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Abstract: Wnt/β-catenin is a crucial repressor of adipogenesis. We have shown that E2 promoter
binding factor 1 (E2F1) suppresses Wnt/β-catenin activity through transactivation of β-catenin
interacting protein 1 (CTNNBIP1), also known as inhibitor of β-catenin and TCF4 (ICAT) in human
colorectal cancers. However, it remains unknown whether ICAT is required for E2F1 to promote
differentiation by inhibiting β-catenin activity in pre-adipocytes. In the present study, we found
that 1-methyl-3-isobutylxanthine, dexamethasone, and insulin (MDI)-induced differentiation and
lipid accumulation in 3T3-L1 pre-adipocytes was reversed by activation of β-catenin triggered by
CHIR99021, a GSK3β inhibitor. Intriguingly, we observed a reduced protein level of E2F1 and
ICAT at a later stage of pre-adipocytes differentiation. Importantly, overexpression of ICAT in
3T3-L1 pre-adipocytes markedly promote the adipogenesis and partially reversed the inhibitory
effect of CHIR99021 on MDI-induced adipogenesis and lipid accumulation by regulating adipogenic
regulators and Wnt/β-catenin targets. Moreover, pre-adipocytes differentiation induced by MDI
were markedly inhibited in siE2F1 or siICAT transfected 3T3-L1 cells. Gene silencing of ICAT
in the E2F1 overexpressed adipocytes also inhibited the adipogenesis. These data indicated that
E2F1 is a metabolic regulator with an ability to promote pre-adipocyte differentiation by activating
ICAT, therefore represses Wnt/β-catenin activity in 3T3-L1 cells. We also demonstrated that ICAT
overexpression did not affect oleic acid-induced lipid accumulation at the surface of Hela and HepG2
cells. In conclusion, we show that E2F1 is a critical regulator with an ability to promote differentiation
and adipogenesis by activating ICAT in pre-adipocytes.
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1. Introduction

The alarming increase in the incidence of obesity among adults and children worldwide has
prompted extensive researches on molecular mechanisms responsible for the synthesis and catabolism
of triglycerides (TG) in white adipose tissues [1]. A compelling evidence shows that an excessive
accumulation of fat mass in obese subjects is associated with an increase in adipocyte volume
(hypertrophy), number (hyperplasia), or a combination of both (hypertrophy–hyperplasia) [2]. It is
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generally believed that the increased number of adipocytes is mainly determined by the adipocyte
differentiation process, termed adipogenesis [3]. Adipogenesis consists of a complex series of events
in which both cellular and extracellular factors act together and lead to transformation to a mature,
lipid-filled adipocyte from a fibroblast-like pre-adipocyte. Therefore, pre-adipocyte differentiation
has been one of the well-known models used to study adipogenesis [4], and underlying mechanisms,
due to its implication in metabolic syndrome, such as insulin resistance, type 2 diabetes, hypertension,
and atherosclerosis [5].

E2 promoter binding factor 1 (E2F1) is a transcriptional factor involved in cell cycle progression,
cell differentiation, and apoptosis [6]. Several lines of studies show that E2F1 is a novel regulator
of metabolic homeostasis [7–9]. Protein level of E2F1 is increased in the visceral white adipose
tissue of obese human subjects and is positively correlated with development of insulin resistance,
circulating free fatty acids level, and incidence of non-alcoholic fatty liver disease [7,10–13]. In contrast,
E2F1−/− mice have a reduced fat accretion, increased insulin sensitivity, and a decreased circulating
level of cholesterol [14–16]. Additionally, knockout of E2F1 in pre-adipocytes impairs its capacity to
differentiate into adipocytes [14], indicating a critical role of E2F1 in differentiation. These studies
highlight an unexpected functional role of E2F1 on cellular metabolism in both humans and animals.
However, it remains unknown how the transcriptional factor E2F1 interacts with regulators of
pre-adipocyte differentiation and contributes to development of metabolic diseases.

In our previous study on E2F1-driven transactivation of downstream targets and its function
in cancer cells, we have shown that inhibitor of β-catenin and TCF4 (ICAT), also known as the
β-catenin interacting protein 1 (CTNNBIP1), is a direct transcriptional target of E2F1 [17]. Importantly,
we found that activation of ICAT by E2F1 is required to inhibit β-catenin activity in colorectal cancers.
An inhibitory effect of ICAT is mainly mediated by blocking the binding of β-catenin with T-cell
factor 4 (TCF4), therefore leading to the repression of β-catenin-TCF4-mediated transactivation [17,18].
This finding has uncovered a link between Rb/E2F1 signaling with Wnt/β-catenin signaling pathway.
In addition to functioning as an oncogene in various human malignancy, Wnt is an indispensable
regulator for cell proliferation, survival, cell fate decision, and pre-adipocyte differentiation [19–21].
It has been reported that Wnt/β-catenin represses the expression of CCAAT/enhancer binding protein
α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), two critical adipogenic
transcription factors involved in adipogenesis [19,22,23], thus implicated in adipocyte differentiation
and metabolic diseases [22]. However, it remains unknown whether ICAT is also required for E2F1 to
promote differentiation by inhibiting β-catenin activity in pre-adipocytes. In this study, we seek a better
mechanistic insight into E2F1 regulation of adipogenesis by transactivating ICAT in pre-adipocytes.

2. Materials and Methods

2.1. Reagents

3T3-L1 pre-adipocytes, 293T cells, Hela, and HepG2 cells were obtained from the American-Type
Culture Collection (ATCC, Manassas, VA, USA). Dulbecco’s Modified Eagle Medium (DMEM),
Fetal Bovine Serum (FBS), and penicillin/streptomycin were obtained from Gibco BRL (Gibco BRL,
Gaithersburg, MD, USA). Primary antibodies against β-catenin, PPARγ, C/EBPα, CCND1 (Cyclin
D1), and c-MYC were purchased from Cell Signaling Technology (Beverly, MA, USA). E2F1 antibody
was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). CTNNBIP1 (ICAT) antibody
was purchased from Abcam (Cambridge, UK). Peroxidase-conjugated goat anti-rabbit and goat
anti-mouse secondary antibodies were purchased from Huaxingbio Biotechnology Co (Beijing, China).
The pIRES2-EGFP and pLent-EF1a-FH-CMV-GFP expression vector, packaging plasmid psPAX2 and
envelope plasmid pMD2.G were all purchased from miaolingbio (Wuhan, China). BODIPY493/503,
Lipofectamine RNAiMAX Reagent and Lipofectamine 3000 were purchased from Invitrogen (Carlsbad,
CA, USA). CHIR99021 (GSK3β inhibitor), serum TG determination kit, insulin, dexamethasone (Dex),
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1-methyl-3-isobutylxanthine (IBMX), oil red O, and all other reagents not indicated were purchased
from Sigma Chemical Co. (St. Louis, MO, USA).

2.2. Cell Culture

Cells were maintained in DMEM supplemented with 10% FBS, 100 units/mL penicillin G sodium
and 100 mg/mL streptomycin sulfate. Monolayer of 3T3-L1 pre-adipocytes were induced to differentiate
into mature adipocytes as previously described [24]. Briefly, 2 days after post-confluence (designated
as day 0), cells in 6-well plates were induced to differentiate by the addition of a standard cock-tail
composed of 0.5 mmol/L IBMX, 1 µmol/L Dex, and 10 µg/mL insulin in the medium (designated as
MDI cocktail). The differentiation medium was withdrawn 2 days later and replaced with medium
supplemented with 10% FBS and 10 µg/mL insulin. After 2-day incubation, the cells were then cultured
in a medium containing 10% FBS for another 3 days. During the differentiation process, CHIR99021 (0,
0.5, 1.0, 2.0, 3.0, or 4.0 µmol/L) was added in the differentiation medium for 7 days. All cell cultures
were conducted at 37 ◦C in a 5% CO2 incubator. When 60–70% confluence was reached, cells were
passaged using trypsin, and passages 5–15 cells were used in the present study.

2.3. Lentiviruses Preparation and Generation of Stable Cell Line

The recombinant lentivirus was produced as described previously [25]. Briefly, the full-length
murine ICAT cDNA was inserted into the pLent-EF1a-FH-CMV-GFP expression vector and packaged
into viral particles in 293T cells with packaging plasmid psPAX2 and envelope plasmid pMD2.G.
The virus was collected after 48 h. 3T3-L1 pre-adipocytes were infected with the fresh lentivirus
expressing the ICAT for 48 h and the signal of GFP was monitored. Stable 3T3-L1 pre-adipocytes were
selected with puromycin for 7 days and sorted through fluorescence activated cell sorting selection
(Beckman Coulter, CA, USA). The differentiation of stable pre-adipocytes was induced as the standard
protocol. The mRNA and protein expression of ICAT in stable cell line was detected. The lentivirus
generated from the empty vector, which expressed only GFP, was used as the control. The cells were
also induced into differentiation with the addition of 3.0 µmol/L CHIR99021 to study the role of ICAT
on Wnt/β-catenin activity. The pre-adipocytes stably overexpressed E2F1 were also prepared as ICAT.

2.4. Transient Expression of ICAT in HeLa and HepG2 Cells

The full-length human ICAT cDNA was sub-cloned by standard PCR into BamHI and
EcoRI-restricted pIRES2-EGFP vector. All constructs were verified by DNA sequencing. Transient
transfections of Hela and HepG2 cells were performed using Lipofectamine 3000, according to the
manufacturer’s instructions. Briefly, 5 µg of pIRES2-EGFP-ICAT vector or empty pIRES2-EGFP vector
were transfected into cells cultured at sub-confluent density in 6-well dishes. The signal of GFP was
monitored by fluorescence microscope (Zeiss, Germany) 24 h post-transfection. To get the stable
ICAT-expressing cell line, Hela and HepG2 cells were maintained in non-selective medium for 2-days
post-transfection, then plated in 800 µg/mL G418 medium for 3 weeks, with frequent changes of
medium to eliminate dead cells and debris until distinct colonies can be visualized. Individual colonies
then are trypsinized and transferred to flasks for further propagation. Stable ICAT overexpressing
cells were also sorted by GFP signals through fluorescence activated cell sorting selection, data were
analyzed using the Cell Quest software (Beckman Coulter, CA, USA) and expanded for in vitro studies.
Cells stably expressed ICAT were grown to 70% confluence on the 6-well plates and treated with
500 µmol/L oleic acid complexed to albumin at a molar ratio of 8:1 for 3 h.

2.5. Immunofluorescent Microscopy

Procedures for immunofluorescent staining were essentially the same as previously described.
Cells were rinsed twice in PBS, fixed with 4% paraformaldehyde solution for 1 h, permeabilized with
0.1% triton X-100 in PBS for 15 min on ice, blocked with 5% goat serum in PBS for 1 h followed by
incubation with primary antibody (1:100, overnight), washed three times with PBS, and incubated
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with fluorescently labeled secondary antibody (1:50 dilution for 1 h) followed by Hoechst (1:1000).
Images for morphological analysis were acquired under a fluorescence microscope.

2.6. Quantitative Real-Time PCR

Total RNA was extracted from cells using the Trizol reagent (Aidlab Biotech, Beijing, China).
Reverse transcription PCR was performed using the PrimeScript RT Reagent Kit (TaKaRa, Dalian,
China) as instructed by the manufacturer and cDNA was used as a template in the subsequent reactions.
Real-time PCR was performed using SYBR Premix Ex Taq II (TaKara, Dalian, China) and the ABI-Prism
7500 Sequence Detection System (Applied Biosystems, Foster city, CA, USA) according to the instruction
from the manufacturer. The primer sequences (5′–3′) used are listed in Table S1. The mRNA levels of
GAPDH and β-actin were used as the internal control. The 2−∆∆Ct method was used to determine the
fold changes in mRNA levels of each sample, as compared to the reference sample.

2.7. Western Blotting Analysis

Cells were harvested for the analysis of protein abundance by Western blot as previously
described [26]. Cells were harvested and lysed on ice for 30 min in RIPA lysis buffer containing
50 mM Tris-HCl (pH 7.4), 150 mmol/L NaCl, 1% NP-40, 0.1% SDS, 1.0 mmol/L Phenylmethanesulfonyl
fluoride (PMSF), 1.0 mmol/L Na3VO4, 1.0 mmol/L NaF, and protease inhibitor tablet (Roche, Indian
apolis, IN, USA), followed by sonication for three times with 10 s/ time. The whole-cell lysates
were centrifuged at 12,000 rpm for 10 min to collect the supernatant. The protein concentration of
the supernatant was determined using the Pierce BCA protein Assay Kit (Huaxing Biotech, Beijing,
China) with bovine serum albumin as standard. Equal amounts of proteins were separated using
SDS-page gels and transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, MA, USA).
The membranes were blocked in 5% fat-free milk in Tris-buffered saline with Tween 20 (TBST) for
1 h at room temperature, and then were incubated with indicated primary antibodies overnight at
4 ◦C. After incubation with horseradish peroxidase (HRP)-conjugated secondary antibody for 1 h,
the chemiluminescent signal was detected using Super-Enhanced Chemiluminescence Kit (Huaxing
Biotech, Beijing, China).

2.8. Lipid Droplets’ Staining

Lipid droplets in cells were stained by oil red O or BODIPY493/503. Cells were washed with
PBS and fixed with 4% paraformaldehyde for 1 h on ice, followed by washing with 60% isopropanol.
Then stained with oil red O working solutions containing 6 mL stock solution (5 g/L in isopropanol)
and 4 mL double-distilled H2O or BODIPY493/503 (stock concentration 1 mg/mL and working solution
1:1000 dilution) for 15 min at room temperature followed by washing for three times with PBS and
viewed with a microscope. BODIPY493/503-stained lipid droplets were viewed through a fluorescence
microscope. To quantify intracellular lipids, the oil red O-stained lipid droplets were dissolved with
100% isopropanol for 10 min. The absorbance of extracted dye was then measured at 520 nm.

2.9. Measurement of TG Content

TG contents in adipocytes were measured using an assay kit as described previously [24]. Briefly,
cells were washed and lysed in provided lysis buffer, and then, the TG assay reagents were added,
according to the manufacturer’s instructions. The optical density of the solution was measured at
510 nm using a spectrophotometer plate reader. TG contents were calculated from a standard curve for
each assay, and data are normalized to total cellular protein contents.

2.10. siRNA-Mediated Knockdown

For E2F1 or ICAT knockdown in 3T3-L1 pre-adipocytes, 100 pmol of each siRNA oligonucleotides
(Genepharma, Shanghai, China) were transfected into cells plated in 6-well dishes using Lipofectamine
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RNAiMAX Reagent as described by instructions. Cells transfected with non-targeting siRNA (NC)
were used as control. The pre-adipocytes stably overexpressed E2F1 were transfected with 100 pmol
siICAT or siNC. Cells were harvested to detect the protein expression or processed for designated
assays 48 h post-transfection.

2.11. Statistical Analysis

Data were expressed as means ± SEM and were statistically analyzed by GraphPad PRISM5
(GraphPad Software, CA, USA). Both normality and homogeneity tests were examined before the
statistical analysis in our study. Differences between two groups were assessed using the unpaired
two-tailed Student t test. Data sets that involved more than two groups were assessed using ANOVA,
followed by Tukey post-hoc test. In the figures, data with different superscript letters are significantly
different at p < 0.05. A value according to the post hoc ANOVA statistical analyses. The results were
considered statistically significant when p < 0.05.

3. Results

3.1. MDI-Induced Differentiation in 3T3-L1 Cells Was Associated with Increased Protein Levels of E2F1 and
ICAT at Day 3 of Differentiation

In consistency with the previous study [19], 3T3-L1 pre-adipocytes were successfully differentiated
into adipocytes by MDI medium with the appearance of marked multiple vesicles and lipid
accumulation as shown by oil red O and BODIPY493/503 staining (Figure 1A, upper lane).
The representative micrographs of cells during differentiation showed that accumulation of the
lipid droplets was observed at day 3 (Figure 1A, lower lane) and differentiated into mature adipocytes
with 7-day MDI induction. The time course study showed that transcriptional (Figure S1A) and
protein levels of PPARγ and C/EBPα (Figure 1B), two critical adipogenic regulators, were significantly
enhanced (p < 0.05). Both the mRNA level (Figure S1B) and protein abundance of β-catenin, as well as
these of c-MYC and CCND1 (Figure 1C), two classic downstream targets of Wnt/β-catenin signaling,
were dramatically downregulated (p < 0.05) in differentiated cells, as compared with un-differentiated
cells. In agreement with the phenotype changes, mRNA level of fatty acid binding protein (AP2),
a well-known adipocyte marker, was upregulated (p < 0.05) (Figure S1A, lower panel). Of interest,
protein levels of E2F1 and ICAT were significantly increased (p < 0.05) at day 3 of differentiation
and were reduced to an undetectable level at the later stages of adipocyte differentiation (Figure 1C).
These results showed that MDI-induced differentiation in 3T3-L1 cells was associated with an increased
protein level of E2F1/ICAT at day 3 of differentiation.

3.2. Activation of Wnt/β-catenin Signaling by GSK3β Inhibitor Blocked Adipogenesis

To further explore a functional role of Wnt/β-catenin signaling on differentiation, 3T3-L1 cells
were incubated with MDI to induce differentiation in the presence of CHIR99021 (0, 0.5, 1.0, 2.0,
3.0, or 4.0 µM), a GSK3β inhibitor, which has been reported to activate the canonical Wnt/β-catenin
pathway in 3T3-L1 pre-adipocytes [22]. Adipogenesis was assessed at day 7 and we found that
CHIR99021 blocked 3T3-L1 differentiation in a dose-dependent manner, as assessed by oil red O
and BODIPY493/503 staining (Figure 2A,B). Quantification of lipid accumulation (Figure 2C) and
intracellular TG (Figure 2D) indicated that differentiation of pre-adipocytes was significantly inhibited
by the presence of 1.0 to 4.0 µM CHIR99021 in the media. CHIR99021-activated Wnt/β-catenin signaling
was validated by an increased protein level of β-catenin in the nucleus, as well as upregulated proteins
abundance of CCND1 and c-MYC (p < 0.05) (Figure 2E,F) in 3T3-L1 adipocytes. In agreement with
phenotypes observed and activation of Wnt/β-catenin signaling, 3T3-L1 adipocytes incubated with 3.0
and 4.0 µM CHIR99021 led to significantly reduced protein abundance of PPARγ and C/EBPα (p < 0.05)
(Figure 2E,F). In our study, 3.0 µM of CHIR99021 was chosen for the further research, considering
a markedly repressing effect on pre-adipocyte differentiation.
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Figure 1. 3T3-L1 cell differentiation was associated with an increased protein level of E2F1 and
ICAT at day 3 of differentiation. 3T3-L1 pre-adipocytes were differentiated into adipocytes by
1-methyl-3-isobutylxanthine, dexamethasone, and insulin (MDI) medium for 7 days. (A) Representative
micrographs of the adipocytes during the differentiation process, and adipocytes stained with
BODIPY493/503 (green) or oil red O (red). (B) Protein levels of PPARγ and C/EBPα during the
differentiation progress. (C) Protein levels of classic Wnt/β-catenin signaling and E2F1/ICAT during the
differentiation. Values are means ± SEMs, n = 3 independent experiments. Means without a common
letter differ, p < 0.05. C/EBPα, CCAAT-enhancer binding protein α; E2F1, E2 promoter binding factor 1;
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; ICAT, Inhibitor of β-catenin and TCF4; PPARγ,
peroxisome proliferator activated receptor γ.
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Figure 2. Activation of Wnt/β-catenin signaling by GSK3β inhibitor abolished MDI-induced
adipogenesis. 3T3-L1 cells were induced to differentiation in the presence of CHIR99021 (0, 0.5,
1.0, 2.0 3.0, or 4.0 µmol/L) for 7 days. (A) Representative micrographs of mature adipocytes stained with
BODIPY493/503 (green) and (B) plate photograph of adipocytes stained with oil red O (red). (C) Lipid
accumulation and (D) triglyceride (TG) contents of 3T3-L1 adipocytes after 7-day CHIR99021 induction.
(E) Protein expression and (F) abundance analysis for Wnt/β-catenin signaling and adipogenic regulators.
Values are means± SEMs, n = 3 independent experiments. Means without a common letter differ, p < 0.05.
C/EBPα, CCAAT-enhancer binding protein α; GSKi, CHIR99021; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; PPARγ, peroxisome proliferator activated receptor γ.
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3.3. Overexpression of ICAT Reversed the Effect of GSK3β Inhibitor on Cell Differentiation and Adipogenesis in
3T3-L1 Pre-Adipocytes

To investigate a functional role of ICAT on adipogenesis, 3T3-L1 pre-adipocytes were transfected
with ICAT expression vector using a lentivirus-mediated transfection method. The transfection
efficiency was confirmed at 48 h post-infection (Figure 3A) and almost all pre-adipocytes were
GFP positive after 7-day selection by puromycin (Figure 3B). As expected, lentivirus infection
resulted in marked upregulation of ICAT at both mRNA (Figure S2A) and protein levels (Figure 3C)
(p < 0.05). To identify a repressing effect of ICAT on Wnt/β-catenin activity in 3T3-L1 pre-adipocytes,
the pre-adipocytes stably overexpressed ICAT or the empty vector were treated with or without
CHIR99021, a GSK3β inhibitor. As shown, Western blot analysis showed that CHIR99021 treatment
led to remarkable upregulation of β-catenin and its downstream targets, including c-MYC and
CCND1, as well as significantly downregulation of protein abundances for PPARγ and C/EBPα
(p < 0.05) (Figure 3D,E). These effects of CHIR99021 were partial revered by ICAT overexpression.
In agreement with protein expression, we found that MDI-induced differentiation was markedly
inhibited by CHIR99021 treatment, as shown by oil red O and BODIPY493/503 staining (Figure 4A,B),
as well as quantification of lipid accumulation (Figure 4C) and intracellular TG (p < 0.05) (Figure 4D).
Interestingly, a repressing effect of GSK3β inhibitor CHIR99021 on differentiation, TG accumulation was
partially reversed by ICAT overexpression in 3T3-L1 cells (Figure 4). Although ICAT overexpression
had a modest repressive effect on the protein level of β-catenin, the protein levels of c-MYC and
CCND1, two downstream targets of β-catenin, were remarkable downregulated, while those of
PPARγ and C/EBPα (Figure 3D,E), as well as CHIR99021-induced repressing effect on differentiation
were significantly reversed by ICAT (Figure 4). This finding indicates that ICAT repressed the
β-catenin-TCF4-mediated transactivation instead of directly downregulating the β-catenin expression
in the adipocytes in our study.
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Figure 3. ICAT overexpression inhibited the Wnt/β-catenin signaling targets, but upregulated protein
levels of adipogenic regulators upon the CHIR99021 induction. (A) 3T3-L1 pre-adipocytes infected
with lentivirus carrying ICAT. (B) 3T3-L1 pre-adipocytes stably overexpressing ICAT sorted by flow
cytometry. (C) Protein expression for ICAT in stable overexpressing cells. (D) Protein expressions and
(E) abundance analysis for adipogenic regulators and Wnt/β-catenin targets in 3T3-L1 adipocytes after
7 days differentiation. Values are means ± SEMs, n = 3 independent experiments. Means without
a common letter differ, p < 0.05. C/EBPα, CCAAT-enhancer binding protein α; GSKi, CHIR99021;
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; ICAT, Inhibitor of β-catenin and TCF4; PPARγ,
peroxisome proliferator activated receptor γ.
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Figure 4. Overexpression of ICAT reversed the effect of GSK3β inhibitor on cell differentiation and
adipogenesis in 3T3-L1 adipocytes. Cells were treated as in Figure 3 and were collected after 7-day
differentiation. (A) Representative micrographs of adipocytes stained with or without BODIPY493/503
(green) and oil red O (red). (B) Photograph of adipocytes stained with oil red O (red). (C) Lipid
contents and (D) TG contents of 3T3-L1 adipocytes. Values are means ± SEMs, n = 3 independent
experiments. Means without a common letter differ, p < 0.05. GSKi, CHIR99021; ICAT, Inhibitor of
β-catenin and TCF4.

3.4. ICAT or E2F1 Knockdown Inhibited MDI-Induced Differentiation of Pre-Adipocytes

ICAT has been reported to be a direct target of E2F1 that is responsible for the suppression of
β-catenin activity in cancer cells [17]. To test an involvement of E2F1/ICAT on cell differentiation
and adipogenesis, 3T3-L1 cells were transfected with siRNA targeting E2F1 or ICAT. As shown,
siRNA-mediated knockdown of E2F1 in 3T3-L1 cells resulted in a marked decrease of E2F1 and ICAT
at protein level (p < 0.05) (Figure 5A), confirming the regulation of ICAT expression by the endogenous
E2F1 in 3T3-L1 cells. ICAT siRNA transfection led to a reduced protein level of ICAT (p < 0.05)
without affecting that of E2F1 (Figure 5B), validating an efficiency of siRNA in 3T3-L1 pre-adipocytes.
Then, cells transfected with non-targeting siRNA (NC), siCAT, or siE2F1 were incubated with MDI to
evaluate whether ICAT or E2F1 is functionally required for adipogenesis in 3T3-L1 cells. We found
that differentiation induced by MDI was markedly inhibited in siE2F1 or siICAT transfection in 3T3-L1
pre-adipocytes. In addition, MDI-induced increased TG contents (Figure 5D) and lipid accumulation
(Figure 5E) were dramatically reduced (p < 0.05) by gene silencing of E2F1 or ICAT. Western blot
analysis showed that protein levels of C/EBPα and PPARγ were reduced, while those of c-MYC
and CCND1 were upregulated (p < 0.05) (Figure 5C) by siE2F1 or siIACT transfection in 3T3-L1
cells. Compared with siE2F1 transfected cells, ICAT knockdown had a modest inhibitory effect on
differentiation (Figure 5D,E). The TG contents in the stable E2F1 overexpressed adipocytes were
markedly reduced (p < 0.05) by gene silencing of ICAT (Figure 5F), confirming the ICAT was required
for E2F1 during differentiation.
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Figure 5. ICAT or E2F1 knockdown inhibited MDI-induced differentiation of pre-adipocytes. (A) Protein
levels for E2F1 and ICAT at 48 h after siRNA-mediated knockdown of E2F1. (B) Protein levels for
ICAT and E2F1 at 48 h after siRNA-mediated knockdown of ICAT. (C) Protein abundances for
adipogenic regulators and Wnt/β-catenin targets, and (D) TG contents of 3T3-L1 adipocytes after
ICAT or E2F1 knockdown. (E) Representative micrographs of siE2F1 or siICAT transfected adipocytes
after BODIPY493/503 (green) or oil red O (red) staining. (F) TG contents of stable E2F1 overexpressed
3T3-L1 adipocytes after ICAT knockdown. Values are means ± SEMs, n = 3 independent experiments.
Means without a common letter differ, p < 0.05. C/EBPα, CCAAT-enhancer binding protein α; E2F1,
E2 promoter binding factor 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; ICAT, Inhibitor of
β-catenin and TCF4; PPARγ, peroxisome proliferator activated receptor γ.

3.5. ICAT Did Not Affect Lipid Accumulation in Hela and HepG2 Cells

Hela and HepG2 cells can directly accumulate lipid droplets in the cells with the induction of oleic
acid [27–29]. Importantly, these characteristics of lipid droplets fusion and degradation in the Hela and
HepG2 cells are shared by mature adipocytes, therefore, these two cell lines are used as cell line models
in studies related to lipid droplets turnover during the lipogenesis and lipolysis processes [27–29].
To investigate an effect of ICAT on oleic acid-induced lipid accumulation, Hela and HepG2 cells were
transfected with pIRES2-EGFP-ICAT expression vector or empty vector. The transfection efficiency of
cells (Figure 6A) and purity of cells stably expressed ICAT was confirmed (Figure 6B). The mRNA
level of ICAT in cells after G418 selection was confirmed (Supplemental Figure S2B,C). The protein
level (Figure 6C) and in situ expression of ICAT (Figure 6D) was validated by Western blot analysis
and immunofluorescence staining in both cell lines. Oleic acid treatment led to increased TG contents
as shown by oil red O staining in Hela and HepG2 cells (Figure 6E). ICAT overexpression did not affect
oleic acid-induced lipid accumulation in both cell lines (Figure 6F). These data indicated that ICAT did
not implicate in lipid accumulation at the surface of Hela and HepG2 cells.
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Figure 6. ICAT did not affect lipid accumulation in Hela and HepG2 cells. (A) The transfection
efficiency and (B) purity of Hela and HepG2 cells stably expressed ICAT. (C) Protein levels and (D) in
situ expressions of ICAT in both cell lines. (E) Representative micrographs of cells stained with oil red
O. (F) TG contents of Hela and HepG2 after 0.5 mmol/L oleic acid treatment. Values are means ± SEMs,
n = 3 independent experiments. Means without a common letter differ, p < 0.05. ICAT, Inhibitor of
β-catenin and TCF4.

4. Discussion

In the present study, we found a novel function of E2F1/ICAT on promoting pre-adipocytes
differentiation and lipid accumulation in 3T3-L1 cells. Depletion of E2F1 or ICAT by siRNA led to
reduced differentiation and decreased TG contents by inhibiting expression of C/EBPα and PPARγ
in MDI-treated cells. Overexpression of ICAT in 3T3-L1 pre-adipocytes markedly promoted the
adipogenesis induced by MDI. In addition, this promotive effect was also observed in CHIR99021-treated
cells, in which Wnt/β-catenin was activated by inhibiting GSK3β, a negative regulator of Wnt/β-catenin
signaling, therefore repressing differentiation of pre-adipocytes. An inhibitory effect of CHIR99021
on adipogenesis was partially attenuated by lentivirus-mediated ICAT overexpression in 3T3-L1
cells. In addition, the adipogenesis in the stable E2F1 overexpressed adipocytes were markedly
reduced by ICAT knockdown. This effect of E2F1/ICAT on differentiation was mainly mediated by
regulating Wnt/β-catenin signaling. These findings revealed a crosstalk between E2F1/ICAT signaling
and Wnt/β-catenin on pre-adipocyte differentiation (Figure 7).

Adipogenesis is a critical process implicated in the development of metabolic disease. Both clinical
and experimental data have indicated that small molecules or compounds with the ability to interfere
in the adipogenesis process might be a potentially therapeutic agent for obesity [30,31]. Considering
that the number of fat cells in the body is relatively stable in adults [32], it is of great significance
to reveal underlying mechanisms responsible for pre-adipocytes differentiation and adipogenesis.
Wnt/β-catenin is a crucial repressor for adipogenesis, whose activity is inhibited during pre-adipocytes
differentiation [22]. In response to extracellular stimulations, the canonical Wnt/β-catenin signaling is
activated and leads to stabilization of β-catenin in the cytoplasm, accumulated β-catenin translocated
to the nucleus, and interacts with T-cell factor/ lymphoid enhancer-binding factor (TCF/LEF)
to trans-activate downstream targets, such as CCND1, c-MYC, PPARγ, and C/EBPα, therefore
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regulating cellular metabolism [33,34]. Consistently, it has been reported that some Chinese herbal
medicines, such as curcumin, shikonin, and resveratrol, regulate metabolic homeostasis by regulating
Wnt/β-catenin signaling pathway [35–37].
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Figure 7. Proposed model on crosstalk between E2F1/ICAT and Wnt/β-catenin signaling on the
differentiation of pre-adipocytes. The stabilized free cytosolic β-catenin translocate to the nucleus to
interaction with the TCF4 for activation of the Wnt/β-catenin targets and inhibit adipogenesis by blocking
induction of C/EBP and PPAR proteins. The activating ICAT by E2F1 competes with the β-catenin to
repress the β-catenin-TCF4-mediated transactivation instead of directly downregulating the β-catenin
expression, and reverses the inhibitory effect of Wnt/β-catenin signaling on MDI-induced adipogenesis.
ICAT activation downregulates the protein expression of c-MYC and CCND1 and abolishes their
suppression on protein expression of C/EBPα and PPARγ, thus functioning as a promotive regulator
for adipogenesis during differentiation.

ICAT has been identified as a direct transcriptional target of E2F1 [17], through which E2F1
interacts with Wnt/β-catenin and regulates proliferation in colon cancers [7,17,38,39]. In addition to
a well-known function in tumorigenesis of humans, E2F1 has been described as a transcription factor
participates in the development of multiple metabolic diseases, including obesity, diabetes, and fatty
liver disease [10,12,14]. An in vitro study has shown that induction of E2F1 during the early phase
of differentiation is critical for adipogenesis [7]. However, mechanistic insight responsible for this
regulation remains largely unknown.

In the present study, we found that the protein levels of E2F1 were reduced at 24 h treatment,
which was dramatically enhanced on the day 3 of differentiation, and then reduced to an undetectable
level as the cell differentiated into mature adipocytes. This result was consistent with a previous
study [14]. The shift of E2F1 during the differentiation is dependent on its function in cell proliferation
and differentiation. Before induction of differentiation, 3T3-L1 pre-adipocytes was proliferated
and reached confluency, therefore, protein level of E2F1 was higher as seen at day 0. After that,
3T3-L1 preadipocytes were growth-arrested and the proliferative effect of E2F1 is repressed by
repressive regulator of cell cycle proliferation program, and leading to a reduced protein level at day 1.
After being treated with MDI for 72 h, the activity of E2F1 was activated to facilitate the adipogenesis
during differentiation as shown in Figure 1C. Of interest, the protein level of E2F1 was reduced to
an undetectable level, indicating a requirement of E2F1 for initiation of differentiation, whose activity
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was not needed at the later stages of adipocyte differentiation [7,14]. In addition, we observed a similar
expression profile on the protein level of ICAT, followed by the induction of PPARγ and C/EBPα, as well
as decreased protein level of β-catenin, indicating a potential implication of E2F1/ICAT in adipogenesis.

Adipogenesis is associated with decreased activation of β-catenin signaling. To investigate
a promotive effect of ICAT on adipogenesis by repressing β-catenin, 3T3-L1 pre-adipocytes transfected
with ICAT or empty vector were treated with GSK3β inhibitor to upregulate β-catenin. As expected,
GSK3β inhibitor treatment led to enhanced β-catenin and blocked cell differentiation. This effect was
partially reversed by ICAT overexpression as shown by alterations in lipid droplets and TG contents.
PPARγ and C/EBPα are critical regulators for cell differentiation, which were negatively regulated
by CCND1 and c-MYC, respectively [40–42], through which β-catenin exert a regulatory effect on
adipogenesis [43]. ICAT overexpression reversed GSK3β inhibitor-induced phenotype alteration as
well as protein levels of adipogenic regulators, therefore exerting a promotive effect on differentiation.
Importantly, overexpression of ICAT in 3T3-L1 pre-adipocytes also markedly promoted the adipogenesis
compared to the control cells during differentiation. Moreover, MDI-induced differentiation was
attenuated in siE2F1 or siICAT transfected cells and protein expressions of Wnt/β-catenin targets
including c-MYC and CCND1 were increased, solidifying a promotive effect of endogenous E2F1/ICAT
on differentiation by repressing Wnt/β-catenin signaling. It has been reported that ICAT inhibit
the interaction of β-catenin with TCF4, leading to the repression of β-catenin-TCF4-mediated
transactivation [18]. Our previous study about the TCF4-dependent luciferase reporter activity also
confirmed that ICAT was a robust inhibitor of β-catenin/TCF4 activity [17]. It is worthwhile to note that
ICAT overexpression reversed GSK3β inhibitor-induced phenotype alteration to promote differentiation
and downregulated the c-MYC and CCND1 without affecting the accumulation of β-catenin induced by
the GSKi in the nucleus, indicating that ICAT repressed the β-catenin-TCF4-mediated transactivation
instead of directly downregulating its protein level. Furthermore, ICAT knockdown inhibited the
adipogenesis in the stable E2F1 overexpressed adipocytes, confirming the ICAT was required for E2F1
during differentiation. These findings demonstrated that ICAT is a novel target that is responsible for
E2F1′s regulation for pre-adipocyte differentiation by interacting with Wnt/β-catenin signaling.

Of note, we found that siE2F1 transfected cells had a higher inhibitory effect on MDI-induced
differentiation, as compared with siICAT transfected cells. This result is due to the following reasons.
First, besides ICAT as described herein, E2F1 can regulate pre-adipocytes differentiation by inducing
other targets, such as Perp-1 [44,45] and PPAR [46], and contribute to lipid accumulation in 3T3-L1
cells [47]. Second, E2F1 can regulate cell cycle progress in multiple cells, knockdown of E2F1 might
affect adipogenesis due to its interfering effect on cell proliferation as previously described [48,49].
Notably, ICAT overexpression did not affect oleic acid-induced lipid accumulation in cell membrane of
Hela and HepG2 cells. It has been reported that Wnt/β-catenin signaling is not implicated in oleic
acid-induced lipid accumulation [50,51], therefore, it is plausible that ICAT did not act in this model.
The findings indicated that E2F1/ICAT mainly regulated initiation of pre-adipocytes differentiation
at early stage and led to lipid accumulation, without affecting lipid content in mature adipocytes.
These data indicated a specific effect of E2F1/ICAT on differentiation and lipid accumulation in
pre-adipocytes. It has been reported that protein level E2F1 is markedly reduced in later stage of
differentiation, but the reason is not known. Another novel finding of our study is we showed, for the
first time, that E2F1/ICAT is critical for the maintenance of PPARγ and C/EBPα by blocking the c-MYC
and CCND1, two negative regulators, such as PPARγ and C/EBPα, and contributing to the progress
of differentiation.

It has been reported that E2F1 transcriptional activity is enhanced in obese subjects and
non-alcoholic fatty liver disease [52]. Our data provided herein indicated that E2F1 might promote
adipogenesis by ICAT-mediated inhibition on β-catenin. Of note, E2F1 is a transcriptional factor with
multiple functions, including cell proliferation, differentiation, and apoptosis [6]. Depletion of E2F1
might affect adipogenesis as well as other biological processes, and lead to potentially deleterious
effects in both humans and animals [53]. Considering that ICAT is required for E2F1′s activity on
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pre-adipocyte differentiation, ICAT might be a therapeutic target for metabolic diseases, especially the
patients with enhanced protein level of E2F1 and ICAT.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/4/1024/s1,
Table S1: Primers for RT-PCR. Figure S1: mRNA expressions of adipogenic regulators were enhanced,
while Wnt/β-catenin targets were reduced during the differentiation process. Figure S2: Gene expressions
of ICAT in 3T3-L1, Hela and HepG2 cells.
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