Supplementary information

Supplementary table S1

Sequence of primers used in Quantitative Reverse Transcriptase-Polymerase Chain

Reaction.

Protein	Gene	Forward primer (5'-3')	Reverse primer (5'-3')
ID1	Id1	GAGTCTGAAGTCGGGACCAC	AACACATGCCGCCTCGG
ALK1	Acvrl1(Alk1)	AACATCCTAGGCTTCATCGCC	AGTCATAGAGGGAGCCGTGT
ALK2	Acvr1(Alk2)	AGACAGCACTCTAGCGGAAC	TTCCCGACACACTCCAACAG
BMPR2	Bmpr2	GCAGCAGTATACAGATAGGTGA	CGCCACCGCTTAAGAGAGTAT
ActRIIA	Acvr2a	GCGAGAACTTCCTACGGCTT	CCTGAGTTTCTGATCTGCCA
ActRIIB	Acvr2b	CATTGCTGCCGAGAAACGAG	GAGGTAATCCGTGAGGGAGC
GUSB	Gusb	AAAATGGAGTGCGTGTTGGGTCG	CCACAGTCCGTCCAGCGCCTT

Supplementary table S2

List of antibodies used in Western blot analysis.

Antibody Target	Specie	Dilution	Manufacturer (reference)
β-ACTIN	Mouse (AC-15)	1:5000	Sigma (A5441)
ID1	Mouse (B-8)	1:500	Santa Cruz Biotechnology (sc-133104)
Ρ38α/β	Mouse (A-12)	1:500	Santa Cruz Biotechnology (sc-7972)
P-P38	Rabbit	1:1000	Cell Signaling Technology (#9211)
P-SMAD1,5,8	Rabbit	1:1000	Cell Signaling Technology (#9516)
SMAD1	Rabbit	1:1000	Cell Signaling Technology (#9743)
α-TUBULIN	Mouse (TU-02)	1:5000	Santa Cruz Biotechnology (sc-8035)

Supplementary figure legends

Supplementary figure S1. Analysis of ALK2 as the type I receptor mediating BMP9 effects in Met^{-/-} oval cells.

A. Met^{-/-} oval cells were affinity-labelled with ¹²⁵I_BMP9 and crosslinked ligandreceptor complexes were immunoprecipitated with specific antisera as indicated and subjected to SDS-PAGE and autoradiography. **B-D**. ALK2 knockdown Met^{-/-} oval cells were generated by stable infection with lentiviral vectors expressing an ALK2 targeting short hairpin RNA (shALK2; generated using TRCN0000000441) or a non-targeting short hairpin RNA (NT). **B.** *Alk2* mRNA levels were determined by RT-qPCR. Data are expressed relative to NT cells (assigned an arbitrary value of 1) and normalized using *Gusb.* **C**. Transcriptional reporter assay in NT and shALK2 oval cells treated with BMP9 (2ng/ml). Data are mean \pm S.D from one representative experiment performed in sextuplicates. **D**. NT and shALK2 oval cells treated with BMP9 (2ng/ml) for 2 days were counted. Data are expressed as percentage relative to NT untreated cells and are mean \pm S.E.M from 3 independent experiments performed in triplicate. Data were compared with untreated group or as indicated, ***=p<0.001.

Supplementary figure S2. Expression of BMP9 receptors in oval cells.

A. Oval cells were treated for 0.5 or 15 hours with HGF (40ng/ml) in 0% FBS medium. *Alk1, Alk2, Bmpr2, Acvr2a* and *Acvr2b* levels were analyzed by RT-qPCR and normalized to *Gusb*. Data are shown as fold change relative to untreated cells and are mean \pm S.E.M from 2-3 independent experiments. **B**. Oval cells were treated for 1 hour with BMP9 (2ng/ml) in the absence or presence of HGF (40ng/ml) in 0% FBS medium. *Alk2* levels were analyzed by RT-qPCR and normalized to *Gusb*. Data are shown as fold change relative to untreated cells and are mean \pm S.E.M from 2 independent experiments. Data were compared with untreated group or as indicated, *=p<0.05.

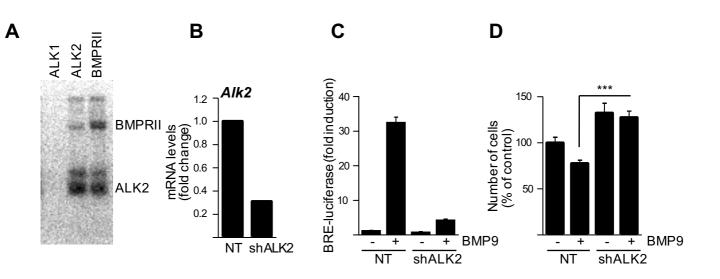
Supplementary figure S3. Effect of knocking down ALK1 on oval cell response.

ALK1 knockdown oval cells (shALK1#1 and shALK1#2, generated using TRCN0000022540-553 and TRCN00000231254-840, respectively) and their nontargeting control (NT) oval cells were generated by stable infection with lentiviral vectors expressing an ALK1 targeting or a non-targeting short hairpin RNA. A-B. *Alk1* mRNA levels were determined by RT-qPCR. Data are expressed relative to NT cells (assigned an arbitrary value of 1) (n=2). C. NT and shALK1 stable oval cells were transfected with pGL3(BRE)-luciferase reporter gene, then were serum starved and treated for 15 hours with BMP9 (2ng/ml) in the absence or presence of HGF (40ng/ml). Luciferase activity was normalized to cell number. Data are mean \pm S.E.M. from 2 experiments run in sextuplicate and are expressed as fold change relative to untreated cells. C. NT and shALK1 stable oval cells were treated with BMP9 (2ng/ml) in the absence or presence of HGF (40ng/ml) in 0% FBS medium and counted at day 2. Data are mean \pm S.E.M from 3 experiments performed in triplicate and are expressed as percentage of NT untreated cells. Data were compared with untreated group or as indicated, *=p<0.05; ***=p<0.001.

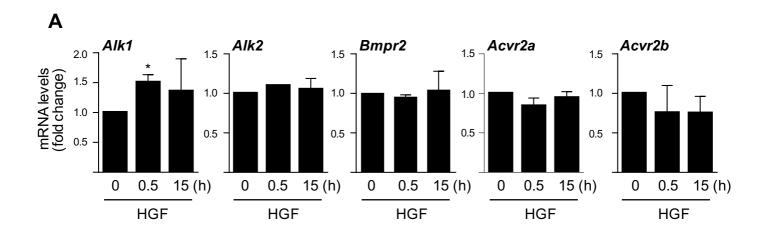
Supplementary figure S4. BMP9-triggered p38MAPK activation is abolished in shALK2 oval cells.

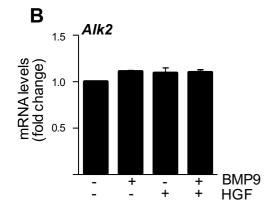
shALK2 and non-targeting control (NT) oval cells (generated as described in supplementary figure 1 legend) were treated for 30 minutes with BMP9 (2 ng/ml) in 0% FBS medium. Western blots for P-P38 and P38 were performed. A representative experiment of 3 is shown.

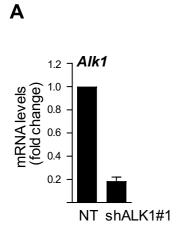
Supplementary figure S5. Activation of p38 by BMP9 in oval cells with functional or non-functional Met signaling.

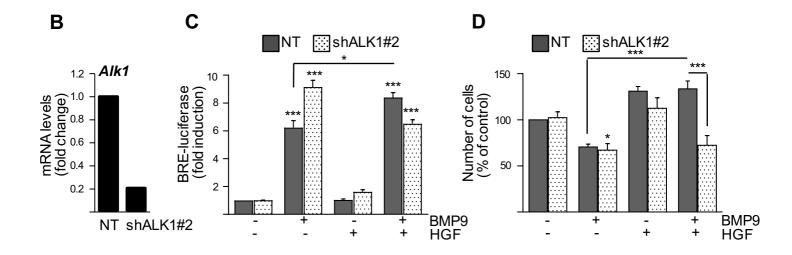

A. Met^{flx/flx} and Met^{-/-} oval cells were treated for different periods of time with BMP9 (2ng/ml) in 0% FBS medium. Western blots for P-P38 were performed and β -ACTIN was used as loading control. A representative experiment of 3 performed is shown.

Supplementary methods

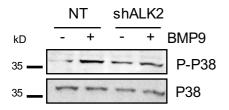

¹²⁵[I]BMP-9 binding assay

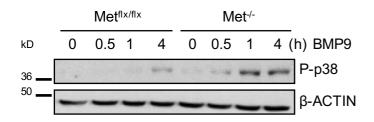

Iodination of BMP-9 was performed according to the chloramine T method and cells were subsequently affinity-labeled with the radioactive ligand as previously described (van Meeteren et al., 2008). In brief, cells were incubated on ice for 2 hours with the radioactive ligand. After incubation, cells were washed and crosslinking was performed using 54 mM disuccinimidyl suberate (DSS) and 3 mM bis(sulfosuccinimidyl)suberate (BS3 Pierce, Bleiswijk, Netherlands) for 15 minutes. Cells were washed, scraped and lysed. Lysates were boiled in sodium dodecyl sulphate (SDS) sample buffer and subjected to SDS-PAGE directly or were incubated with anti-ALK1 and anti-ALK2 antibodies overnight and immune complexes were precipitated by adding protein A Sepharose (GE Healthcare Europe). Samples were washed, boiled in SDS sample buffer and subjected to SDS-PAGE. Gels were dried and scanned with the STORM imaging system (GE Healthcare Europe).


- van Meeteren LA, Thorikay M, Bergqvist S et al. Anti-human activin receptor-like kinase 1 (ALK1) antibody attenuates bone morphogenetic protein 9 (BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting. *J Biol Chem.* 2012; 287, 18551-18561.



Supplementary Figure 2 Addante et al.





Supplementary Figure 4 Addante et al.

Supplementary Figure 5 Addante et al.

