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Abstract: Although conventional immunohistochemistry for neurotropic rabies virus (RABV) usually
shows high preference for neurons, non-neuronal cells are also potential targets, and abortive
astrocyte infection is considered a main trigger of innate immunity in the CNS. While in vitro studies
indicated differences between field and less virulent lab-adapted RABVs, a systematic, quantitative
comparison of astrocyte tropism in vivo is lacking. Here, solvent-based tissue clearing was used to
measure RABV cell tropism in infected brains. Immunofluorescence analysis of 1 mm-thick tissue
slices enabled 3D-segmentation and quantification of astrocyte and neuron infection frequencies.
Comparison of three highly virulent field virus clones from fox, dog, and raccoon with three
lab-adapted strains revealed remarkable differences in the ability to infect astrocytes in vivo. While all
viruses and infection routes led to neuron infection frequencies between 7–19%, striking differences
appeared for astrocytes. Whereas astrocyte infection by field viruses was detected independent of the
inoculation route (8–27%), only one lab-adapted strain infected astrocytes route-dependently [0%
after intramuscular (i.m.) and 13% after intracerebral (i.c.) inoculation]. Two lab-adapted vaccine
viruses lacked astrocyte infection altogether (0%, i.c. and i.m.). This suggests a model in which
the ability to establish productive astrocyte infection in vivo functionally distinguishes field and
attenuated lab RABV strains.
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1. Introduction

The rabies virus (RABV) is a highly neurotropic virus, which inevitably causes lethal disease in
mammals after onset of neurological signs [1]. As a non-segmented, single-stranded RNA virus of
negative RNA polarity, RABV belongs to the Rhabdoviridae family in the order Mononegavirales [2]. With
nucleoprotein N, phosphoprotein P, matrix protein M, glycoprotein G, and the large polymerase L,
the 12 kb genome of RABV encodes five virus proteins, all of which are essential for virus replication
and spread [3]. In addition to essential roles of the virus proteins in genome replication and virus
assembly, multiple accessory functions of the RABV proteins have been identified. RABV pathogenicity
has mainly been attributed to a potent interference with the innate immune system by N, P, and
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M [4–10], and neuronal survival regulation by G [11–14]. Most pathogenicity studies, however, were
performed on already attenuated virus backbones. Thus, differences in their ability to cause disease
between highly virulent field virus isolates and lab-adapted, less pathogenic RABV strains are poorly
understood. Moreover, it is unclear how molecular differences identified in virulent and attenuated
viruses affect virus replication and spread in the infected animal and how the complex virus–host
interplay eventually results in either disease or an abortive infection.

In vivo, after infection of neurons, RABV spreads trans-synaptically from infected to
connected neurons [15]. Retrograde axonal transport of RABV over long distances [16,17] along
microtubules [18,19] is a key step in RABV neuroinvasion and is essential for infection of the central
nervous system (CNS) through the peripheral nervous system. Co-internalization together with
the neuronal p75NTR (tumor necrosis factor receptor superfamily member 16; TNFRSF16) receptor,
subsequent retrograde axonal transport of RABV particles in endocytic vesicles, and post-replicative
anterograde axonal transport of newly formed RABV have been visualized by live virus particle
tracking in sensory neurons [20,21], emphasizing the capacity of hijacking neuron-specific machineries
for long distance transport to synaptic membranes. However, internalization and axonal transport
of lab-adapted viruses [20,21] together with the use of vaccine virus vectors for trans-synaptic
tracing [22,23] demonstrate that the general capacity of axonal transport and trans-synaptic spread
cannot explain mechanistic differences between highly virulent RABV and more attenuated lab strains.
Differences between RABV lab strains in the efficiency of trans-synaptic spread [24] indicate that the
efficacy of the involved processes, more than the capability itself, may contribute to RABV spread
in vivo.

With nAChR (nicotinic acetylcholine receptor), NCAM (neuronal cell adhesion molecule), p75NTR,
and mGluR2 (metabotropic glutamate receptor subtype 2) supporting RABV entry [25–28], several
RABV receptors have been discussed. However, none of these receptors are essential for CNS infection
by RABV, and a broad panel of non-neuronal cell types can be infected in vitro [29], indicating that cell
tropism of RABV is not restricted to neurons by receptor specificity.

Most in vivo studies report a strict neurotropic infection. Directly after exposure by bite, however,
muscle cells are infected (reviewed in [30]), and infection of non-neuronal cells in the CNS can
occur [29,31,32]. Use of recombinant Cre recombinase-expressing RABV led to the identification of
abortively infected glial cells in infected mouse brains, strongly suggesting infection of and virus
elimination from these cells by a potent type I interferon response [33]. Accordingly, abortive infection
of non-neuronal cells and induction of innate immune responses may play an important role in
the infection process itself and in regulating downstream adaptive immune pathways. Indeed, a
model based on in vitro-infected astrocytes suggests that, in contrast to wild-type RABV, attenuated
RABV activates inflammatory responses in astrocytes through increased double-strand RNA (dsRNA)
synthesis and recognition by retinoic acid-inducible gene I (RIG-I)/melanoma differentiation-associated
protein 5 (MDA5) [34]. Highly virulent field RABV isolates are able to evade or at least delay host
immune reactions [35], which may allow virus replication to reach pathogenic levels, whereas early
innate immune induction via astrocytes or other glial cells by attenuated viruses does not. Nevertheless,
all productive RABV infections eventually cause rabies as a disease, which is always associated with
an encephalitis. However, differences appear to exist as field viruses cause less tissue damage and
neuroinflammation than attenuated lab RABV [34,36,37].

To compare the cell tropism of highly virulent field and lab-adapted RABVs in the CNS, we
employed the novel immunostaining-compatible tissue clearing technique uDISCO (ultimate 3D
imaging of solvent-cleared organs) [38–40] for detection and quantification of RABV infection in
neurons and astrocytes in solvent-cleared brain tissue. After confocal laser scan acquisition of large
confocal z-stacks in thick tissue slices, three-dimensional (3D) reconstructions were performed to
visualize the cellular context of RABV infection. Frequencies of RABV infection in neurons and
astrocytes were determined after intramuscular (i.m.) and intracerebral (i.c.) inoculation, leading
to novel insights regarding the ability to establish RABV infection in non-neuronal astrocytes, its
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correlation with RABV virulence, and its dependence on the infection route. These data strongly support
a model in which, contrary to in vitro conditions where all viruses are able to infect non-neuronal
astrocytes, there are differences between field and lab-adapted viruses in their ability to replicate to
detectable levels in astrocytes in vivo. The infection of astrocytes with virulent field RABV and the
accumulation of interferon antagonistic virus proteins may block rapid innate immune induction,
thereby contributing to immune evasion, even in the context of glial cell infection.

2. Materials and Methods

2.1. Cell Lines, Primary Brain Cell Preparation, and Cultivation

Mouse neuroblastoma cells (Na42/13) were used for virus amplification. All cells were provided
by the Collection of Cell Lines in Veterinary Medicine (CCLV), Friedrich-Loeffler-Institut, Insel Riems,
Germany. Primary neurons and astrocytes were prepared from 1-day-old neonatal Sprague Dawley
rats (P0–P1) [41]. The rats were decapitated, the heads were disinfected in 70% ethanol, the brains
were removed, and the hippocampi were separated and mechanically minced. The hippocampal
cells were transferred into ice-cold Hank´s Balanced Salt Solution (HBSS) and stored on ice. After
preparation, the brain cells were dissociated by adding 0.25% trypsin + EDTA (Gibco; Thermo Fisher
Scientific, Darmstadt, Germany) and DNase I (Applichem, Darmstadt, Germany) and incubated for
15 min at 37 ◦C. Afterwards, further dissociation in Neurobasal-A Medium (NB-A, Gibco; Thermo
Fisher Scientific) was performed by using a glass Pasteur pipette with a fire-polished tip. The cells
were purified with an OptiprepTM gradient (with concentrations from bottom to the top: 17.3%, 12.4%,
9.9%, and 7.4%) and centrifuged for 15 min at 800× g without brake. Next, the cells were washed
with NB-A medium and counted with the LUNA-II Automated Cell Counter (Logos Biosystems,
Villeneuve d’Ascq, France). The neuronal cells were seeded on coverslips in a 24-well plate and
cultured for two weeks at 37 ◦C and 5% CO2 in serum-free NB-A supplemented with 2% B27 (Gibco;
Thermo Fisher Scientific), 1% GlutaMAX (Gibco; Thermo Fisher Scientific), 1% Penicillin-Streptomycin
(stock: 10,000 U/mL penicillin and 10 mg/mL streptomycin; Sigma-Aldrich, Taufkirchen, Germany),
and 0.2% Gentamicin (stock: 50 mg/mL; Gibco; Thermo Fisher Scientific) until they were used for
infection experiments.

2.2. Viruses

RABV isolates used in this study comprised five recombinant virus clones and one non-recombinant
lab virus. The recombinant field virus clones rRABV Dog and rRABV Fox have been described
before [42]. SAD L16 is a recombinant virus clone of attenuated vaccine virus SAD B19 live vaccine
virus [43]. The Evelyn Rokitnicki Abelseth (ERA) strain [44] is a progenitor virus strain of live vaccine
virus SAD B19 [45] and was obtained from the FLI virus archive (FLI ID N 12829).

A cDNA full length clone (pRABV Rac) from a raccoon RABV isolate (Alabama, USA
1991; FLI archive ID N 13205) [46] was generated by full length RT-PCR amplification of the
12 kb cDNA genome with the primer pair 5′-TCGATCCCGGGTCACGCTTAACAACAAAA-3′/
5′-TAATACACCTGCCCATGCCGACCCACGCTTAACAAAAAAACAA-3′. After PCR amplification
of a 2.7 kb vector DNA fragment from pCMV HaHd ampR Br 322 ori with the primers
5′-TCTGTTTGCTTGATGGTTTTTTTTGTCTTTGTTGTTTTTTTGTTAAGCGTGGGTCGGCATGGC
ATCTCCAC-3′ and 5′-TTTTTGTAGATGATACTGTCTACTTCTTCTCTGATTTTGTTGTTAAGCGTGA
CCCGGGACTCCGGGTTTCGTC-3′, the fragments were combined by linear to linear recombination,
and the resultant recombinant rRABV Rac virus was rescued and amplified according to previously
described protocols [42]. The sequence of the full-length cDNA clone was deposited at GenBank
(accession no. MN862283).

A CVS-11 (Challenge Virus Street-11; sequence accession no. LT839616) cDNA full length clone
(pCVS-11) was generated by RT-PCR amplification of 7.5kb and 3.7 kb cDNA fragments from CVS-11
RNA with the primers pairs 5′-AGTTTCAGACGTCTCAGTC-3′/5′-CTAGTAGGGATGATCTAGATC-3′
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and 5′-GACTGAGACGTCTGAAACT-3′/5′ CATTGCAGATAGGATAGAG-3′, respectively. The
resultant fragments were assembled in combination with EcoRI-linearized 3.4 kb vector plasmid
pCVS-11-termini by Hot Fusion reaction [47]. Plasmid pCVS-11-termini was generated by PCR
amplification of a 2.7 kb DNA fragment from pCMV HaHd ampR Br 322 ori [42] with the primers
5′-GACCCGGGACTCCGGGTTTC-3′ and 5′-GGGTCGGCATGGCATCTCCA-3′, and Hot Fusion
assembly with a synthetic DNA fragment containing the CVS-11 (accession no. LT839616) regions
from nucleotide positions 1–580 (3′-genome end) and 11759–11927 (5′-genome end) separated by a
non-viral EcoRI restriction site. The full-length cDNA clone was 99.99% identical to CVS-11 GenBank
sequence no. LT839616 (1 nt mismatch in the N gene at nucleotide position 1263, which was already
present in #LT839616 as a minor SNP (single nucleotide polymorphism), resulting in the amino acid
exchange E398V). Recombinant rCVS-11 was rescued in Na42/13 neuroblastoma cells by co-transfection
of pCVS-11, pCAGGS-based expression plasmids for RABV N, P, and L [48], and a pCAGGS-T7Pol
vector comprising a codon-optimized bacteriophage T7 RNA polymerase gene. Three to six days
after transfection, the supernatants were transferred to new Na42/13 cells. Two days after the transfer,
infectious virus was identified by N and G protein-specific indirect immunofluorescence.

rRABV Dog, rRABV Fox, rRABV Rac, and rCVS-11 were amplified on Na42/13 cells. BSR T7/5
cells [49] were used for amplification of SAD L16 and ERA viruses. Infectious virus titers in cell culture
supernatants were determined by end point dilution and titration on Na42/13 cells.

2.3. Antibodies

To verify the presence of RABV, a polyclonal rabbit serum against recombinant RABV P protein
(P160-5, immunofluorescence 1:5000, uDISCO 1:3000) and a polyclonal goat serum against RABV N
(goat anti-RV N, immunofluorescence 1:4000), which have been described previously [40,50], were
used. The polyclonal chicken anti-glial fibrillary acidic protein (GFAP) antibody (Thermo Fisher
Scientific, Darmstadt, Germany; #PA1-10004, uDISCO 1:1500), the polyclonal rabbit anti-GFAP (Dako,
#Z0334, immunofluorescence 1:500), the polyclonal guinea pig anti-NeuN antibody (Synaptic Systems,
Goettingen, Germany; #266004, uDISCO 1:800), and the rabbit anti-MAP2 antibody (Abcam, Cambridge,
UK; #ab32454, immunofluorescence 1:250) were purchased from their respective suppliers.

2.4. Infection of in Vitro Cell Cultures and Immunofluorescence Staining

Two-week-old primary rat hippocampal cell cultures were infected with 1 × 103 infectious units of
rRABV Dog, rRABV Fox, rCVS-11, and SAD L16, and cultivated for 24 h at 37 ◦C and 5% CO2. Indirect
immunofluorescence was performed by standard techniques after fixation with 4% paraformaldehyde
(PFA) in phosphate-buffered saline (PBS) for 30 min and 15 min permeabilization with 0.5% Triton
X-100 in PBS. Afterwards, samples were blocked with 0.025% skim milk powder in PBS for 15 min.
Immunostainings were executed by 1.5 h incubation with primary antibodies, three wash steps with
PBS, followed by 1 h incubation with secondary antibodies and additional Hoechst33342 (1 µg/mL)
for staining of the nuclear chromatin. Specimens were mounted on coverslips and were analyzed by
confocal laser scanning microscopy.

2.5. Brain Samples and Mouse Infections

Three- to four-week-old BALB/c mice (Charles-River, Germany) were infected with rRABV Rac,
rCVS-11, ERA, and SAD L16 viruses using two different inoculation routes and two different viral
doses, essentially as described before [51]. Two groups of six animals each were anesthetized and
infected i.m. with 102 or 105 TCID50/30 µL, and an additional group of three mice was infected i.c. with
102 TCID50/30 µL. The weight and the clinical score, ranging from zero to four, of all mice were observed
for 21 days post infection (dpi). When reaching a clinical score of two or three (ruffled fur, slowed
movement, weight loss >15%), the animals were anaesthetized with isoflurane and euthanized through
cervical dislocation. Samples were taken, fixed with 4% paraformaldehyde (PFA) for one week, and
stored for further processing. All remaining animals were euthanized at 21 dpi. Mouse experimental
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studies on the characterization of lyssaviruses were evaluated by the responsible animal care, use, and
ethics committee of the State Office for Agriculture, Food Safety, and Fishery in Mecklenburg-Western
Pomerania (LALFF M-V) and gained approval with permissions 7221.3–2–001/18.

2.6. Archived Mouse Brains Infected with rRABV Dog and rRABV Fox

To minimize animal experiments, archived PFA-fixed brains from previous pathogenicity trials [42]
were used for the analysis of rRABV Dog and rRABV Fox virus infections in mice. Similar to the mouse
experiments with rRABV Rac, rCVS-11, ERA, and SAD L16 described above, mice were inoculated via
the i.c. or the i.m. route.

2.7. Ultimate 3D Imaging of Solvent-Cleared Organs (uDISCO)

The clearing of brain tissue slices was performed as described previously [40] in modification
of earlier publications [38,39]. Briefly, the PFA-fixed tissues were sectioned into 1 mm-thick slices
using a vibratome (Leica VT1200S; Leica Biosystems, Wetzlar, Germany). All subsequent incubations
steps were performed with gentle oscillation. To increase antibody diffusion and reduce tissue
autofluorescence [38], the sections were pretreated with increasing concentrations of methanol (20%,
40%, 60%, 80%, and twice in 100%; dilutions with distilled water, incubation for 1 h each) and bleached
by overnight incubation at 4 ◦C with 5% H2O2 in 100% methanol. After removal of the bleaching
solution, the samples were rehydrated with decreasing concentrations of methanol (80%, 60%, 40%,
and 20%; dilutions with distilled water, incubation for 1 h each) and a subsequent wash with PBS for
1 h. To permeabilize the samples, they were washed twice for 1 h each with 0.2% Triton X-100 in PBS
and subsequently incubated for 48 h at 37 ◦C in 0.2% Triton X-100/20% DMSO/0.3 M glycine in PBS.
The samples were then blocked by incubation with 0.2% Triton X-100/10% DMSO/6% donkey serum
in PBS for 48 h at 37 ◦C. Primary antibodies were diluted in 3% donkey serum/5% DMSO in PTwH
(0.2% Tween-20 in PBS with 10 µg/mL heparin), and incubation of samples was performed at 37 ◦C for
5 days. The antibody solution was refreshed after 2.5 days. The samples were washed with PTwH by
exchanging the solution four times during the course of the day and subsequently incubated overnight
in PTwH. Incubation with secondary antibodies was performed in 3% donkey serum in PTwH for
5 days at 37 ◦C, refreshing the secondary antibody solution once after 2.5 days. Subsequent washing
was performed as described above following primary antibody incubation.

For tissue clearing, the samples were dehydrated with a series of tert-butanol (TBA) solutions
(30%, 50%, 70%, 80%, 90%, and 96%; dilutions with distilled water, incubation for 2 h each), leaving
96% TBA on overnight. Following further dehydration in 100% TBA for 2 h, the samples were cleared
in BABB-D15 [39] [1:2 mixture of benzyl alcohol (BA) and benzyl benzoate (BB), which is mixed with
diphenyl ether (DPE) at a ratio of 15:1 and supplemented with 0.4 vol% DL-α-tocopherol] until they
were optically transparent (2–6 h).

For confocal laser scanning microscopy, the samples were mounted in 3D-printed imaging
chambers (printer: Ultimaker 2 + [Ultimaker, Utrecht, Netherlands], material: co-polyester, nozzle:
0.25 mm, layer height: 0.06 mm, wall thickness: 0.88 mm, wall count: 4, infill: 100%, no support
structure; the corresponding .STL file is provided in the Supplementary Materials of Zaeck et al. [40]).

2.8. Confocal Laser Scanning Microscopy and Image Processing

The immunofluorescent staining of primary brain cells and infected tissues was visualized with a
confocal laser scanning microscope (Leica DMI 6000 TCS SP5; Leica Microsystems, Wetzlar, Germany)
equipped with a long free working distance 40×water immersion objective (NA = 1.1; Leica, #15506360).
For image processing, a Dell Precision 7920 workstation was used (CPU: Intel Xeon Gold 5118, GPU:
Nvidia Quadro P5000, RAM: 128 GB 2666 MHz DDR4, SSD: 2 TB; Dell, Frankfurt am Main, Germany).

For quantification of infected cells in thick tissue sections, the image was split into individual
channels using Fiji, an ImageJ (v1.52h) distribution package [52]. A bleach correction was performed
(simple ratio; background intensity: 5.0), and brightness and contrast were adjusted for each channel.
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Objects were identified and counted with the 3D Objects Counter plugin [53]. The resulting objects
map was overlaid with the RABV P channel to quantify infected objects. For each sample, at least six
regions were imaged and analyzed. The 3D projections in Figure 2d,e were generated with Icy [54].
All other maximum z- and 3D projections, including the Supplementary Videos S1–S4, were generated
with Fiji.

2.9. Statistical Analysis

Statistical significance was determined using two-way ANOVA followed by Tukey’s multiple
comparison test using GraphPad Prism 7.05.

3. Results

3.1. Astrocytes Are Readily Infected by both Field Viruses and Lab Strains in Mixed Primary Brain
Cell Cultures

To investigate whether field and lab-adapted RABVs differ in their ability to infect primary
neurons and non-neuronal astrocytes, hippocampal brain cells were prepared from neonatal rats and
were cultivated as mixed cultures containing neurons and glial cells. After 13 days of cultivation, the
cultures were infected with 103 infectious units of the recombinant field viruses rRABV Dog and rRABV
Fox, and the lab-adapted strains rCVS-11 and SAD L16. After 24 h of infection, the cells were fixed
and analyzed by confocal laser scanning microscopy using indirect immunofluorescence stainings
against RABV nucleoprotein N, neuron marker MAP2 (microtubule-associated protein 2) and astrocyte
marker GFAP (glial fibrillary acidic protein). All viruses infected both MAP2-positive neurons and
GFAP-positive astrocytes, as demonstrated by the formation of RABV-positive cytoplasmic inclusion
bodies (Figure 1). These data indicated that there was no obvious difference between the tested field
and the lab-adapted viruses in their ability to infect neurons and non-neuronal astrocytes.
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Figure 1. In vitro infection of primary hippocampus neurons and astrocytes by field and lab rabies
virus (RABV). (a–d) Indirect immunofluorescence detection of RABV nucleoprotein N (red) and
microtubule-associated protein 2 (MAP2) (green). Nuclei were counterstained with Hoechst33342
(blue). (e–f) Indirect immunofluorescence detection of RABV nucleoprotein N (red) and glial fibrillary
acidic protein (GFAP) (green). Nuclei were counterstained with Hoechst33342 (blue). Negative controls
for RABV detection are provided in Supplementary Figure S1.

Although all four viruses were able to infect GFAP-positive cells in the hippocampal cell cultures,
the majority of the infected cells were MAP2-positive neurons. To quantitatively compare astrocyte
infection between viruses, the number of RABV N-positive cells was counted for an area of 25 mm2,
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and the percentage of GFAP-positive and -negative RABV-infected cells was determined (Table 1). All
four viruses resulted in infection of GFAP-positive cells at levels ranging from 4.9% to 6.7%. Although
a higher percentage of GFAP-positive cells could not be excluded because a high number of cells could
not be classified into either positive or negative for GFAP, these results indicated that all four viruses
could readily establish an infection in cultivated astrocytes and did not substantially differ in their
ability to do so.

Table 1. Infection of GFAP- and MAP2-expressing cells in hippocampus cell cultures. RABV-infected
cells were counted after indirect immunofluorescence detection of RABV N protein and subdivided in
cells that were either negative (−) or positive (+) for GFAP/MAP2. Because of overlaying positive and
negative cells in GFAP and MAP2 stainings, a clear assignment was not always possible. Such cells
were classified as uncertain. CVS: Challenge Virus Street.

Virus
GFAP (−) GFAP (+) Uncertain

Count % Count % Count %

SAD L16 256 48.3 30 5.7 244 46
rCVS-11 58 64.4 6 6.7 26 28.9

rRABV Dog 252 46.8 29 5.4 258 47.9
rRABV Fox 1002 55.2 89 4.9 712 39.5

Virus
MAP2 (−) MAP2 (+) Uncertain

Count % Count % Count %

SAD L16 18 3.5 387 74.2 116 22.3
rCVS-11 1 1.0 44 43.2 57 55.9

rRABV Dog 27 5.3 347 73.3 109 21.4
rRABV Fox 190 7.3 2096 80.3 324 12.4

3.2. Field RABV Infects Neurons and Astrocytes In Vivo as Demonstrated by High-Resolution 3D Analysis of
Infected Brain Tissue

In order to test whether the primary cell culture infection experiments are comparable to the more
complex in vivo situation, a sample preparation and imaging pipeline was established, which allows
three-dimensional, high-resolution confocal laser scanning image acquisition from RABV-infected
tissue for 3D reconstruction and quantification of infected cells. To this end, 1 mm-thick brain slices
(Figure 2a) from clinically diseased rRABV Fox field virus-infected mice (i.m. infection route) were
immunostained for RABV P, GFAP, and NeuN, optically cleared, and imaged. Acquisition of z-stacks
by confocal laser scanning microscopy resulted in z-volumes of 400 µm × 400 µm × 50–100 µm (x, y,
and z) from different areas of the infected brain. RABV-infected neurons of variable morphologies
were detected by presence of NeuN and RABV P protein accumulation in neuronal cell bodies and
neurites (Figure 2b–e; details in Supplementary Figure S2). Astrocytes were detected by filamentous
GFAP-positive structures (Figure 2b–g).

Notably, besides accumulation of RABV P in NeuN-positive neurons, P also accumulated at
GFAP-positive filaments (Figure 2b,c,f,g; white arrows), indicating a robust infection of astrocytes by
field virus rRABV Fox. Evaluation of brain areas with differing localization patterns of the highlighted
cellular subpopulations (Figure 2b,c) revealed that astrocyte infections were not restricted to particular
regions of the brain but appeared in all imaged neuron layers or brain areas.

Because of the complex 3D morphology of both neurons (long axons in Figure 2b,c) and astrocytes
(filamentous structure of GFAP signals in Figure 2f,g), 3D reconstruction of the imaged tissues
(Figure 2d,e,g; Supplementary Videos S1 and S2) was performed in order to achieve reliable visualization
and quantification of cells in downstream analyses.
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from Figure 2f. 

3.3. Similar Levels of Field Virus Infection in Both Neurons and Astrocytes in the Infected Mouse Brain 

Whereas immunofluorescence analysis in Figure 2 clearly demonstrated infection of astrocytes 
and neurons, they also revealed that only a fraction of both cell types was positive for RABV P. To 
quantify the ratio of infected and non-infected neurons and astrocytes, 3D object segmentation and 
counting was performed for NeuN- (Figure 3a,b) or GFAP (Figure 3d,e)-positive cells. The object map 
was merged with their respective RABV fluorescence (Figure 3c,f; Supplementary Video S3), and the 
number of RABV-positive neurons and astrocytes was determined by manual counting of RABV P- 
and cell marker-positive cells. For the z-stack shown in Figure 2b and Figure 3, total numbers of 762 
neurons and 272 astrocytes were counted (Table 2, region 2), of which 16 and 18 were RABV positive, 
respectively. 

Analysis of six z-stacks from different RABV-infected brain areas of the same sample led to the 
detection of 11,089 neurons and 2042 astrocytes, of which 3.9% and 7.0% were RABV positive, 
respectively (Table 2). The fraction of RABV-positive cells ranged from 2.1% to 6.1% (SD: ± 1.4) for 

Figure 2. 3D immunofluorescence imaging of field RABV-infected neurons and astrocytes in a mouse
brain. (a) Workflow for 3D immunofluorescence imaging, including vibratome sectioning into 1 mm
slices, pretreatment, immunostaining, and subsequent optical clearing with organic solvents. Confocal
imaging and acquisition of cleared tissue slices was done in custom-made imaging containers (see
lower image). (b,c) Maximum z- and (d–e) 3D projections of z-stack (x, y, z = 400 µm, 400 µm, 59 µm for
D and 400 µm, 400 µm, 103 µm for E) after indirect immunofluorescence for RABV phosphoprotein P
(red), GFAP (green), and NeuN (blue). White arrows in Figure 2b indicate RABV P and GFAP-positive
astrocytes. (f) Maximum projection of detail from Figure 2b (see white box) with GFAP-positive cell
(green) and associated RABV P fluorescence (red). (g) 3D projection of detail view from Figure 2f.

3.3. Similar Levels of Field Virus Infection in both Neurons and Astrocytes in the Infected Mouse Brain

Whereas immunofluorescence analysis in Figure 2 clearly demonstrated infection of astrocytes
and neurons, they also revealed that only a fraction of both cell types was positive for RABV P. To
quantify the ratio of infected and non-infected neurons and astrocytes, 3D object segmentation and
counting was performed for NeuN- (Figure 3a,b) or GFAP (Figure 3d,e)-positive cells. The object map
was merged with their respective RABV fluorescence (Figure 3c,f; Supplementary Video S3), and the
number of RABV-positive neurons and astrocytes was determined by manual counting of RABV P- and
cell marker-positive cells. For the z-stack shown in Figures 2b and 3, total numbers of 762 neurons and
272 astrocytes were counted (Table 2, region 2), of which 16 and 18 were RABV positive, respectively.
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Table 2. Quantification of rRABV Fox-infected neurons and astrocytes. Results of the analysis of six 
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Figure 3. Quantification of RABV-infected neurons and astrocytes. (a) Maximum z-projection of objects
map for NeuN-positive neurons generated from a confocal z-stack (see Figure 2b). Individual neurons
in the z-stack were identified by NeuN-specific fluorescence and converted to objects. Numbers indicate
individual cell counts (for improved legibility of the individual numbers, refer to the enlarged details in
Supplementary Video S3). n = 762 neurons in a volume of 400 µm × 400 µm × 59 µm. The object colors
indicate different z-positions (darker colors in the back and brighter colors in the front). (b) Detail of
area indicated by white box in Figure 3a. Green arrows indicate RABV-positive neuron cell bodies.
(c) Overlay of objects map (greyscale) with RABV P signals allows identification and counting of
rRABV Fox-infected neurons. (d) Maximum z-projection of objects map for GFAP-positive astrocytes
generated from a confocal z-stack (see Figure 2b). Individual astrocytes in the z-stack were identified
by GFAP-specific fluorescence and converted to objects. Numbers indicate individual cell counts. n =

272 astrocytes in a volume of 400 µm × 400 µm × 59 µm. The object colors indicate different z-positions
(darker colors in the back and brighter colors in the front). (e) Detail of area indicated by white box in
Figure 3d. Green arrows indicate RABV-positive astrocytes. (f) Overlay of objects map (greyscale) with
RABV P signals allows identification and counting of rRABV Fox-infected astrocytes.

Table 2. Quantification of rRABV Fox-infected neurons and astrocytes. Results of the analysis of
six different areas of one infected mouse brain. The quantification pipeline of region 2 is depicted
in Figure 3. Neurons and astrocytes were segmented, automatically counted, and overlaid with the
respective RABV P signals. Infected cells were counted manually.

Neurons Astrocytes

Region Counted Infected % Mean SD Counted Infected % Mean SD

1 485 21 4.3

3.9 1.4

362 11 3.0

7.0 4.9

2 762 16 2.1 272 18 6.6
3 448 13 2.9 106 18 17.0
4 2518 132 5.2 488 9 1.8
5 3029 91 3.0 273 20 7.3
6 3847 234 6.1 541 32 5.9∑

11098 507 2042 108
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Analysis of six z-stacks from different RABV-infected brain areas of the same sample led to
the detection of 11,089 neurons and 2042 astrocytes, of which 3.9% and 7.0% were RABV positive,
respectively (Table 2). The fraction of RABV-positive cells ranged from 2.1% to 6.1% (SD: ± 1.4) for
neurons and 1.8% to 17.0% for astrocytes (SD: ± 4.9) (Table 2). These data indicated that rRABV Fox
infects astrocytes and neurons in the mouse brain to comparable levels.

Observation of three different rRABV Fox-infected mice revealed that the infection level for
astrocytes differed between single animals from 1.2% to 15.6% (SD: ± 6.7) (Supplementary Table S1).
Nevertheless, in spite of some variance between individual mice and/or between different analyzed
brain regions, detection of infected non-neuronal astrocytes in all animals at surprisingly high levels
indicates that astrocyte infection by RABV has been underestimated thus far.

3.4. Astrocyte Infection by RABV Depends on the Type of Virus (Field vs. Lab-Adapted).

To compare the astrocyte tropism of field and lab-adapted viruses after i.m. inoculation, brains of
mice infected with three different field viruses (rRABV Fox, rRABV Dog, and rRABV Rac) and two
lab-adapted viruses (rCVS-11 and ERA) were analyzed. SAD L16 was excluded from these analyses
since it is not able to induce clinical signs after i.m. inoculation (Supplementary Figure S3d).

Whereas rRABV Fox and rRABV Dog caused disease even after infection with a very low virus
dose [42], infections with rRABV Rac, rCVS-11, and ERA did not show any clinical signs at a dose of
102 TCID50 (Supplementary Figure S3). High dose infection with the ERA strain (105 TCID50) led to
100% disease development (Supplementary Figure S3c), whereas high dose infections with rRABV Rac
and rCVS-11 only caused disease in 50% and 16.7% of the infected mice, respectively (Supplementary
Figure S3a,b). Accordingly, available tissue samples for the latter two viruses were limited to two
and one infected brain. Imaging and quantification of at least six confocal z-stacks from different
RABV-infected regions per infected brain was performed.

RABV infections were readily detectable in the brain for all five viruses (Figure 4; Supplementary
Video S4). Whereas RABV P antigen accumulated at GFAP-positive structures in rRABV Fox, rRABV
Dog, and rRABV Rac-infected brains (Figure 4a,c,e), similar accumulations were not observed in
rCVS-11 or ERA-infected brains, in which only infection of NeuN-positive neurons was detected
(Figure 4b,d).

Infections with rRABV Fox, rRABV Dog, rRABV Rac, rCVS-11, and ERA led to a mean of 8.3%,
7.3%, 18.9%, 6.9%, and 15.1% RABV-positive neurons (Figure 5; Supplementary Table S1), respectively,
demonstrating a comparable level of neuron infection by all five viruses in clinically diseased mice.
However, significant differences were observed for the astrocyte infections. Whereas rRABV Fox,
rRABV Dog, and rRABV Rac infected 7.6% (SD: ± 6.7), 10.1% (SD: ± 7.7), and 16.5% (SD: ± 15.0)
of the astrocytes, no RABV-positive astrocytes were detected in rCVS-11 and ERA-infected samples
(Figure 5; Supplementary Table S1). These data indicated that, in contrast to the tested field viruses,
the lab-adapted RABVs rCVS-11 and ERA did not infect astrocytes to detectable levels in vivo after
i.m. inoculation.

3.5. Confirmation of the Specific Astrocyte Tropism of Field RABV, ERA, and SAD L16 after i.c. Inoculation
and Route-Dependent Astrocyte Infection by rCVS-11

To test whether the inoculation route affects astrocyte infection and whether the highly attenuated
SAD L16 virus is comparable to the SAD vaccine progenitor strain ERA, brain samples from two
animals i.c.-infected with rRABV Fox, rRABV Dog, rCVS-11, or SAD L16 and one infected with the
ERA strain were analyzed.

With astrocyte infections at frequencies of 10.9% (SD: ± 10.3), 11.6% (SD: ± 5.6), and 27.2%
(SD: ± 12.8) (Figure 6; Supplementary Table S2), rRABV Fox, rRABV Dog, and rRABV Rac led to
robust astrocyte infection via the i.c. route and thus confirmed their ability to establish astrocyte
infection in vivo (Figure 7a,c,e). Lack of detectable astrocyte infection for the ERA and SAD L16 further
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confirmed that these viruses are not able to infect astrocytes to a detectable level (Figure 7d,f and
Figure 6), even after direct virus administration into the brain.Cells 2020, 9, 412 11 of 21 
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Maximum z-projections of z-stacks [x, y = 400 µm, 400 µm (a–e); z = 59 µm (a, rRABV Fox), 66 µm (b, 
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Figure 4. Comparison of field and lab RABV-infected brains after intramuscular (i.m.) infection with
rRABV Fox, rRABV Dog, rRABV Rac, rCVS-11, and Evelyn Rokitnicki Abelseth (ERA). (a–e) Maximum
z-projections of z-stacks [x, y = 400 µm, 400 µm (a–e); z = 59 µm (a, rRABV Fox), 66 µm (b, rCVS-11),
49 µm (c, rRABV Dog), 100 µm (d, ERA) and 89 µm (e, rRABV Rac)] after indirect immunofluorescence
for RABV phosphoprotein P (red), GFAP (green), and NeuN (blue). To improve visualization of
the maximum z-projections, some z-stacks were reduced in thickness. For the full z-stacks, refer to
Supplementary Video S4. Insets in Figure 4a,c,e show RABV P accumulation (red) at GFAP-positive
cells (green). Insets in Figure 4b,d show NeuN- (blue) and RABV P (red)-positive neurons. For the
individual channels of the detail images, see Supplementary Figure S4.
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and rRABV Dog), two (rRABV RAC and ERA), and one (rCVS-11) animal (see Supplementary Table 
S1). Each dot represents the frequency of infected astrocytes or neurons in an analyzed z-stack. Mean 
values are provided as horizontal lines. * p ≤ .05; ** p ≤ .01; *** p ≤. 001 (two-way ANOVA with Tukey’s 
multiple comparison test). 
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12.8) (Figure 6; Supplementary Table S2), rRABV Fox, rRABV Dog, and rRABV Rac led to robust 
astrocyte infection via the i.c. route and thus confirmed their ability to establish astrocyte infection in 
vivo (Figure 7a,c,e). Lack of detectable astrocyte infection for the ERA and SAD L16 further confirmed 
that these viruses are not able to infect astrocytes to a detectable level (Figure 7d,f and Figure 6), even 
after direct virus administration into the brain. 

Notably, in contrast to the i.m. inoculation route and to the other i.c.-inoculated lab-adapted 
RABVs SAD L16 and ERA, 13.4% (SD: ± 10.4) of the astrocytes were RABV-positive in rCVS-11-
infected animals, indicating that, in the case of rCVS-11, the infection route has a substantial influence 
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remained comparable to i.m. infections. 

Figure 5. Percentage of field and lab RABV-infected neurons and astrocytes after i.m. inoculation. Per
virus, 3 to 9 × 103 astrocytes and 1.5 to 4 × 104 neurons were counted in 19 (rRABV Fox), 20 (rRABV
Dog), 12 (rRABV Rac and ERA), and six (rCVS-11) independent confocal z-stacks in three (rRABV
Fox and rRABV Dog), two (rRABV RAC and ERA), and one (rCVS-11) animal (see Supplementary
Table S1). Each dot represents the frequency of infected astrocytes or neurons in an analyzed z-stack.
Mean values are provided as horizontal lines. * p ≤ .05; ** p ≤ .01; *** p ≤. 001 (two-way ANOVA with
Tukey’s multiple comparison test).Cells 2020, 9, 412 13 of 21 

 

 
Figure 6. Percentage of field and lab RABV-infected neurons and astrocytes after i.c. inoculation. Per 
virus, 5 to 9 × 103 astrocytes and 1.3 to 3 × 104 neurons were counted in 12 (rRABV Dog, rRABV Fox, 
rRABV Rac, rCVS-11, and SAD L16) and six (ERA) independent confocal z-stacks in two (rRABV Fox, 
rRABV Dog, rRABV Rac, rCVS-11, and SAD L16) and one (ERA) animal (see Supplementary Table 
S2). Each dot represents the frequency of infected astrocytes or neurons in an analyzed z-stack. Mean 
values are provided as horizontal lines. * p ≤ .05; ** p ≤. 01; *** p ≤. 001; n.s. = not significant (two-way 
ANOVA with Tukey’s multiple comparison test). 

Figure 6. Percentage of field and lab RABV-infected neurons and astrocytes after i.c. inoculation. Per
virus, 5 to 9 × 103 astrocytes and 1.3 to 3 × 104 neurons were counted in 12 (rRABV Dog, rRABV Fox,
rRABV Rac, rCVS-11, and SAD L16) and six (ERA) independent confocal z-stacks in two (rRABV Fox,
rRABV Dog, rRABV Rac, rCVS-11, and SAD L16) and one (ERA) animal (see Supplementary Table S2).
Each dot represents the frequency of infected astrocytes or neurons in an analyzed z-stack. Mean
values are provided as horizontal lines. * p ≤ .05; ** p ≤. 01; *** p ≤. 001; n.s. = not significant (two-way
ANOVA with Tukey’s multiple comparison test).
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Figure 7. Comparison of field and lab RABV-infected brains after i.c. infection. (a–f) Maximum z-
projections of z-stacks [x, y = 400 µm, 400 µm (a–f); z = 21 µm (a, rRABV Fox), 48 µm (b, rCVS-11), 74 
µm (c, rRABV Dog), 98 µm (d, ERA), 75 µm (e, rRABV Rac) and 67 µm (f, SAD L16)] after indirect 
immunofluorescence for RABV phosphoprotein P (red), GFAP (green), and NeuN (blue). Insets in 
Figure 7a,b,c,e show RABV P accumulation (red) at GFAP-positive cells (green). To improve 
visualization of the maximum z-projections, some z-stacks were reduced in thickness. Insets in Figure 
7d,f show NeuN- (blue) and RABV P (red)-positive neurons. For the individual channels of the detail 
images, see Supplementary Figure S5. 

4. Discussion 

By use of a novel immunofluorescence-compatible technique for 3D immunofluorescence 
imaging of solvent-cleared brain tissue slices [38,39] adapted to the imaging of RABV infections in 
brain tissue [40], we investigated the cell tropism of six different RABV isolates and lab-adapted 

Figure 7. Comparison of field and lab RABV-infected brains after i.c. infection. (a–f) Maximum
z-projections of z-stacks [x, y = 400 µm, 400 µm (a–f); z = 21 µm (a, rRABV Fox), 48 µm (b, rCVS-11),
74 µm (c, rRABV Dog), 98 µm (d, ERA), 75 µm (e, rRABV Rac) and 67 µm (f, SAD L16)] after
indirect immunofluorescence for RABV phosphoprotein P (red), GFAP (green), and NeuN (blue).
Insets in Figure 7a,b,c,e show RABV P accumulation (red) at GFAP-positive cells (green). To improve
visualization of the maximum z-projections, some z-stacks were reduced in thickness. Insets in
Figure 7d,f show NeuN- (blue) and RABV P (red)-positive neurons. For the individual channels of the
detail images, see Supplementary Figure S5.

Notably, in contrast to the i.m. inoculation route and to the other i.c.-inoculated lab-adapted
RABVs SAD L16 and ERA, 13.4% (SD: ± 10.4) of the astrocytes were RABV-positive in rCVS-11-infected
animals, indicating that, in the case of rCVS-11, the infection route has a substantial influence on
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astrocyte infection in the brain. However, the ratio of rCVS-11-infected neurons (8.7%; SD: ± 4.0)
remained comparable to i.m. infections.

4. Discussion

By use of a novel immunofluorescence-compatible technique for 3D immunofluorescence imaging
of solvent-cleared brain tissue slices [38,39] adapted to the imaging of RABV infections in brain
tissue [40], we investigated the cell tropism of six different RABV isolates and lab-adapted strains.
Both neurons and astrocytes display heterogeneous morphologies with pronounced three-dimensional
projections. Compared to conventional thin sections or even in silico 3D reconstructions of serial
thin sections, optical slicing of 1 mm-thick tissue samples during image acquisition allowed fast and
seamless 3D reconstruction of immunostained tissues and high-resolution dissection of the detected
antigens [40]. For the first time, this allowed systematic analysis and comparison of the tropism of
the different viruses in large 3D volumes of infected mouse brains. One example for the superiority
of the employed technique is the unambiguous detection of rCVS-11-infected astrocytes after i.c.
inoculation (Figures 6 and 7), whereas conventional thin layer immunohistochemistry analyses led to
the assumption that infection of glial cells by CVS does not occur, even after i.c. inoculation [55].

Importantly, more than 104 neurons and 103 astrocytes (Supplementary Table S1 and S2) were
quantitatively investigated for RABV infection in their authentic environment per virus and inoculation
route. This provided reliable datasets about the frequencies of RABV detection in the two cellular
subpopulations in vivo and statistically significant differences in astrocyte infections, which depended
on the degree of virulence and the inoculation route of the tested RABVs (Figures 5 and 6).

Because of the clonal and the defined nucleotide sequences, the recombinant viruses rRABV Fox
and rRABV Dog [42], rRABV Rac (this work), SAD L16 [43], and rCVS-11 (this work) were selected for
the analyses (full genome nucleotide and G protein amino acid sequence comparisons are provided in
Supplementary Tables S3 and S4, and Supplementary Figure S6). Since SAD L16 was directly derived
from the live vaccine SAD B19 vaccine strain [56], which is equally apathogenic after intramuscular
inoculation, the non-recombinant SAD B19 progenitor vaccine virus strain ERA was included to allow
for the investigation of attenuated live vaccine virus astrocyte tropism after peripheral i.m. inoculation.
Compared to SAD B19, the ERA strain has a less intense cell culture passage history [45] and is still
pathogenic in mice after peripheral inoculation [57]. Indeed, whereas SAD L16 was not able to cause
disease after i.m. inoculation, ERA was even more pathogenic than rCVS-11 at the high i.m. inoculation
dose of 105 TCID50 with 100% and 16.7% of mice developing clinical signs, respectively (Supplementary
Figure S3).

Both the progenitor field virus isolates and the respective recombinant virus clones rRABV Fox and
rRABV Dog have been shown to share comparable pathogenicity with efficient disease development
after i.m. infection of mice [42]. For the two aforementioned field virus isolates as well as for the
raccoon RABV isolate used here for the generation of rRABV Rac, virulence in raccoons has been
demonstrated [46]. Notably, although the raccoon virus isolate was highly virulent in its natural
reservoir host, the recombinant clone rRABV Rac generated here was less virulent in mice, showing a
pathogenicity of 50% only at the high i.m. inoculation dose (Supplementary Figure S3).

In striking contrast to rRABV Fox and rRABV Dog, the lab virus clone rCVS-11 was less efficient
via the i.m. route but still able to cause disease in one out of six mice at a high virus dose of 105

infectious units per mouse (Supplementary Figure S3). This perfectly matched previous studies, where
the non-recombinant progenitor CVS-11 strain caused disease in only 16.7% of the mice at high i.m.
dose inoculation, and, as observed here (Supplementary Figure S3), was apathogenic at low dose i.m.
infection [51].

In contrast to the in vivo results, in vitro infection of mixed rat hippocampal neuron/astrocyte
cultures with rRABV Fox, rRABV Dog, SAD L16, and rCVS-11 led to comparable levels of astrocyte
infections, as demonstrated by GFAP-positive, RABV-infected cells (Figure 1) in a range from 4.9%
to 6.7% for all viruses (Table 1). These data were in accordance with the general susceptibility of
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cultivated astrocytes for RABV infection repeatedly shown for field and lab-adapted viruses [29,34],
with preferential replication in neurons [32]. Whereas Tsiang et al. reported 90–99% of the primary
astrocytes free of RABV antigen, our results indicate that there is less variation within the tested viruses,
with virus antigen detection in about 5% of the cultivated astrocytes independent of whether they were
of field virus or lab strain origin (Table 1). Overall, comparison of the in vitro and the in vivo data
showed that a general susceptibility of a primary CNS cell subpopulation in vitro (Figure 1) does not
necessarily reflect the situation in vivo (Figures 2, 4 and 6).

Reasons for this could be altered antiviral response profiles in the more disordered cell culture
conditions, different replication and spreading kinetics of the viruses in vivo, or differences in the
non-synaptic release of infected neurons to allow infection of non-synaptically connected CNS cells.
Whereas no information is available about the latter thus far, it is known that astrocytes are abortively
infected by a chimeric SAD L16 virus expressing CVS-11 glycoprotein in mouse brains [33]. This
supports the idea that replication of rCVS-11, ERA, and SAD L16 was similarly blocked in astrocytes by
potent innate immune responses after infection via the i.m. or the i.c. inoculation routes, respectively.
However, since neither viral genome copies nor virus mRNA levels were measured here, it remains to
be clarified whether replication kinetics of the lab strains indeed differ from those of the field strains in
the infected brains.

Nevertheless, it is conceivable that a more efficient replication of rRABV Fox, rRABV Dog, and
rRABV Rac, and therefore the accumulation of the major interferon antagonist phosphoprotein P [8,9]
in astrocytes, led to inhibition of antiviral responses. Indeed, lab-attenuated RABV has been shown
to differ from wild-type RABV by the induction of an increased type I interferon (IFN) production
and expression of inflammatory cytokines via the mitochondrial antiviral-signaling protein (MAVS)
pathway [34]. Accordingly, the immunofluorescence detection of RABV P for the identification of
infected cells (Figures 2, 4 and 6) confirmed the presence of abundant levels of the major interferon
antagonist in the field virus-infected astrocytes. It is highly unlikely that the lack of P detection in the
astrocytes of lab RABV-infected animals was due to a major difference in P gene expression of field
viruses, since P was readily detectable in lab RABV-infected neurons.

Besides supporting virus replication in astrocytes by decreasing release of inflammatory cytokines,
robust field virus replication in these cells may result in a less pronounced or delayed general antiviral
response to field viruses. This would be in accordance with the observed immune escape of field
viruses in infected animals [35] and may represent a major immunological difference to lab-adapted
strains. However, further experimentation will be needed to test this hypothesis.

Notably, and in contrast to the ERA strain not being detected in astrocytes after i.c. inoculation,
the astrocyte infection by rCVS-11 was at a frequency of 13.4% after i.c. inoculation (Figure 6 and
Supplementary Table S2) and also at higher levels than observed for the field viruses rRABV Fox
and rRABV Dog after both i.c. and i.m. infection. This revealed that the ability for rCVS-11 to
establish an infection in these cell types depended on the infection route. Since infection from the
periphery relies on trans-synaptic spread of the viruses and the virus may not become visible for
immune and non-neuronal target cells, astrocyte infection could represent a late phase phenotype of
brain infection, where abundant infection of neurons and non-synaptic release of virus particles may
facilitate astrocyte infection. Consequently, astrocyte-mediated immune reactions would be delayed
and virus elimination prior to disease onset not possible. Compared to the field viruses, slower virus
replication and/or spreading kinetics of rCVS-11 could lead to lower levels or the absence of detectable
astrocyte infection after i.m. inoculation (Figure 5), although the virus is principally able to infect these
cell types (Figure 7b). Indeed, the efficacy of trans-synaptic retrograde spread can differ between a
highly neurotropic CVS-24 virus variant and an SAD L16-like vaccine virus [24]. On a higher level,
this may also distinguish highly virulent field viruses such as rRABV Fox and rRABV Dog from
rCVS-11. Furthermore, it is conceivable that i.c. inoculations represent a shortcut to brain infection
with simultaneous and multiple infection of neurons and astrocytes in a non-transsynaptic manner.
Higher numbers of infected cells at the beginning of CNS infection compared to trans-synaptic invasion
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after i.m. infection may lead to faster virus spread and infection of multiple regions of the brain with
abundant late phase virus release and astrocyte infection, similar to that speculated above for i.m.
infections with highly virulent field viruses.

Indeed, astrocyte activation by other viruses have been shown to occur earlier after i.c. than after
peripheral infections [58]. Both virus and cell response kinetics may differ between the two infection
routes. Increased induction of neuronal cell death after i.c. RABV infection compared to no detectable
apoptosis in i.m.-infected animals [59] further indicates qualitative differences in host reaction to
the virus. The special role of astrocytes in the CNS as a main source of IFN-β expression and virus
control through TLR (Toll-like receptor) and RLR (RIG-I-like receptor) activation pathways [33,60,61]
in combination with the infection route-dependent differences described here, as observed for rCVS-11,
may contribute to such differences in apoptosis and other host reaction patterns. However, further
studies must clarify whether different infectious route-dependent and -independent virus kinetics
can determine astrocyte tropism in vivo and how this affects downstream host reactions. Since
differences in innate immune induction through dsRNA between field and attenuated viruses were
demonstrated [34], the innate immune induction potential of rRABV Fox, rRABV Dog, rRABV Rac,
rCVS-11, ERA, and SAD L16 in astrocytes has to be investigated in order to assess whether the route
dependency of rCVS-11 is also affected by different levels of innate immune induction.

Most likely, lack of astrocyte infection by SAD L16 and ERA was the outcome of strong virus
inhibition and elimination, as abortive astrocyte infection by a comparable virus has previously been
suggested [33]. Whether less antiviral response induction may allow the more virulent rCVS-11
or the highly virulent field viruses to overcome a threshold of virus replication and antagonist
expression—and thus may support further replication—will be addressed in future studies. Even
though the underlying mechanisms cannot be clarified here, comparable results for SAD L16 and the
still pathogenic ERA strain strongly suggest that a general block of detectable astrocyte replication of
these vaccine strains represents a major difference to the other tested viruses.

Only by using novel 3D immunofluorescence techniques, we were able to provide comprehensive
analyses of the cell tropism of highly virulent field RABVs and less virulent or attenuated lab strains. In
particular, high-resolution 3D images and quantitative downstream analysis provided novel insights in
the infection processes at the clinical phase of this deadly disease. Although independent of detectable
astrocyte infection, symptoms and lethal progression of the disease occur once the virus efficiently
spreads in the brain after infection with all six tested viruses (Figure 7 and Supplementary Figure
S3). However, different virus kinetics and astrocyte-related innate immune reactions may affect the
progression kinetics, immune pathogenicity, and further spread of the virus to peripheral salivary
glands. The latter may represent a key issue in terms of field virus transmission and maintenance in
host populations.

Whereas these aspects must be addressed in separate trials, this study provides a novel and
quantitative basis for a new, dynamic view on RABV host interactions in vivo on the cellular
level. Also, this approach showcases the potential of immunostaining-compatible tissue clearing/3D
imaging techniques to specifically investigate virus–host interactions at high-resolution on cellular
and subcellular levels. While this study focused on standard cellular markers for neurons and
astrocytes, future approaches including immune and host pathway markers will pave the way for
direct high-resolution imaging-based analysis of infection processes in complex and morphologically
preserved tissues.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/2/412/s1,
Captions_SupplementaryFiles: Captions and legends to supplementary figures, tables, and videos. Figure S1:
Immunofluorescence of non-infected astrocytes and neurons in vitro. Figure S2: Details of rRABV Fox-infected,
NeuN-positive neurons. Figure S3: Kaplan-Meyer survival plots for rRABV Rac, rCVS-11, ERA, and SAD L16.
Figure S4: Details of field virus (rRABV Fox, rRABV Dog, and rRABV Rac) and lab RABV (rCVS-11 and ERA)
infections after i.m. inoculation. Figure S5: Details of field virus (rRABV Fox, rRABV Dog, and rRABV Rac)
and lab RABV (rCVS-11, ERA, and SAD L16) infections after i.c. inoculation. Figure S6. Amino acid alignment
of glycoprotein G of rRABV Rac, rCVS-11, SAD L16, rRABV Fox, and rRABV Dog. Table S1: Quantification of
RABV-infected neurons and astrocytes after i.m. infection. Table S2: Quantification of RABV-infected neurons
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and astrocytes after i.c. infection. Table S3. Nucleotide sequence alignment of full genome sequences of rRABV
Rac, rCVS-11, SAD L16, rRABV Dog, and rRABV Fox. Table S4. Alignment of G protein amino acid sequence of
rRABV Rac, rCVS-11, SAD L16, rRABV Dog, and rRABV Fox. Video S1: 3D projections of rRABV Fox-infected
astrocytes and neurons in two different areas of a mouse brain. Video S2: 3D projection of an rRABV Fox-infected
astrocyte in a mouse brain. Video S3: 3D projection of the quantification of RABV-infected neurons and astrocytes.
Video S4: 3D projections of field and lab RABV-infected brains after i.m. infection with rRABV Fox, rRABV Dog,
rRABV Rac, rCVS-11, and ERA, and SAD L16 after i.c. infection.

Author Contributions: Conceptualization, S.F., L.Z., T.M. and C.M.F.; methodology, L.Z., V.t.K., T.N. and M.P.;
investigation, M.P., L.Z., M.C. and A.K.; writing—original draft preparation, M.P., L.Z. and S.F.; writing—review
and editing, M.P., L.Z., M.C., V.t.K., A.K., T.N., C.M.F., T.M. and S.F.; visualization, M.P. and L.Z.; supervision, S.F.,
T.M. and C.M.F.; project administration, S.F.; funding acquisition, S.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by an intramural collaborative research grant on Lyssaviruses at the
Friedrich-Loeffler-Institute (Ri-0372) to S.F. and C.M.F. L.Z. was supported by the Federal Excellence Initiative of
Mecklenburg Western Pomerania and European Social Fund (ESF) Grant KoInfekt (ESF/14-BM-A55-0002/16).

Acknowledgments: We thank Dietlind Kretzschmar and Angela Hillner for technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fooks, A.R.; Cliquet, F.; Finke, S.; Freuling, C.; Hemachudha, T.; Mani, R.S.; Müller, T.; Nadin-Davis, S.;
Picard-Meyer, E.; Wilde, H.; et al. Rabies. Nat. Rev. Dis. Primers 2017, 3, 17091. [CrossRef]

2. Walker, P.J.; Blasdell, K.R.; Calisher, C.H.; Dietzgen, R.G.; Kondo, H.; Kurath, G.; Longdon, B.; Stone, D.M.;
Tesh, R.B.; Tordo, N.; et al. ICTV Virus Taxonomy Profile: Rhabdoviridae. J. Gen. Virol. 2018, 99, 447–448.
[CrossRef] [PubMed]

3. Finke, S.; Conzelmann, K.-K. Replication strategies of rabies virus. Virus Res. 2005, 111, 120–131. [CrossRef]
[PubMed]

4. Zhang, G.; Wang, H.; Mahmood, F.; Fu, Z.F. Rabies virus glycoprotein is an important determinant for the
induction of innate immune responses and the pathogenic mechanisms. Vet. Microbiol. 2013, 162, 601–613.
[CrossRef] [PubMed]

5. Besson, B.; Sonthonnax, F.; Duchateau, M.; Ben Khalifa, Y.; Larrous, F.; Eun, H.; Hourdel, V.; Matondo, M.;
Chamot-Rooke, J.; Grailhe, R.; et al. Regulation of NF-κB by the p105-ABIN2-TPL2 complex and RelAp43
during rabies virus infection. PLoS Pathog. 2017, 13, e1006697. [CrossRef] [PubMed]

6. Masatani, T.; Ito, N.; Shimizu, K.; Ito, Y.; Nakagawa, K.; Sawaki, Y.; Koyama, H.; Sugiyama, M. Rabies virus
nucleoprotein functions to evade activation of the RIG-I-mediated antiviral response. J. Virol. 2010, 84,
4002–4012. [CrossRef] [PubMed]

7. Ben Khalifa, Y.; Luco, S.; Besson, B.; Sonthonnax, F.; Archambaud, M.; Grimes, J.M.; Larrous, F.; Bourhy, H.
The matrix protein of rabies virus binds to RelAp43 to modulate NF-κB-dependent gene expression related
to innate immunity. Sci. Rep. 2016, 6, 39420. [CrossRef]

8. Brzózka, K.; Finke, S.; Conzelmann, K.-K. Identification of the rabies virus alpha/beta interferon antagonist:
Phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J. Virol. 2005, 79,
7673–7681. [CrossRef]

9. Brzózka, K.; Finke, S.; Conzelmann, K.-K. Inhibition of interferon signaling by rabies virus phosphoprotein
P: Activation-dependent binding of STAT1 and STAT2. J. Virol. 2006, 80, 2675–2683. [CrossRef]

10. Ito, N.; Moseley, G.W.; Blondel, D.; Shimizu, K.; Rowe, C.L.; Ito, Y.; Masatani, T.; Nakagawa, K.; Jans, D.A.;
Sugiyama, M. Role of interferon antagonist activity of rabies virus phosphoprotein in viral pathogenicity. J.
Virol. 2010, 84, 6699–6710. [CrossRef]

11. Faber, M.; Pulmanausahakul, R.; Hodawadekar, S.S.; Spitsin, S.; McGettigan, J.P.; Schnell, M.J.; Dietzschold, B.
Overexpression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune
response. J. Virol. 2002, 76, 3374–3381. [CrossRef] [PubMed]

12. Jackson, A.C.; Rasalingam, P.; Weli, S.C. Comparative pathogenesis of recombinant rabies vaccine strain
SAD-L16 and SAD-D29 with replacement of Arg333 in the glycoprotein after peripheral inoculation of
neonatal mice: Less neurovirulent strain is a stronger inducer of neuronal apoptosis. Acta Neuropathol. 2006,
111, 372–378. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nrdp.2017.91
http://dx.doi.org/10.1099/jgv.0.001020
http://www.ncbi.nlm.nih.gov/pubmed/29465028
http://dx.doi.org/10.1016/j.virusres.2005.04.004
http://www.ncbi.nlm.nih.gov/pubmed/15885837
http://dx.doi.org/10.1016/j.vetmic.2012.11.031
http://www.ncbi.nlm.nih.gov/pubmed/23265241
http://dx.doi.org/10.1371/journal.ppat.1006697
http://www.ncbi.nlm.nih.gov/pubmed/29084252
http://dx.doi.org/10.1128/JVI.02220-09
http://www.ncbi.nlm.nih.gov/pubmed/20130065
http://dx.doi.org/10.1038/srep39420
http://dx.doi.org/10.1128/JVI.79.12.7673-7681.2005
http://dx.doi.org/10.1128/JVI.80.6.2675-2683.2006
http://dx.doi.org/10.1128/JVI.00011-10
http://dx.doi.org/10.1128/JVI.76.7.3374-3381.2002
http://www.ncbi.nlm.nih.gov/pubmed/11884563
http://dx.doi.org/10.1007/s00401-005-0006-z
http://www.ncbi.nlm.nih.gov/pubmed/16453143


Cells 2020, 9, 412 18 of 20

13. Morimoto, K.; Hooper, D.C.; Spitsin, S.; Koprowski, H.; Dietzschold, B. Pathogenicity of different rabies virus
variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary
neuron cultures. J. Virol. 1999, 73, 510–518. [CrossRef] [PubMed]

14. Sarmento, L.; Li, X.-q.; Howerth, E.; Jackson, A.C.; Fu, Z.F. Glycoprotein-mediated induction of apoptosis
limits the spread of attenuated rabies viruses in the central nervous system of mice. J. Neurovirol. 2005, 11,
571–581. [CrossRef] [PubMed]

15. Dietzschold, B.; Li, J.; Faber, M.; Schnell, M. Concepts in the pathogenesis of rabies. Future Virol. 2008, 3,
481–490. [CrossRef] [PubMed]

16. Tsiang, H.; Lycke, E.; Ceccaldi, P.E.; Ermine, A.; Hirardot, X. The anterograde transport of rabies virus in rat
sensory dorsal root ganglia neurons. J. Gen. Virol. 1989, 70, 2075–2085. [CrossRef]

17. Astic, L.; Saucier, D.; Coulon, P.; Lafay, F.; Flamand, A. The CVS strain of rabies virus as transneuronal tracer
in the olfactory system of mice. Brain Res. 1993, 619, 146–156. [CrossRef]

18. Lycke, E.; Tsiang, H. Rabies virus infection of cultured rat sensory neurons. J. Virol. 1987, 61, 2733–2741.
[CrossRef]

19. Ceccaldi, P.E.; Gillet, J.P.; Tsiang, H. Inhibition of the transport of rabies virus in the central nervous system.
J. Neuropathol. Exp. Neurol. 1989, 48, 620–630. [CrossRef]

20. Gluska, S.; Zahavi, E.E.; Chein, M.; Gradus, T.; Bauer, A.; Finke, S.; Perlson, E. Rabies Virus Hijacks and
accelerates the p75NTR retrograde axonal transport machinery. PLoS Pathog. 2014, 10, e1004348. [CrossRef]

21. Bauer, A.; Nolden, T.; Schröter, J.; Römer-Oberdörfer, A.; Gluska, S.; Perlson, E.; Finke, S. Anterograde
glycoprotein-dependent transport of newly generated rabies virus in dorsal root ganglion neurons. J. Virol.
2014, 88, 14172–14183. [CrossRef] [PubMed]

22. Wickersham, I.R.; Finke, S.; Conzelmann, K.-K.; Callaway, E.M. Retrograde neuronal tracing with a
deletion-mutant rabies virus. Nat. Methods 2007, 4, 47–49. [CrossRef] [PubMed]

23. Wickersham, I.R.; Lyon, D.C.; Barnard, R.J.O.; Mori, T.; Finke, S.; Conzelmann, K.-K.; Young, J.A.T.;
Callaway, E.M. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons.
Neuron 2007, 53, 639–647. [CrossRef] [PubMed]

24. Reardon, T.R.; Murray, A.J.; Turi, G.F.; Wirblich, C.; Croce, K.R.; Schnell, M.J.; Jessell, T.M.; Losonczy, A.
Rabies Virus CVS-N2c(∆G) Strain Enhances Retrograde Synaptic Transfer and Neuronal Viability. Neuron
2016, 89, 711–724. [CrossRef] [PubMed]

25. Thoulouze, M.I.; Lafage, M.; Schachner, M.; Hartmann, U.; Cremer, H.; Lafon, M. The neural cell adhesion
molecule is a receptor for rabies virus. J. Virol. 1998, 72, 7181–7190. [CrossRef] [PubMed]

26. Tuffereau, C.; Bénéjean, J.; Blondel, D.; Kieffer, B.; Flamand, A. Low-affinity nerve-growth factor receptor
(P75NTR) can serve as a receptor for rabies virus. EMBO J. 1998, 17, 7250–7259. [CrossRef]

27. Lentz, T.; Burrage, T.; Smith, A.; Crick, J.; Tignor, G. Is the acetylcholine receptor a rabies virus receptor?
Science 1982, 215, 182–184. [CrossRef]

28. Wang, J.; Wang, Z.; Liu, R.; Shuai, L.; Wang, X.; Luo, J.; Wang, C.; Chen, W.; Wang, X.; Ge, J.; et al. Metabotropic
glutamate receptor subtype 2 is a cellular receptor for rabies virus. PLoS Pathog. 2018, 14, e1007189. [CrossRef]

29. Ray, N.B.; Power, C.; Lynch, W.P.; Ewalt, L.C.; Lodmell, D.L. Rabies viruses infect primary cultures of murine,
feline, and human microglia and astrocytes. Arch. Virol. 1997, 142, 1011–1019. [CrossRef]

30. Davis, B.M.; Rall, G.F.; Schnell, M.J. Everything You Always Wanted to Know About Rabies Virus (But Were
Afraid to Ask). Annu. Rev. Virol. 2015, 2, 451–471. [CrossRef]

31. Jackson, A.C.; Phelan, C.C.; Rossiter, J.P. Infection of Bergmann glia in the cerebellum of a skunk experimentally
infected with street rabies virus. Can. J. Vet. Res. 2000, 64, 226–228. [PubMed]

32. Tsiang, H.; Koulakoff, A.; Bizzini, B.; Berwald-Netter, Y. Neurotropism of rabies virus. An in vitro study. J.
Neuropathol. Exp. Neurol. 1983, 42, 439–452. [CrossRef] [PubMed]

33. Pfefferkorn, C.; Kallfass, C.; Lienenklaus, S.; Spanier, J.; Kalinke, U.; Rieder, M.; Conzelmann, K.-K.;
Michiels, T.; Staeheli, P. Abortively Infected Astrocytes Appear to Represent the Main Source of Interferon
Beta in the Virus-Infected Brain. J. Virol. 2016, 90, 2031–2038. [CrossRef] [PubMed]

34. Tian, B.; Zhou, M.; Yang, Y.; Yu, L.; Luo, Z.; Tian, D.; Wang, K.; Cui, M.; Chen, H.; Fu, Z.F.; et al.
Lab-Attenuated Rabies Virus Causes Abortive Infection and Induces Cytokine Expression in Astrocytes
by Activating Mitochondrial Antiviral-Signaling Protein Signaling Pathway. Front. Immunol. 2018, 8, 2011.
[CrossRef] [PubMed]

http://dx.doi.org/10.1128/JVI.73.1.510-518.1999
http://www.ncbi.nlm.nih.gov/pubmed/9847357
http://dx.doi.org/10.1080/13550280500385310
http://www.ncbi.nlm.nih.gov/pubmed/16338751
http://dx.doi.org/10.2217/17460794.3.5.481
http://www.ncbi.nlm.nih.gov/pubmed/19578477
http://dx.doi.org/10.1099/0022-1317-70-8-2075
http://dx.doi.org/10.1016/0006-8993(93)91606-S
http://dx.doi.org/10.1128/JVI.61.9.2733-2741.1987
http://dx.doi.org/10.1097/00005072-198911000-00004
http://dx.doi.org/10.1371/journal.ppat.1004348
http://dx.doi.org/10.1128/JVI.02254-14
http://www.ncbi.nlm.nih.gov/pubmed/25275124
http://dx.doi.org/10.1038/nmeth999
http://www.ncbi.nlm.nih.gov/pubmed/17179932
http://dx.doi.org/10.1016/j.neuron.2007.01.033
http://www.ncbi.nlm.nih.gov/pubmed/17329205
http://dx.doi.org/10.1016/j.neuron.2016.01.004
http://www.ncbi.nlm.nih.gov/pubmed/26804990
http://dx.doi.org/10.1128/JVI.72.9.7181-7190.1998
http://www.ncbi.nlm.nih.gov/pubmed/9696812
http://dx.doi.org/10.1093/emboj/17.24.7250
http://dx.doi.org/10.1126/science.7053569
http://dx.doi.org/10.1371/journal.ppat.1007189
http://dx.doi.org/10.1007/s007050050136
http://dx.doi.org/10.1146/annurev-virology-100114-055157
http://www.ncbi.nlm.nih.gov/pubmed/11041500
http://dx.doi.org/10.1097/00005072-198307000-00006
http://www.ncbi.nlm.nih.gov/pubmed/6864237
http://dx.doi.org/10.1128/JVI.02979-15
http://www.ncbi.nlm.nih.gov/pubmed/26656686
http://dx.doi.org/10.3389/fimmu.2017.02011
http://www.ncbi.nlm.nih.gov/pubmed/29403485


Cells 2020, 9, 412 19 of 20

35. Ito, N.; Moseley, G.W.; Sugiyama, M. The importance of immune evasion in the pathogenesis of rabies virus.
J. Vet. Med. Sci. 2016, 78, 1089–1098. [CrossRef]

36. Suja, M.S.; Mahadevan, A.; Madhusudana, S.N.; Shankar, S.K. Role of apoptosis in rabies viral encephalitis:
A comparative study in mice, canine, and human brain with a review of literature. Patholog. Res. Int. 2011,
2011, 374286. [CrossRef]

37. Wang, Z.W.; Sarmento, L.; Wang, Y.; Li, X.-q.; Dhingra, V.; Tseggai, T.; Jiang, B.; Fu, Z.F. Attenuated Rabies
Virus Activates, while Pathogenic Rabies Virus Evades, the Host Innate Immune Responses in the Central
Nervous System. J. Virol. 2005, 79, 12554–12565. [CrossRef]

38. Renier, N.; Wu, Z.; Simon, D.J.; Yang, J.; Ariel, P.; Tessier-Lavigne, M. iDISCO: A simple, rapid method to
immunolabel large tissue samples for volume imaging. Cell 2014, 159, 896–910. [CrossRef]

39. Pan, C.; Cai, R.; Quacquarelli, F.P.; Ghasemigharagoz, A.; Lourbopoulos, A.; Matryba, P.; Plesnila, N.;
Dichgans, M.; Hellal, F.; Ertürk, A. Shrinkage-mediated imaging of entire organs and organisms using
uDISCO. Nat. Methods 2016, 13, 859–867. [CrossRef]

40. Zaeck, L.; Potratz, M.; Freuling, C.M.; Müller, T.; Finke, S. High-Resolution 3D Imaging of Rabies Virus
Infection in Solvent-Cleared Brain Tissue. J. Vis. Exp. 2019, 30. [CrossRef]

41. Brewer, G.J.; Torricelli, J.R. Isolation and culture of adult neurons and neurospheres. Nat. Protoc. 2007, 2,
1490–1498. [CrossRef] [PubMed]

42. Nolden, T.; Pfaff, F.; Nemitz, S.; Freuling, C.M.; Höper, D.; Müller, T.; Finke, S. Reverse genetics in high
throughput: Rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses
thereof. Sci. Rep. 2016, 6, 23887. [CrossRef] [PubMed]

43. Schnell, M.J.; Mebatsion, T.; Conzelmann, K.K. Infectious rabies viruses from cloned cDNA. EMBO J. 1994,
4195–4203. [CrossRef]

44. Abelseth, M.K. An attenuated rabies vaccine for domestic animals produced in tissue culture. Can. Vet. J.
1964, 5, 279–286.

45. Höper, D.; Freuling, C.M.; Müller, T.; Hanke, D.; von Messling, V.; Duchow, K.; Beer, M.; Mettenleiter, T.C.
High definition viral vaccine strain identity and stability testing using full-genome population data–The
next generation of vaccine quality control. Vaccine 2015, 33, 5829–5837. [CrossRef]

46. Vos, A.; Nolden, T.; Habla, C.; Finke, S.; Freuling, C.M.; Teifke, J.; Müller, T. Raccoons (Procyon lotor) in
Germany as potential reservoir species for Lyssaviruses. Eur J. Wildl Res. 2013, 59, 637–643. [CrossRef]

47. Fu, C.; Donovan, W.P.; Shikapwashya-Hasser, O.; Ye, X.; Cole, R.H. Hot Fusion: An efficient method to clone
multiple DNA fragments as well as inverted repeats without ligase. PLoS ONE 2014, 9, e115318. [CrossRef]

48. Finke, S.; Granzow, H.; Hurst, J.; Pollin, R.; Mettenleiter, T.C. Intergenotypic replacement of lyssavirus matrix
proteins demonstrates the role of lyssavirus M proteins in intracellular virus accumulation. J. Virol. 2010, 84,
1816–1827. [CrossRef]

49. Buchholz, U.J.; Finke, S.; Conzelmann, K.K. Generation of bovine respiratory syncytial virus (BRSV) from
cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region
acts as a functional BRSV genome promoter. J. Virol. 1999, 73, 251–259. [CrossRef]

50. Orbanz, J.; Finke, S. Generation of recombinant European bat lyssavirus type 1 and inter-genotypic
compatibility of lyssavirus genotype 1 and 5 antigenome promoters. Arch. Virol. 2010, 155, 1631–1641.
[CrossRef]

51. Eggerbauer, E.; Pfaff, F.; Finke, S.; Höper, D.; Beer, M.; Mettenleiter, T.C.; Nolden, T.; Teifke, J.-P.; Müller, T.;
Freuling, C.M. Comparative analysis of European bat lyssavirus 1 pathogenicity in the mouse model. PLoS
Negl. Trop. Dis. 2017, 11, e0005668. [CrossRef] [PubMed]

52. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.;
Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012,
9, 676–682. [CrossRef] [PubMed]

53. Bolte, S.; Cordelières, F.P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc.
2006, 224, 213–232. [CrossRef] [PubMed]

54. de Chaumont, F.; Dallongeville, S.; Chenouard, N.; Hervé, N.; Pop, S.; Provoost, T.; Meas-Yedid, V.;
Pankajakshan, P.; Lecomte, T.; Le Montagner, Y.; et al. Icy: An open bioimage informatics platform for
extended reproducible research. Nat. Methods 2012, 9, 690–696. [CrossRef]

55. Jackson, A.C.; Reimer, D.L. Pathogenesis of experimental rabies in mice: An immunohistochemical study.
Acta Neuropathol. 1989, 78, 159–165. [CrossRef]

http://dx.doi.org/10.1292/jvms.16-0092
http://dx.doi.org/10.4061/2011/374286
http://dx.doi.org/10.1128/JVI.79.19.12554-12565.2005
http://dx.doi.org/10.1016/j.cell.2014.10.010
http://dx.doi.org/10.1038/nmeth.3964
http://dx.doi.org/10.3791/59402
http://dx.doi.org/10.1038/nprot.2007.207
http://www.ncbi.nlm.nih.gov/pubmed/17545985
http://dx.doi.org/10.1038/srep23887
http://www.ncbi.nlm.nih.gov/pubmed/27046474
http://dx.doi.org/10.1002/j.1460-2075.1994.tb06739.x
http://dx.doi.org/10.1016/j.vaccine.2015.08.091
http://dx.doi.org/10.1007/s10344-013-0714-y
http://dx.doi.org/10.1371/journal.pone.0115318
http://dx.doi.org/10.1128/JVI.01665-09
http://dx.doi.org/10.1128/JVI.73.1.251-259.1999
http://dx.doi.org/10.1007/s00705-010-0743-8
http://dx.doi.org/10.1371/journal.pntd.0005668
http://www.ncbi.nlm.nih.gov/pubmed/28628617
http://dx.doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
http://dx.doi.org/10.1111/j.1365-2818.2006.01706.x
http://www.ncbi.nlm.nih.gov/pubmed/17210054
http://dx.doi.org/10.1038/nmeth.2075
http://dx.doi.org/10.1007/BF00688204


Cells 2020, 9, 412 20 of 20

56. Conzelmann, K.K.; Cox, J.H.; Schneider, L.G.; Thiel, H.J. Molecular cloning and complete nucleotide sequence
of the attenuated rabies virus SAD B19. Virology 1990, 175, 485–499. [CrossRef]

57. Weiland, F.; Cox, J.H.; Meyer, S.; Dahme, E.; Reddehase, M.J. Rabies Virus Neuritic Paralysis:
Immunopathogenesis of Nonfatal Paralytic Rabies. J. Virol. 1992, 5096–5099. [CrossRef]

58. Zlotnik, I. The reaction of astrocytes to acute virus infections of the central nervous system. Br. J. Exp. Pathol
1968, 49, 555–564.

59. Jackson, A.C. Rabies. Scientific Basis of the Disease and Its Management, 3rd ed.; Elsevier Science: San Diego,
CA, USA, 2013; ISBN 9780123965479.

60. Detje, C.N.; Lienenklaus, S.; Chhatbar, C.; Spanier, J.; Prajeeth, C.K.; Soldner, C.; Tovey, M.G.; Schlüter, D.;
Weiss, S.; Stangel, M.; et al. Upon intranasal vesicular stomatitis virus infection, astrocytes in the olfactory
bulb are important interferon Beta producers that protect from lethal encephalitis. J. Virol. 2015, 89, 2731–2738.
[CrossRef]

61. Kallfass, C.; Ackerman, A.; Lienenklaus, S.; Weiss, S.; Heimrich, B.; Staeheli, P. Visualizing production of
beta interferon by astrocytes and microglia in brain of La Crosse virus-infected mice. J. Virol. 2012, 86,
11223–11230. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0042-6822(90)90433-R
http://dx.doi.org/10.1128/JVI.66.8.5096-5099.1992
http://dx.doi.org/10.1128/JVI.02044-14
http://dx.doi.org/10.1128/JVI.01093-12
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Cell Lines, Primary Brain Cell Preparation, and Cultivation 
	Viruses 
	Antibodies 
	Infection of in Vitro Cell Cultures and Immunofluorescence Staining 
	Brain Samples and Mouse Infections 
	Archived Mouse Brains Infected with rRABV Dog and rRABV Fox 
	Ultimate 3D Imaging of Solvent-Cleared Organs (uDISCO) 
	Confocal Laser Scanning Microscopy and Image Processing 
	Statistical Analysis 

	Results 
	Astrocytes Are Readily Infected by both Field Viruses and Lab Strains in Mixed Primary Brain Cell Cultures 
	Field RABV Infects Neurons and Astrocytes In Vivo as Demonstrated by High-Resolution 3D Analysis of Infected Brain Tissue 
	Similar Levels of Field Virus Infection in both Neurons and Astrocytes in the Infected Mouse Brain 
	Astrocyte Infection by RABV Depends on the Type of Virus (Field vs. Lab-Adapted). 
	Confirmation of the Specific Astrocyte Tropism of Field RABV, ERA, and SAD L16 after i.c. Inoculation and Route-Dependent Astrocyte Infection by rCVS-11 

	Discussion 
	References

