect on tumor cytokine 

composition, we implanted either AIM2−/− knockout (KO) or wild-type (wt) HapT1 tumors in Syrian 

hamsters’ flanks. The knockout cell line was CRISPR/Cas9 created, and the deletion of AIM2 was 

confirmed by sequencing (Supplementary Figure S5) 

Subcutaneous tumors were treated with virotherapy five times, with OAd.TNFa-IL2 or unarmed 

virus or mock treatment. The KO tumors showed a trend of more aggressive tumor growth. Mock 

KO tumors grew bigger than wild-type mock tumors, having a mean volume of 533 mm3 compared 

to KO tumors with a mean volume of 956 mm3 (p = 0.0397). Overall, OAd.TNFa-IL2 hindered tumor 

growth in both tumor types (Figure 4). 

 

Figure 4. In vivo assessment of AIM2 knockout (KO) effect on tumor growth: Syrian 

hamster subcutaneous HapT1 or HapT1 AIM2−/− tumors were treated every other day 

(treatment days indicated as bold ticks on x-axis) with indicated viruses or control until 

collection of samples on day 11 of the experiment. (A) Tumor growth measured in volume. 

(B) Percentual growth of tumors on experiment day 11 compared to the size on experiment 

day 1: Statistical analysis was conducted compared to PBS treated, “wt” HapT1 tumors by 

Kruskal–Wallis test; mean + SEM are shown, **p < 0.01. 

2.5. Virotherapy Induces AIM2-Dependent, Pro-Inflammatory Tumor Landscape Modification In Vivo 

HAPT1 or HAPT1 AIM2 KO tumors were collected and analyzed by reverse transcriptase (RT) 

qPCR (Figure 5). Importantly, IL-1beta was upregulated in wt OAd.TNFa-IL2-treated group, 

indicating activation of AIM2 signaling cascade (Figure 5A), which was diminished by KO. IL-2 

concentrations were higher in both cell types treated with the OAd.TNFa-IL2 probably due to virus 

replication and virus-induced signaling (Figure 5B), Also, KO of AIM2 and both virotherapies 

increased intraturmoral IL2Ra levels (Figure 5C). IL-10 levels remained the same between all groups, 

except for OAd treated wt cells, where it significantly lowered the expression (Figure 5D). The 

cytokine IL-6 was among the most affected by AIM2 KO. Its expression was significantly lower in 

HAPT1 KO tumors (Figure 5E). OAd.TNFa-IL2 infection caused significantly higher IL-12p35 levels 

in both wt and KO cells compared to mock treated wt tumors (Figure 5F). As expected, virus 

treatments caused a trend of higher IFNg expression in the virotherapy treated tumors (Figure 5G). 

TNFa, expression was upregulated in all KO groups and in wt OAd.TNFa-IL2-treated tumors. 

Interestingly, the DC maturation marker CD83 was significantly more expressed in wt OAd and 

OAd.TNFa-IL2-treated tumors as well as KO OAd.TNFa.IL2-treated tumors, indicating that virus-

induced AIM2-mediated tumor-cell signaling might play a role in DC activation. The noted higher 

values could either be caused by an influx of DCs due to the virus or alternatively due to maturation 

of the already infiltrated DCs upon infection. 
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Figure 5. Determination of tumor microenvironment cytokine gene expression changes due to 

virotherapy: Virotherapy-treated subcutaneous HapT1 (AIM2 −/− KO or “wt”) tumors were collected 

and analyzed by RTqPCR for indicated markers of the immunological status of the tumor. (A) IL1b, 

(B) IL2, (C) IL2Ra, (D) IL6, (E) IL10, (F) IL12p35, (G) INFg, (H) TNFa, and (I) CD83. Statistical 

significance towards the wt mock control was analyzed by Kruskal–Wallis test *p < 0.05; **p < 0.01, 

***p < 0.001, after ROUT outlier (Q = 1%) removal; lines represent median values. 

3. Materials and Methods 

3.1. Cell lines and Viruses 

A549, OVCAR-3, and SK-MEL-28 cell lines were acquired from the ATCC cell bank, while 

hamster pancreatic cancer HapT1 was acquired from DSMZ. Cells were cultured in recommended 

conditions: Roswell Park Memorial Institute medium (RPMI) 1640 or Dulbecco’s modified Eagles’s 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/mL 

penicillin, and 100 μg/mL streptomycin (all from Sigma-Aldrich) at +37 °C and 5% CO2. The HAPT1 

AIM2 KO cell line was created using CRISPR-Cas9, as described in the Supplementary Materials and 

Methods. 

HEK-Blue hTLR9 were acquired from Invivogen (San Diego, CA, USA). The tests were 

performed according to manufacturer protocols. A549 cells were cultured and infected (100 VP/cell), 

and the supernatant used for TLR9 activation was collected 48 h postinfection and filtered (100-kDa 

filter unit, Amicon Ultra 4, Merk Millipore Burlington, MA, USA) for virus removal according to 

protocol. Alternatively, the HEK-Blue hTLR9 cells were directly infected and measured according to 

manufacturers’ protocol (100 VP/mL).  

Immature dendritic cells (DC) were produced from PBMCs isolated from healthy donors’ blood 

(Finnish Red Cross blood service, approved by the ethical board 12.03.2019, 14/2019). First, PBMCs 

were extracted by density centrifugation using Lymphoprep solution (Stemcell 

technologies,Vancouver, Canada) according to manufacturer’s instructions. Erythrocytes were 

removed with ACK lysis buffer (Thermo Fisher, Waltham, MA, USA). Then, cells were washed and 
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DCs were isolated from the PBMC fraction using CD14+ magnetic beads (MACS Miltenyi Biotech, 

Bergisch Gladbach, Germany) according to standard procedures. Immature DCs were grown in 

RPMI supplemented with 10% FBS, 100 U/mL penicillin, 100 μg/mL streptomycin, 1% L-glutamate, 

20 ng/mL IL-4, and GM-CSF for 6 days until usage. The CD1+ was confirmed with flow cytometry. 

The design, construction, production, and purification of used viruses were described 

previously 66. Briefly, all viruses are 5/3 chimeric adenoviruses with a 24-base pair deletion in the 

E1A region and an E2F promoter in the E1 region. To this, hIL-2, hTNFa, or hTNFa-IREs-hIL2 genes 

were inserted into the E3 region of the adenovirus “backbone” genome.  

3.2. DAMP and PAMP Measurement 

SK-MEL-28, OVCAR-3, or A549 cells (0.4 × 106 cells/well of a 6-well plate) were infected with 100 

VP/mL of unarmed, single-armed, or double-armed adenoviruses. The supernatants or the cells were 

collected 6, 24, or 48 h p.i. for ATP or HMGB1 measurements. ATP release was measured with ATP 

Determination kit Molecular probes (Invitrogen, Carlsbad, CA, USA) according to standard protocol. 

The HMGB1 concentration was measured by HMGB1 ELISA kit (IBL), according to manufacturer’s 

instructions. In turn, calreticulin cell-surface expression was measured from collected and stained 

cells by flow cytometry.  

3.3. RNA-Sequencing 

SK-MEL-28 cells were seeded in 6-well plates. After 24 h, OAd.TNFa-IL2 virus (100 VP/cell) 

and/or DCs were added to achieve a cell ratio of 1:2 (=2,000,000 DCs/well). Cells were incubated in 

10% FBS, 1% Pen/Strep, and 1% L-glutamate in RPMI media, supplemented with IL4 and GMCSF for 

48 h prior to sample collection. Collected cells were suspended into RNAlater (Qiagen, Valencia, CA, 

USA). RNA was extracted using the RNeasy Mini Kit (Qiagen, Valencia, CA, USA) according to 

manufacturer’s instructions. Finally, RNA quality and quantity were measured using Nanodrop 1000 

(Waltham, MA, USA). The sequencing was done by BGISEQ-500RS (BGI Europe Genome Center, 

Amsterdam, The Netherlands). 

3.4. NFκB Signaling Pathway Analysis 

SK-MEL-28 cells were grown in T175 flasks and infected with 100 VP/cell or left uninfected 

(mock control). The cells were collected, and the proteins were isolated using Qproteome Mammalian 

Protein Prep Kit (Qiagen) according to standard protocols. Protein concentrations were determined 

with Bradford assay, and 50 μg of the resulting proteins was used for Proteome Profiler Human NFκB 

pathway Array (R&D systems, Minneapolis, MN, USA) according to protocol. The intensity of 

membrane proteins was determined by Image J software.  

3.5. Flow Cytometry 

Flow cytometry preparations have been described previously 6,20 6, 20. In short, cells were first 

collected and washed with phosphate buffered saline (PBS). Antibodies CD1, CD3, CD11c, CD80, 

and CD86 (all from Biolgened, San Diego, CA, USA) were used for staining for DC maturation 

analysis. Staining was preformed according to manufacturer’s instructions. Calreticulin expression 

was measured from collected cells using Ab2907 anti-calreticulin antibody as primary antibody (IBL) 

and Ab 15007 Goat Anti-Rabbit IgG H&L as secondary antibody (Alexa Fluor® 488) (Abcam, 

Cambridge, United Kingdom). Cells were analyzed using the BD Accuri C6 flow cytometer and by 

BD Accuri C6 software (BD biosciences, San Jose, CA, USA). 

3.6. In Vivo Analysis  

Two subcutaneous tumors (HapT1 or HapT1 AIM2 KO, 4 × 106 cells/tumor) were implanted into 

the flanks of Syrian hamsters. The tumors were allowed to grow until reaching a size of 

approximately 5 mm in diameter. Then, tumors were treated by intratumoral injections every other 

day for a total of five times, with either PBS, unarmed oncolytic adenovirus (OAd), or OAd.TNFa-
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IL2, 1 × 109 VPs/tumor/treatment time, diluted into a final volume of 50 μL PBS. The animals were 

under isoflurane anesthesia during all procedures. The tumors were collected on the 11th day of the 

experiment into RNAlater (Qiagen, Valencia, CA, USA) and analyzed by RTqPCR. The Experimental 

Animal Committee of the University of Helsinki and the Provincial Government of Southern Finland 

have approved the animal experiment performed in this study (Approval number ESAVI/28404/2019 

date 9.10.2019). 

3.7. Real-Time Quantitative PCR Analysis of Tumors 

Tumor samples were harvested from euthanized hamsters, cut into pieces (50–100 mg/piece), 

and submerged in 1 mL of RNAlater (RLT buffer, Qiagen, Valencia, CA, USA) at +4 °C. RNA later 

was removed after 1 day, and the samples were frozen at −80 °C. Approximately 30 mg of the tissue 

samples was homogenized in RLT buffer, and RNA was extracted from the homogenate using the 

RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. RNA (~200 ng) was 

converted to cDNA by reverse transcriptase (QuantiTect Rev. Transcription Kit) (Qiagen) according 

to manufacturer’s protocol. The produced cDNA samples were used for RTqPCR to determine the 

effects of AIM2 KO on the tumor microenvironment (Supplementary Materials and Methods). 

4. Discussion 

Although new and improved therapy options have been developed, cancer is still one of the 

leading causes of death in the world, especially, refractory tumors need further treatment options. 

Therefore, we need to optimize and develop methods to treat patients that are unresponsive or 

refractory to treatments available to date. In line with this, OAd.TNFa-IL2 was created and it has 

shown great promise in vivo by curing 80% of Syrian Hamsters as a single treatment and 100% of the 

animals when given as a combination treatment with Tumor- infiltrating lymphocyte (TIL) therapy 

6. However, the molecular mechanism behind this impressive cure rate in vivo has not been fully 

determined. Therefore, this study set out to dissect the mechanism behind this observed effect in 

order to further enhance the therapy and to determine the biology behind the reaction. Moreover, 

understanding the mechanisms of this virus might help in selecting responsive patient populations 

for the treatment.  

To investigate this matter, we determined whether OAd.TNFa-IL2 could induce PRR-activating 

DAMP- and PAMP-molecule release. Our study shows that OAd.TNFa-IL2 induced both 

extracellular ATP and HMGB1 release and increased cell surface expression of calreticulin. Normally, 

the cytosol-located molecular chaperon calreticulin binds to and targets proteins for destruction, but 

when secreted, it has been shown to promote lymphocyte infiltration and thus mediate antitumoral 

effects 21. Additionally, extracellular ATP and HGBM1 have been linked to immune cell activation 

22. Therefore, we can conclude that one mechanism behind the noted antitumor efficacy of 

OAd.TNFa-IL2 seems to be DAMP- and PAMP-signaling mediated 

It has been shown that chronic high-level expression of alarmins can be associated with 

carcinogenesis 23. In contrast, dynamic, acute, and regulated expression is conducive to immune 

response. These phenomena are relatively well understood for example for ATP 24,25. Therefore, it 

is not expected that immunologic signaling molecules such as alarmins would be highly expressed 

all the time in response to immunostimulatory therapy such as oncolytic virus. In light of this 

information, three time points for SK-MEL-28 alarmin release were investigated. The results show a 

trend for but not significantly higher expression of alarmins. As each time point represents a 

snapshot, lack of significant alarmin increase is not indicative of lack of the phenomenon at some 

other time point. Thus, the measured time points might have just missed the peak release time point 

of this cell line. 

Since alarmins can activate a plethora of signaling cascades, we further examined the response 

by RNA sequencing to investigate which signaling pathways and PRRs were activated by 

virotherapy. We confirmed that the virus did activate several DAMP- and PAMP-signaling 

pathways; however one PRR, an inflammasome called AIM2, was activated in both DC and SK-

MEL28 cells (unfiltered results) and was thus investigated further.  
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It has been shown in an in vivo mouse model that similar adenoviruses, but armed with CpG 

island, induce antitumor efficacy through the TLR9. Therefore, the effect of OAd.TNFa-IL2 on TLR9 

activation was further analyzed by HEK-blue.hTLR9 cell assay and NFκB analysis. Transient DC 

TLR9 activation has been associated with positive outcome; however, TLR9 signaling in, e.g., T cell 

or cancer cells can lead to tumor growth enhancement. This study revealed that the NFκB pathway 

was generally downregulated by OAd.TNFa-IL2infection and that TLR9 was not activated by the 

virus. Thus, these data indicate that TLR9 may not be the primary sensor of OAd.TNFa-IL2 infection 

and implicates that other pathways are responsible for the noted favorable tumor microenvironment 

modulation during therapy. Interestingly, the supernatant of OAd.TNFa-infected cells induced TLR9 

receptor activation. One might speculate that virus-encoded TNFa might cause immunogenic cell 

death, which is then seen as TLR9 activation in the supernatant group, but when challenged by the 

virus alone, the effect had not enough time to develop. Additionally, the NFκB-signaling pathway 

analysis revealed that the ASC protein in AIM2 inflammasome was upregulated, further validating 

the RNA-sequencing results.  

From these analyses, AIM2 rose as a lead PRR candidate for danger-signaling mediator during 

OAd.TNFa-IL2 infection. It has been shown that AIM2 senses cytosolic dsDNA, and thus, the dsDNA 

genome of OAd.TNFa-IL2 is the likely activator of AIM2. Binding of dsDNA to the AIM2 HIN200 

domain leads to its multimerization through a linked PYD domain and to the formation of a helical-

like structure. This multimeric structure recruits and activates caspase-1, which splices pro-IL-1beta 

and pro-gasdermin into their active forms. Gasdermin forms pores in cell membranes that can lead 

to cell death by pyroptosis. Simultaneously, pore formation facilitates IL-1beta secretion into the 

extracellular space, creating a pro-inflammatory environment.  

When analyzed in vivo, AIM2 KO had major effects on cytokine profiles in tumors. Marked 

difference in cytokine expression levels between AIM2 KO and wild type tumors was seen in IL-1, a 

downstream AIM2 cytokine. In “wt“ HapT1 tumors, IL1beta expression was high, while the opposite 

was true for KO tumors. IL-1 has been claimed to be a T cell proliferation-inducing, co-stimulatory 

cytokine, consequently triggering IL-2 secretion and expression of IL-2Rs by activated T cells. These 

previous notions are in line with the results of our study. IL-1beta levels were significantly 

upregulated in OAd.TNFa-IL2-treated tumors, and the same trend could be noted for IL-2 and its 

receptor. Subsequently, this indicates that AIM2 activation plays an important role in virotherapy-

induced growth inhibition by secretion of inflammatory cytokines, which attract and activate 

immune cells against tumor cells.  

Additionally, OAd.TNFa-IL2 may induce antitumor effects through trough AIM2 activated, 

gasdermin-induced cell killing, with associated immunogenic tumor microenvironment modulation. 

AIM2 knockout-specific reactions in cytokine measurements could also be seen in IL-6 levels; IL-6 

expression was abrogated in KO tumors and shows an interesting link between AIM2 and IL-6 

expression. Previous studies on IL-6 reveal to be a multifaceted player in cancer; it can recruit 

neutrophils and T cells, but it can also activate several cancer cell growth-inducing signaling 

pathways 28. Furthermore, IL-6 can affect IL-2 signaling and thus inhibit T cell recruitment and 

activation 29.  

In virotherapy-treated tumors, a trend of higher IL-2 expression could be noted. IL-2 plays an 

essential role in the immune system, affecting tolerance and immunity, primarily via its effects on T 

cells 30. IL-2 promotes the differentiation of T cells into effector and into memory T cells after 

antigen stimulation and, consequently, was chosen as one of the two cytokines added into the OAd-

arming device. The other part of the OAd.TNFa-IL2-arming device, TNFa, is a cytokine that is 

involved in both local and systemic inflammation. It is produced chiefly by activated macrophages, 

although it can be produced by many other cell types as well. It has a plethora of effects; however, it 

is well known for its cell destroying properties 31. Thus, the high expression of these cytokines in 

Syrian hamsters during OAd.TNFa-IL2 infection in vivo likely promoted the noted tumor growth 

limitation.  

Further analysis of tumors revealed an additional plausible mechanism of how OAd.TNFa-IL2 

contributes to antitumor efficacy. OAd.TNFa-IL2 induced expression of CD83 in tumors. CD83 is an 
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established DC maturation marker. DC maturation leads to enhanced antigen presentation, which 

plays an important role in mediating antitumor reactions by T cells.  

In summary, this paper shows that OAd.TNFa-IL2 adenovirus virotherapy affects the tumor 

microenvironment through DAMP and PAMP release and subsequent activation of sensors, such as 

AIM2. These effects may underlie the efficacy of OAd.TNFa-IL2 and could be relevant for many other 

oncolytic viruses as well. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4409/9/4/798/s1. 

Figure S1: DAMP AND PAMP expression in OAd (with or without arming device) infected cells (100VP/cell) 

was measured on three time points (6-, 24 and 48 h p.i.)., Figure S2: Dendritic cell maturation through agonist 

stimulation. Cells were incubated for 24h with or without agonist or antagonist or virus before staining for DC 

maturation markers A) CD86 and B) CD80 and measurement by flow cytometry, Figure S3: Sequencing of HapT1 

CRISPR/Cas9 KO of AIM2, compared to unedited HapT1 cell line, Figure S4: Virus induced matured IL-1beta 

release. IL-1beta release into infected cell supernatants, Table S1: Gene expression of receptors and proteins 

involved in DAMP- and PAMP –signaling, measured by RNA-seq. 
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