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Abstract: Cellular (also termed ‘natural’) prion protein has been extensively studied for many years
for its pathogenic role in prionopathies after misfolding. However, neuroprotective properties
of the protein have been demonstrated under various scenarios. In this line, the involvement of
the cellular prion protein in neurodegenerative diseases other than prionopathies continues to be
widely debated by the scientific community. In fact, studies on knock-out mice show a vast range of
physiological functions for the protein that can be supported by its ability as a cell surface scaffold
protein. In this review, we first summarize the most commonly described roles of cellular prion
protein in neuroprotection, including antioxidant and antiapoptotic activities and modulation of
glutamate receptors. Second, in light of recently described interaction between cellular prion protein
and some amyloid misfolded proteins, we will also discuss the molecular mechanisms potentially
involved in protection against neurodegeneration in pathologies such as Alzheimer’s, Parkinson’s,
and Huntington’s diseases.
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1. Introduction

Pathogenic conformational changes of cellular prion protein (PrPC) generates a β-sheet-enriched
isoform called PrPSc or prion (word derived from proteinaceous infectious particle) [1–3], the causal
agent of prionopathies [1,2]. PrPC, the natural noninfective protein, is a cell surface glycoprotein
linked to the membrane by a glycosylphosphatidylinositol (GPI) anchor, and is mainly located in
lipid rafts. The protein is encoded by the Prnp gene and expressed in a wide range of tissues in
mammals [4–6]. However, central nervous system (CNS) and lymphoid tissues express higher levels
of PrPC, making them the best candidates to generate infectious prions. Prionopathies are a group of
fatal neurodegenerative diseases (NDDs) that may present as genetic, infectious, or sporadic disorders.
Kuru, Creutzfeldt–Jackob disease (CJD), Gertsmann–Straussler–Scheinker syndrome (GSS), and fatal
familial insomnia (FFI) are diseases that occur in humans, while bovine spongiform encephalopathy
(BSE) is found in cows, scrapie in sheep, and chronic wasting disease (CWD) in some members of the
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family Cervidae [7–9]. After the structural transition of PrPC, PrPSc acquires self-aggregative, spreading
(intercellular propagation), and infective (understood as a synonym of contagious) properties [10,11].

In recent years, the scientific community has focused attention on defining the term “prion-like”
or “prionoid” to describe other proteins with behavior similar to prions in terms of self-aggregation
and spreading properties [10–14]. Proteins implicated in different NDDs, including Huntingtin [15],
α-synuclein [16–23], amyloid-β (Aβ) [24–26], and tau [27–31], are currently seen in numerous studies as
prion-like proteins. In fact, most of them display amino acid domains in their sequence that determine
their specific self-aggregation properties [32,33]. However, the transmission of some of these amyloid
proteins between individuals, although unlikely, is currently a relevant topic for discussion [34–36].

More relevantly, two or more of these proteinaceous species might coexist in particular NDDs or
experimental models (i.e., [37–45]). Thus, the molecular interaction between them and their putative
synergistic effects in affected patients are still under debate (i.e, tau and α-synuclein) [46]. However,
the question arises when we try to ascertain natural PrPC functions and their specific roles in NDDs
other than prionopathies because not only PrPSc (see above) but also PrPC can coexist with most of
these amyloids in experimental NDD models and in brain affected tissue (i.e., [22,47–50]). In this sense,
Figure 1A illustrates an example of the relevant colocalization between PrPC (green) and Aβ (red) in
the postmortem frontal cortex of an Alzheimer’s disease (AD) patient in contrast to other prion-like
proteins such as α-synuclein with little colocalization with Aβ-positive plaques in the same context;
normal endogenous expression and function of PrPC may be largely compromised in NDDs [51,52]. In
this respect, conflicting studies report neurotoxic roles of PrPC in particular NDDs while others point
to a neuroprotective function of the protein in the same disease (i.e., AD), discussed below.
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Figure 1. Confocal images of self-aggregative proteins in AD patients. (A) Double-labeling
immunofluorescence of PrPC (clone 3F4 directed against aa 109–112 of prion protein, Merck Millipore)
and Aβ (rabbit polyclonal antibody directed against the N-terminus 11-pyro E start point of human
beta-amyloid, Novus Biologicals) showing colocalization of PrPC in Aβ deposits. (B) Double-labeling
immunofluorescence of α-synuclein (clone 5C2 raised against recombinant alpha-synuclein aa 61–95
purified from E. coli, Labome) and Aβ (Novus). Note the absence of clear colocalization between these
two proteins. Scale bar values are displayed in the Merge panels.
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In the present review, far from arguing the pathogenicity of PrPSc or other prion-like proteins,
which has already been done in several reviews (see, for instance, [53–56]), we will focus our attention
on the neuroprotective role of PrPC and its putative implication in amyloid-associated NDDs.

2. PrPC and Neuroprotection

Since the generation of the first knock-out (Prnp0/0) mice of PrPC in 1992, referred to as Zürich 1 [57],
researchers have used different Prnp0/0 mice in their studies (Zürich 1 [58], Edinburgh [59], and Zürich
3 [60]) to validate/reveal processes sustained by the functions of the protein (see also [61,62]). Moreover,
the number of functions is paralleled by the numerous descriptions of PrPC interactions [63–66].
However, some attributed functions are controversial to interpret in biological terms [23,63,67,68]. We
refer the reader to a compelling description of PrPC interactions [60,69,70] in order to evaluate the pitfalls
associated with the genetic background of the Zürich 1 mice. However, one of the most frequently
described functions in different experimental models is the participation of PrPC in neuroprotection.
In these processes, the “positive” actions of the protein are linked to: i) particular PrPC activities and ii)
PrPC interaction with counterpart actors modulating cell signaling cascades and mechanisms involved
in neurotoxicity.

2.1. Antioxidant Activity

Membrane-anchored PrPC presents the ability to bind extracellular Cu2+ ions at the highly
conserved octapeptide repeats (OR) region of the protein near the N-terminus [71–74]. This PrPC–Cu2+

interaction provides antioxidant properties to the protein as demonstrated by reducing copper-mediated
oxidative stress [75]. In fact, Prnp0/0 mice display higher levels of oxidative stress markers in vivo
compared to wild-type animals [76–78]. Moreover, in vitro studies have shown that PrPC overexpression
in cultured non-neuronal cells results in decreased susceptibility to oxidative damage and toxicity
induced by agents such as copper and hydrogen peroxide (H2O2) [79–84]. In fact, PrPC levels
are increased in neuroblastoma (N2a) and HeLa cells after overload of extracellular copper [85].
Stress-mediated overexpression of PrPC might modulate superoxide dismutase (SOD) [86] and
glutathione reductase (GR) activity [83], increasing antioxidant properties in treated cells.

The antioxidant role of PrPC has also been reported in vivo. In this regard, following ischemic
insults, Prnp0/0 mice display larger affected regions with increased cell death than do wild-type
mice [87]. In contrast, endogenous PrPC expression can protect against brain damage after traumatic
brain injury in mice [88] and during stroke in rats [89–91]. In parallel, as a consequence of the lesion,
Prnp expression is increased under oxidative stress conditions [92], and both increased mRNA and
protein have been described in neurons located in the penumbra region in ischemic mice [87]. Lastly,
the above-mentioned regulation has also been described in humans under oxidative damage or
ischemia [87,93]. Overexpression of PrPC by affected brains should be considered an intrinsic response
in an attempt to provide long-term neuroprotection, neurogenesis, or angiogenesis [94].

2.2. Antiapoptotic Activity

PrPC not only acts as an antioxidant protein but also exercises direct control on mitochondrial-associated
apoptotic signaling. In this sense, overexpression of PrPC protects primary cultured neurons against
Bax-mediated cell death [95]. Function-mapping studies have reported that the OR domain of PrPC is
mandatory for antiapoptotic function, since deletion of this domain abolishes the protective function
of the protein. Other antiapoptotic proteins such as Bcl-2 require the BH2 domain to interact with Bax
protein and regulated permeabilization of the mitochondrial membrane [96]. Although PrPC does not
contain BH2 domains and does not directly interact with Bax, it is able to bind with the C-terminal
domain of Bcl-2 [97,98]. Moreover, ectopic expression of PrPC and Bcl-2 in Prnp0/0 cells suppresses
apoptosis in serum-free conditions [80,99], suggesting the contribution of PrPC to antiapoptotic activity
through caspase-dependent apoptotic pathways in mitochondria.
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2.3. Regulation of Calcium Homeostasis and Ionotropic Glutamate Receptors by PrPC

Alterations in calcium metabolism have been extensively studied in acute injuries such as ischemia
and in neurodegeneration. Relevantly, PrPC may regulate intracellular Ca2+ homeostasis [100–102].
For example, Krebs et al. showed that endoplasmic reticulum (ER) calcium stores respond to H2O2

in a PrPC-dependent way in neuronal cell cultures [103]. The data presented support the relevance
of the OR domain of the protein in this function and the activation of a protective signaling cascade
involving Src-like tyrosine kinase Fyn. Activated Fyn may further activate cellular phospholipases to
generate inositol triphosphate (IP3), leading to the opening of ER-associated calcium channels [104].

In fact, a neuroprotective function of PrPC is also supported by several studies describing increased
neuronal susceptibility to glutamate agonists in Prnp0/0 mice (see, for instance, [105–107]). In these
studies, AMPA/KA receptor dysfunction, largely responsible for excitotoxicity, is highlighted by
the absence of PrPC. Indeed, recent studies have also reported that PrPC binds to and modulates
N-methyl-D-aspartate receptor (NMDAR) in cooperation with Cu2+ [108–110]. In addition, there is
a susceptibility to stroke in rats with downregulation of Prnp and an increased expression of NR2B,
a subunit of NMDAR implicated in excitotoxicity-induced neuronal apoptosis [111]. This suggests
a functional regulation of ionotropic glutamate receptors by PrPC. The reader can find additional
information about the mechanisms implicated in neuroprotection of excitotoxicity by PrPC in recent
reviews [112,113].

2.4. Molecular Partners of PrPC for Interaction and Cell Signaling

The ability of PrPC to bind a variety of other molecules suggests the existence of different
physiological roles, which may be context-specific. In this respect, PrPC could be considered a cell
surface scaffold protein [70] as a means to explain the role of the protein as key in different signaling
systems. However, it will be necessary to determine the biological significance of each interaction and
the possibilities of response depending on these contacts. In terms of neuroprotection, PrPC transduces
signals across the plasma membrane by binding to other plasma membrane molecules such as the
laminin receptor and neural cell adhesion molecule. These interactions promote cell survival and
neurite outgrowth [114,115]. In this sense, cell survival promoted by PrPC can involve the activation
of both cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) and the ERK1/2 signaling
pathways [116], as well as activation of the phosphatidyl-inositol-3-kinase/Akt pathway [115]. In
addition, Moulliet-Richard and colleagues proposed Fyn kinase as an initiator of the cascade leading to
ERK1/2 activation by cross-linking of PrPC at the cell membrane with antibodies [117]. These and other
results support the idea that dimer formation of PrPC is essential to its neuroprotective activity since
antibody-mediated PrPC dimerization elicits rapid phosphorylation of ERK1/2 in cultured cells [118].
Moreover, in the same in vitro model, PrPC dimerization also promotes the recruitment of the cAMP
responsive element-binding protein (CREB) transcription factor and the transcription of several genes
with key functions in cellular protection and neuronal plasticity [119]. In addition, GSK3β, whose
inhibition is neuroprotective, is a downstream target of PrPC dimerization signaling in serotonergic
neuronal cells [120]. However, dimer formation of PrPC seems to be necessary but not sufficient for its
stress protective activity [121].

Another neuroprotective pathway through PrPC binding with stress-inducible protein 1 (STI-1) has
been reported by [122]. Moreover, Lopes and colleagues showed the effects on both neuritogenesis and
survival in hippocampal neurons triggered by STI-1-PrPC interaction. In this regard, the neuritogenesis
was found to be dependent only on mitogen-activated protein kinase (MAPK) activity, whereas
cAMP-dependent PKA actions mediate neuroprotection [123]. In addition, PrPC cooperates with STI-1
to regulate SOD activity, and consequently cell survival [124]. In fact, a recent study demonstrates the
neuritogenic potential of recombinant PrPC [125] which might trigger intracellular signaling cascades
after its homophilic interaction with membrane-anchored PrPC. Indeed, intracellular endocytosed
PrPC may interact with proteins involved in classical signaling pathways including the growth factor
receptor-bound protein 2 (Grb2), an adaptor protein involved in neuronal survival [63,126].



Cells 2020, 9, 591 5 of 24

2.5. Physiological Processing of PrPC and Neuroprotective Metabolites

PrPC can be proteolytically cleaved in the two structurally different regions of the protein at the
plasmatic membrane. PrPC has a long, flexible N-terminal tail (residues 23–128) and a C-terminal
globular domain that contains three α-helices and two parallel stranded β-sheets [127–129] (Figure 2)
(the residue numbering refers to mouse PrP (moPrP)). These two regions follow physiological proteolytic
processing by α-cleavage (approximately at aa 110), releasing the PrPN1 fragment (aa 23–110) and
yielding the PrPC1 fragment tethered to the plasma membrane [130,131]. In addition, minor cleavage,
termed β-cleavage, occurs at residues 90–91, releasing aa 23–89 or PrPN2 and PrPC2 [131] (Figure 3A).
A third type of cleavage within the OR is induced by reactive oxygen species in the presence of
Cu2+ [132]. One study [133] showed neuroprotective activity and anti-β-sheet-mediated corruption
activity of PrPN1. In this sense, different studies reinforce this hypothesis [134–136], and neurotoxic
consequences of the absence of α- or β-cleavage-derived forms of PrPC have been reported [137,138].
In fact, PrPC homodimerization stimulates its trafficking to the plasma membrane and α-cleavage with
the consequent production of PrPN1 and PrPC1 [136].
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In addition, a great range of ligands binding to the N-terminal domain of PrPC are able to
trigger rapid endocytosis of the protein. Ligand-induced internalization of PrPC may protect cells
in different ways: through the transport and homeostasis of several ligands, including Cu2+ and
hemin [75,139], by degradation of misfolded or inactive PrPC molecules [140], and by activating
PrPC-mediated intracellular cell signaling after the stimuli [141–143]. In this regard, and under
physiological conditions, endocytosis is essential to N-terminal PrPC function, although PrPN1 is able
to elicit neuroprotective signals independently of internalization [134].

Alternatively, intracellular processing of PrPC could generate additional cytoplasmic forms. A
cytosolic form (CyPrP) can be generated, probably as a result of retrotranslocation from the ER or from
poor translocation into the ER [144]. CyPrP is proposed as being responsible for protection against
Bax-mediated cell death [145,146]. In addition, PrPC presents two transmembrane isoforms, termed
NtmPrP and CtmPrP, with opposite sequence orientations with respect to the lumen of the ER [147].
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The single-pass transmembrane isoforms represent 2% of total PrPC inserts [148] (Figure 3B), and to
date, no physiological function has been detailed for them. However, several studies have associated
overexpression of CtmPrP with neurotoxicity [149,150].Cells 2020, 9, x FOR PEER REVIEW 6 of 25 
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3. Functions of PrPC during Aging and Neurodegeneration

In the healthy brain, there is a relationship between PrPC levels and aging. In fact, protein levels
are reduced in older human brains [151]. In this sense, aging is associated with an increase in reactive
oxygen species (ROS) which inversely correlates with PrPC levels. Moreover, oxidative stress is an
important contributing factor in the pathogenesis of many human NDDs, such as prionopathies,
Parkinson’s, Huntington’s, Alzheimer’s, and amyotrophic lateral sclerosis [152–154], which leads us
to pose the question of what the role of PrPC is in each of these scenarios. In addition, as mentioned
above, there is a specific interaction between the principal proteins implicated in these diseases and
PrPC, for instance, tau [46,48], Aβ [155,156], and α-synuclein [22,23,157], reinforcing the notion of an
active role for PrPC in these pathologies. Table 1 summarizes several studies describing examples of
the neuroprotective role of PrPC in a number of neurodegenerative diseases and some nonspecific
disorders. Please see text for opposing data.
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Table 1. Studies on contribution of PrPC to potential neuroprotection in neurodegenerative diseases.

Disease Finding Model Role of PrPC Key Reference(s)

Alzheimer’s disease

Inhibition of BACE1 In vitro Decreases Aβ production [158,159]

Binding of PrPN1 to Aβ In vitro Blocks transformation into
ADDLs [160,161]

Binding to STI1 In vitro Decreases ADDLs toxicity [162]

Binding to Zn2+ In vitro Decreases Aβ aggregation [163]

Binding of PrPN1 to ADDLs In vivo Decreases ADDLs toxicity [164]

Prevention of cell death by
Aβ

In vivo Decreases caspase-3 and
Bax/Bcl2 levels [165]

Increase in PrPN1
production in brain patients Human samples Blocks transformation into

ADDLs [160]

Increase in brain regions
prone to oxidative stress Human samples SOD and GR activity

regulation [166]

Increase in initial stages of
the disease Human samples Downregulates tau levels [167]

Huntington’s disease Increase in proteasome
activity In vitro Decreases HTT aggregation

and toxicity [139]

Amyotrophic lateral
sclerosis

Induction of neuronal and
glial survival signaling In vivo Antioxidant [168]

Nonspecific disorder

Binding to Cu2+ In vitro Antioxidant [75]

Modulation of SOD In vitro Antioxidant [86]

Modulation of GR In vitro Antioxidant [83]

Modulation of Bax function In vitro Antiapoptotic [95]

Regulation of Ca2+

homeostasis In vitro Reduces excitotoxicity [101]

Inhibition of NMDAR In vitro Reduces excitotoxicity [108,109,169]

PrP113-128 peptide In vitro Activates cAMP/PKA and
MEK/Erk pathways [116]

PrP-Fc signaling In vitro Activates PI3K/Akt
pathway [75]

Binding to STI1 In vivo

Inhibits GSK3β activity and
activates 7nAChR. All

together induces
neuroprotective signals.

[120,122,123,170]

3.1. PrPC in Alzheimer’s Disease (AD) and Other Tauopathies

AD patients are characterized by a progressive cognitive decline and behavioral changes due
to the dysregulation of two prion-like proteins: (i) Aβ, resulting from the abnormally processed
amyloid precursor protein (APP) though greater activity of β-secretase-1 (BACE1), and (ii) tau, a
microtubule-associated protein that promotes the polymerization and stabilization of microtubules
(MT) under the regulatory control of several kinases and phosphatases [171,172]. As a result, the
major histopathological hallmarks of the disease are the presence of senile plaques, enriched in Aβ,
and neurofibrillary tangles (NFTs) containing hyperphosphorylated tau (e.g., [173,174]). The widely
accepted amyloid cascade hypothesis posits that the generation of Aβ and its extracellular deposition
in brain parenchyma triggers a sequence of events leading to tau dysfunction following the “staging”
theory of disease progression [175,176]. Although higher toxic potential is actually attributed to
Aβ-derived diffusible ligands (ADDLs) and not to insoluble forms of Aβ [177], tau is considered
decisive for the progression of neurodegeneration [178], and the spreading of the tau pathology in
affected individuals correlates well with memory impairment and dementia symptoms [179]. Other
tauopathies, with different target cells (from neurons to astroglia or oligodendroglia) include Pick’s
disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and argyrophilic
grain disease (AGD), among others [180,181]. See also [182,183] for recent classifications of tauopathies.

The tau gene (MAPT) is expressed in six isoforms as a result of mRNA alternative splicing in
various combinations, distinguishable by the exclusion or inclusion of a repeat region of exon 10 that
generates four microtubule-binding repeats (4R) or three (3R) tau, and both with either no (0N), one
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(1N), or two (2N) amino-terminal inserts [184]. In adult neurons, 3R and 4R tau isoforms are present to a
similar degree, localized mainly in axons, but they are also present in the somatodendritic compartment
of neurons underlying NFT formation and in AD. NFTs lead to increased MT instability, impaired
axonal transport, and profound deficits in synaptic function. Among others, GSK3β and Cdk5 are the
main kinases implicated in the phosphorylation of some tau epitopes described in AD [185–188]. In
fact, several of these phosphorylated tau epitopes have been associated with in vitro cellular response
to ADDLs [167,189,190].

In AD, there is a colocalization of PrPC and Aβ-containing senile plaques ([49] and Figure 1A).
Moreover, PrPC and ADDLs interact specifically in AD patients’ brains [50,191,192], suggesting an
active role for PrPC in the disease. In fact, Aβ oligomers influence PrPC trafficking and inhibit PrPC

endocytosis [193], blocking BACE1 regulation by PrPC [194,195]. In addition, a study by Strittmatter’s
laboratory pointed to ADDL–PrPC interaction as being responsible for neurodegeneration through
regulation of glutamate receptors [50]. Later, other studies reinforced this hypothesis [196–199]. In the
effort to explain the consequences of PrPC–ADDLs in glutamate receptor interaction, some groups
have shown a physical connection between PrPC and ionotropic glutamate receptor NMDA [197,200]
and metabotropic glutamate receptor 5 (mGluR5) [201] (reviewed in [202]). NMDA receptor activity
is modulated by PrPC in a copper-dependent manner. Moreover, Um and colleagues linked the
dysregulation of NMDA by ADDLs–PrPC with Fyn activation. In fact, Fyn has also been associated
with PrPC [203] which presents direct binding to mGluR5, mGluR1, and NMDA receptors as well as
tau [197,204–207], supporting a role for it in dysregulating NMDA- or mGluR5-mediated synaptic
function as well as tau hyperphosphorylation induced by Aβ [208]. This was demonstrated by
Lesne’s laboratory who showed that soluble Aβ binds to PrPC at neuronal dendritic spines where it
forms a complex with Fyn and causes tau hyperphosphorylation [209], which may lead to cell death.
Regarding synaptic changes and neuronal physiology, some studies reported different data from those
reported by Strittmatter´s lab. Indeed, some authors have observed Aβ-induced depression of synaptic
transmission in both wild-type and Prnp0/0 mouse slices [210], and others have found that Prnp+/+

and Prnp0/0 mice were equally susceptible to cognitive impairment after Aβ injection into the lateral
ventricle [211]. Moreover, Aguzzi’s group has shown there to be no LTP impairment in APP/PS1 mice
lacking Prnp [212]. In summary, although the binding of PrPC and ADDLs seems to be accepted, there
are some differences in ascertaining whether this interaction affects only synaptic plasticity or cell
death as well.

Below we describe several studies in which PrPC developed a neuroprotective role in AD through
its natural function/s. For instance, it has been reported that overexpression of PrPC protects against
Aβ-mediated cell death (i.e., caspase-3 activation) in mice via control of the Bax/Bcl-2 ratio and, over
time, PrPC expression also prevents cognitive dysfunction [165]. In addition, Younan and colleagues
have shown that PrPC inhibits fiber formation by trapping free ADDLs and causing disassembly of
preformed Aβ fibrils [213]. The authors point to two charged clusters in the N-terminal domain of
PrPC as being responsible for Aβ–PrPC binding: (aa 95–110) and (aa 23–27) [21,155,213]. At this point,
it is important to keep in mind that the activity of PrPC is finely regulated by its dimerization and
that PrPC homodimers stimulate the production of PrPN1, which in turn can bind to Aβ with high
affinity, blocking transformation into soluble and toxic ADDLs [136,160,161,164]. In this sense, there is
some evidence that α-cleavage (leading to PrPN1 and PrPC1) is increased in postmortem brains of AD
patients, reinforcing this neuroprotective notion [160], and inhibition of PrPN1 production promotes
AD progression [214]. The hydrophobic domain of the protein (amino acids 112–133), inside the
N-terminal domain, is responsible for homodimer formation [121] and perhaps interferes with ADDL
binding. In addition, although PrPC could mediate the toxicity of ADDLs [133,215], homodimerization
and cleavage may be a common mechanism in preventing this.

In addition, some authors have recently shown that increased PrPC expression downregulates tau
protein [167,216,217]. In this sense, we recently reported increased susceptibility of tau phosphorylation
to ADDLs in primary cortical cultures lacking PrPC. Reported results indicate that increased PrPC
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between Braak I and IV stages renders lower tau and phospho-tau. In contrast, PrPC levels decreased
at Braak V–VI stages which also correlates with increased amounts of tau and phospho-tau. Taken
together, our observations suggest a protective role for PrPC in early stages of AD which may be
extendable to other tauopathies [167]. In fact, tau pathology has been reported in a wide number of
prionopathies such as sporadic CJD (sCJD) [35], GSS [218,219], and FFI [220], which showed lower
PrPC levels due to the PrPC-to-pathogenic-prion conversion [221].

Regarding pathological phosphorylation of tau, some studies point to GSK3β kinase activity
as a key element in neuroprotection, while GSK3β inhibition has been shown to play a pivotal role
in synaptic plasticity and long-term potentiation (LTP) [222]. In this sense, PrPC–STI-1 interaction
triggers reduction of GSK3β kinase activity which not only may affect tau phosphorylation but may
also induce memory impairment [120]. Importantly, the interaction of STI-1 with PrPC was recently
shown to hinder the binding of Aβ oligomers to PrPC, overcoming their toxicity [162].

As indicated by several studies, AD (in a broad sense) is characterized by neuroinflammation
and oxidative stress [223]. In this sense, it is notable that levels of PrPC are increased between Braak I
and IV stages [167], in contrast to decreased levels in advanced stages of the disease [221,224]. PrPC

can reduce ROS by its intrinsic copper buffering roles and by modulating SOD1 and GR (see above).
Elevated levels of PrPC have been reported to occur in brain regions prone to oxidative stress in AD,
suggesting a possible antioxidant function in the disease [166]. In addition, increased expression of the
PrPC in the first stages of AD [225,226] may promote competition between different ligands including
Aβ (Figure 4). Along this line, zinc is another cation involved in the generation of ROS in neurons, and
PrPC mediates uptake of extracellular zinc into neuronal cells [227]. Furthermore, zinc promotes Aβ

aggregation and increases insoluble Aβ and its deposition in plaques in an AD mouse model [228,229].
In addition, synaptic zinc favors the attachment of Aβ to NMDAR, mediating its excitotoxicity [230].
This implies that the reduction in PrPC in the advanced AD brain migh result in decreased zinc uptake
and, consequently, in an increase in the amount of zinc in the synaptic cleft, which would promote Aβ

aggregation and synaptic targeting, thereby accelerating the neurodegenerative process.
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Figure 4. Proposal of a putative scenario for neuroprotective intervention of PrPC in AD: 1. Modulating
ROS levels; 2. Inhibiting BACE1 activity; 3. Generating PrPN1; 4. Modulating glutamate receptors
(both ionotropic (NMDAR) and metabotropic (mGluR5)); 5. Reducing phospho-tau levels through STI-1
interaction and GSK3β inhibition; 6. Reducing ROS levels through STI-1 interaction and consequent SOD
modulation; 7. Executing anti-Bax activity; 8. Increasing Zn2+ uptake; and 9. Reducing tau levels. Number
10, in italics, represents the direct intervention of ADDLs in PrPC function, inhibiting its endocytosis and/or
homodimerization, and competing with Cu2+ binding and homeostasis. TGN: Trans-Golgi Network.
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PrPC has been shown to influence the processing of APP, lowering Aβ production through
inhibition of BACE1, suggesting that PrPC functions are beneficial in AD [158,159]. In fact, protein and
mRNA levels of PrPC correlate inversely with BACE-1 activity and Aβ levels [151,158,221,226,231,232].
Therefore, a decrease in PrPC levels at medium-late stages of AD may be a primary contributor to
neurodegeneration and cognitive impairment.

3.2. Neuroprotective Role of PrPC in Huntington’s and Parkinson’s Diseases

Despite the paucity of data supporting this hypothesis, assorted evidence suggests that PrPC is a
possible neuroprotective key in other diseases, since ROS and free radicals are important mediators of
neurotoxicity in several other NDDs—for instance, HD and PD (see above), to which we will now turn.

Huntington’s disease (HD) is an inherited disorder which causes progressive neurodegeneration
and which includes motor, cognitive, and psychiatric manifestations until inevitable death occurs [233].
The disease is caused by a polyglutamine (polyQ) expansion (encoded by a CAG repeat) of Huntingtin
(HTT) protein. Mutated HTT gene is responsible for the aggregated polyQ, the main component
of the proteinaceous deposits found in patient brains [234]. In fact, the age of onset of clinical
manifestations is inversely correlated to the length of the polyQ expansion. HTT is expressed in a broad
spectrum of neuronal and non-neuronal tissues [235]. Nevertheless, mutated HTT protein promotes
progressive neurodegeneration of specific neuronal types, affecting particularly the caudate-putamen
and neocortical regions of HD patient brains [236,237]. However, the mechanism of progressive neural
loss has not been fully elucidated [238].

Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the world,
and it is characterized by the appearance of postural instability, bradykinesia, and tremor. These
symptoms are associated with dopaminergic neurodegeneration of the substantia nigra pars compacta
(SNc), which innervates basal ganglia and leads to loss of dopamine levels in the striatum [239,240].
Although cell death mechanisms are still unknown, great attention has been focused on α-synuclein
because it is the major constituent of Lewy bodies, a principal hallmark of PD. In fact, the spread of fibrillar
α-synuclein pathology from the brainstem to limbic and neocortical structures seems to be the strongest
neuropathological correlate of emerging dementia and cognitive impairment in the disease [241].

In this scenario, the increased level of oxidatively modified proteins in PD leads to the impairment
of several cellular functions [242,243]. We have already reported the importance of PrPC expression in
modulating redox homeostasis [75]. In addition, some other common aspects suggest that PrPC may
exert neuroprotective functions in these diseases. We already know the importance of biochemical
interactions between PrPC and NMDAR or mGluR5 and their possible contribution in AD (see above).
Along this line, dysregulation of glutamate receptors plays a role in both HD and PD (reviewed
in [244,245]). The excess of glutamate is associated with NDDs, and it becomes excitotoxic by chronically
activating both ionotropic and metabotropic glutamate receptors. As a result, an increase in intracellular
Ca2+ promotes neuronal injury and cell death [246,247]. So, although changes in PRNP expression in
early stages of PD and HD are unknown, we may speculate upon a putatively positive role of PrPC in
inhibiting glutamate receptors in both diseases.

So, the mechanism that promotes excitotoxicity in HD is thought to be the increased redistribution
of NMDAR to the extra-synaptic compartment. Indeed, NMDARs play a key role in neuronal cell death
related to HD. Moreover, it has been demonstrated that mutated HTT protein leads to sensitization
of the NMDAR, resulting in an increase in extracellular Ca2+ invading neurons and promoting
excitotoxicity [245]. Furthermore, degeneration of dopaminergic neurons in SNc induces an increase in
the activity of glutamatergic neurons in the subthalamic nucleus (STN) which is believed to contribute
to the motor symptoms of PD. Group I mGluRs (mGluR1 and mGluR5) are widely expressed in the
basal ganglia, especially at postsynaptic sites [248]. However, mGluR5 expression is higher than
mGluR1. So, its role in PD motor deficits has been shown in a variety of preclinical studies [249,250].
In fact, antagonism of this receptor ameliorates motor deficits in animal models of PD [251,252]. In
this line of research, a new topic of debate is emerging: the possible intervention of PrPC in inducing
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cognitive impairment through mGluR5 and NMDAR in synucleinopathies. As reported regarding
ADDLs-PrPC interaction, Outeiro’s group has indicated that PrPC acts as a receptor for neurotoxic
effects of oligomeric α-synuclein [23], although recent results contradict this [67].

As indicated above, neuroprotective PrPC cleaved-fragment PrPN1 binds to and antagonizes the
toxicity of β-sheet rich oligomers. In this line, Wetzel’s group has reported a complex aggregation
pathway for a polyQ containing the N-terminal 17 amino acids of HTT exon 1. In addition, they show
the intermediate structures formed during aggregation of peptides [253]. A previous study showed a
protective effect of PrPC in HTT pathology by reducing aggregation and associated toxicity in neuronal
cells [139]. The authors suggest that PrPC protects cells from a reduction in proteasome activity by
maintaining levels of ROS, thereby helping to prevent protein aggregation. It would be of interest
to learn about the roles of full-length PrPC protein and cleaved fragments of the protein in the same
model. In contrast, HD is considered a four-repeat tauopathy with tau nuclear rods [254]. In addition,
GSK3β inhibitors prevent cellular toxicity caused by HD mutation [255]. Taking all the evidence
together, it is tempting to posit that PrPC may have alternative roles in the disease through regulation
of tau levels and modulation of GSK3β activity.

Despite the lack of research about intervention of PrPC in the α-synuclein aggregation process,
there has been reported to be an increased tendency toward aggregation after oxidation of γ-synuclein,
another member of the family that seeds α-synuclein aggregation [256]. In this context, an indirect
role of PrPC in this process is plausible. Also, we and others have shown that PrPC is involved in
the propagation and spreading of protofibrils of α-synuclein, with binding between the two proteins
in Prnp-transfected HEK293 cells though residues located in the CC2 domain of PrPC [47,157,257].
Surprisingly, these are the same amino acids (95–110) involved in binding with Aβ [213]. Since Prnp
expression is not mandatory for α-synuclein transport in the mouse brain [258], it is tempting to
consider that role in the update and transport to be a collateral effect on the principal neuroprotective
role of PrPC in the disease. In this respect, we also must recall that both our group and Aulic et al. [157]
indicated that PrPC is a receptor for the fibrillar forms of α-synuclein [21,257,259]. However, as it has
been reported that PrPC does not bind to oligomeric species of α-synuclein [67] in contrast to [23],
additional studies are needed to ascertain whether oligomeric α-synuclein also mediates similar effects
to ADDLs though PrPC interaction.

Finally, unpublished studies by our group indicate a tendency toward decreased levels of PrPC protein
levels in the frontal cortex (area 8) in advanced PD patients (Braak stages 5 and 6) (Figure 5). These results
may signal the importance of the protein in the progression of the pathology, as occurs in AD (see above).
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Figure 5. Graph representing densitometric study of PrPC immunoblot analysis in postmortem frontal
cortex (Brodmann area 8) from PD patients at different stages compared to non-neurodegenerative
cases (nND). Postmortem brain tissue was obtained from Hospital Clinic Brain Bank, following the
Code of Ethics of the World Medical Association and the protocols of the local ethical committee.
Each plot represents a quantitative level of PrPC standardized with actin level for each case. Data
shows a progressive, albeit nonsignificant decline in PrPC levels in accordance with advance of the
disease. Statistical analysis of the resulting data was performed using Anova (Kruskal–Wallis with
Dunn multiparametric test) and Prism 8.0 (GraphPad Software, San Diego, CA, USA).



Cells 2020, 9, 591 12 of 24

4. Concluding Remarks

The relationship between PrPC and other amyloids (oligomeric (ADDLs) and fibrillar forms (i.e.,
α-synuclein)) has been well established, and different roles of PrPC in AD have been described (see
above). We argue for the role of PrPC in preventing the detrimental effects of the oligomeric species,
especially at early stages of the neurodegenerative processes. In this review, we have focused our
attention on analyzing a number of mechanisms through which PrPC may act as a neuroprotective
molecule. In fact, we must not lose sight of the progression of the protein and its derivate fragments
(PrPN1, for instance) in the evolution of diseases. A correlation of the symptoms with levels of PrPC

expression may be an important element in increasing our understanding of the natural functions of the
protein. In this review, we have also speculated about other diseases of which we do not have so much
data, but regarding which it is nonetheless reasonable to posit that PrPC is expressed in order to slow
down disease progression. Despite this, we cannot rule out the possibility that enhanced interaction
between PrPC and the other proteins implicated in NDDs, such as Aβ and α-synuclein, results in fatal
effects. Thus, a plausible intervention to avoid the progression of these diseases may involve blocking
these specific interactions, thereby allowing the protein to maintain its natural function.
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