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Abstract: Micronuclei are small, extranuclear bodies that are distinct from the primary cell nucleus.
Micronucleus formation is an aberrant event that suggests a history of genotoxic stress or chromosome
mis-segregation events. Accordingly, assays evaluating micronucleus formation serve as useful tools
within the fields of toxicology and oncology. Here, we describe a novel micronucleus formation assay
that utilizes a high-throughput imaging platform and automated image analysis software for accurate
detection and rapid quantification of micronuclei at the single cell level. We show that our image
analysis parameters are capable of identifying dose-dependent increases in micronucleus formation
within three distinct cell lines following treatment with two established genotoxic agents, etoposide
or bleomycin. We further show that this assay detects micronuclei induced through silencing of the
established chromosome instability gene, SMC1A. Thus, the micronucleus formation assay described
here is a versatile and efficient alternative to more laborious cytological approaches, and greatly
increases throughput, which will be particularly beneficial for large-scale chemical or genetic screens.

Keywords: micronucleus; micronuclei; genotoxicity; chromosome instability; single cell quantitative
imaging microscopy (scQuantIM); cancer

1. Introduction

Micronuclei are small, membrane bound, DNA-containing bodies located outside the primary
cell nucleus and whose presence is synonymous with genome instability. Micronuclei are typically
defined as having a diameter ≤ 1/3 the size/area of the primary nucleus [1] and their appearance
(i.e., micronucleus formation) is frequently employed as an indicator of an underlying genotoxic
stress [2,3]. In the past, many genotoxic studies have sought to determine the impact compounds have
on genome stability by manually assessing the presence of micronuclei following a treatment [4,5],
while more recent studies have employed micronucleus formation assays to uncover genes with
pathogenic implications in cancer [6–8]. In this regard, numerous cytological studies have identified
micronuclei within various cancer contexts including head and neck, ovarian, and breast cancers [9–11].
Interestingly, the presence of micronuclei in precursor lesions is associated with an increased risk of
developing certain cancers [12–15], suggesting that the presence and frequency of micronuclei may
hold clinical value as diagnostic and prognostic biomarkers. Thus, the ability to accurately identify
and enumerate micronuclei is relevant in both laboratory and clinical settings.

Although micronuclei arise through a variety of mechanisms, they generally manifest from
chromosome mis-segregation events stemming from the stress response (reviewed in [16]). In some
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instances, inadequate or defective DNA double-strand break repair may result in acentric chromosome
fragments (i.e., lacking a centromere) that are incapable of forming the requisite kinetochore-microtubule
(K-fiber) attachments for proper segregation to occur. Depending when the double-strand break
occurs, chromosome congression to the metaphase plate or segregation from the metaphase plate
may be adversely impacted, and these acentric fragments fail to incorporate within the primary
nucleus and ultimately form micronuclei [17]. In a similar fashion, micronuclei may also arise due to
the mis-segregation of whole chromosomes rather than fragments. For example, molecular defects
underlying aberrant K-fiber attachments, aberrant microtubule dynamics, defective spindle assembly,
and abnormal centrosome biology (e.g., supernumary centrosomes) have all been shown to induce
micronucleus formation [18–20]. In addition, mitotic slippage can lead to micronucleus clusters, a
sub-type of micronuclei, that are often associated with drug resistant cells, genome chaos, and cell
survival (reviewed in [16]). In any case, the ultimate fate of a micronucleus is not clear; some may persist
within daughter cells, while others may undergo micronuclear rupture [21,22], or re-join the primary
nucleus during subsequent mitotic events, leading to a reduction in the number of micronuclei [17].
Accordingly, the appearance and persistence of micronuclei is dynamic and highly dependent on the
underlying genome instability events driving their formation.

The underlying molecular events driving micronucleus formation are often associated with
chromosome instability (CIN; reviewed in [18,23]), an enabling feature and hallmark of many cancer
types [24–26]. CIN is defined as an increase in the rate at which whole chromosomes, or large
chromosome fragments are gained or lost [25], and is frequently associated with the formation of
micronuclei. Despite decades of biochemical, genetic, and clinical studies showing CIN is associated
with cellular transformation, intratumoral heterogeneity, metastasis, drug resistance, and poor patient
outcomes [18–20,27,28], the molecular determinants (i.e., aberrant genes and pathways) underlying
micronucleus formation and driving CIN remain poorly understood. Thus, an automated approach
capable of accurately quantifying the frequency of micronucleus formation following a diverse array of
treatments/conditions (i.e., drugs or genes) in a variety of experimental or clinical contexts will provide
the much-needed etiological insight into cancer pathogenesis by identifying the aberrant conditions
driving micronucleus formation and CIN.

In this study, we describe the development, optimization, and application of a single cell
quantitative imaging microscopy (scQuantIM) approach used to enumerate micronuclei in various
experimental and cellular contexts. We first present the critical concepts behind the automated
approach, then highlight the key experimental parameters requiring optimization that will enhance
the accuracy and reproducibility of the approach. Using two genotoxic compounds and an established
CIN gene, we demonstrate the broad-spectrum utility of the scQuantIM approach to rapidly enumerate
micronuclei in multiple cellular contexts. We end by highlighting how this approach can be easily
adopted to evaluate query compounds (drugs) or candidate genes, in either direct tests or as part
of screening libraries. Accordingly, this scQuantIM approach, coupled with the quantitative data it
provides, will enable novel studies aimed at determining the severity and impact novel compounds
have on genome stability, and will identify novel genes and pathways with implications in CIN
and cancer pathogenesis. Although not shown, this automated approach can be easily adjusted and
applied in various clinical contexts (e.g., hematological cancers or circulating tumor cells) to assess
the induction and prevalence of micronucleus formation, which will ultimately enable novel health
outcome analyses aimed at assessing the clinical utility of micronuclei as novel biomarkers of disease.
In summary, the ability of the scQuantIM approach to rapidly identify and enumerate micronuclei in
various cellular contexts is critical to enable the innovative studies performed and glean unprecedented
insight in a diverse array of experimental and clinical settings.
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2. Materials and Methods

2.1. Cell Culture

HCT116 colorectal cancer cells were purchased from American Type Culture Collection (Manassas,
VA, USA) and grown in McCoy’s 5A medium (HyClone) supplemented with 10% fetal bovine serum.
FT194 and FT246 fallopian tube secretory epithelial cells were generously provided by Dr. R. Drapkin
(University of Pennsylvania, USA) and were grown in DMEM/F12 medium (Gibco) supplemented
with 2% Ultroser G (Pall Life Sciences, Saint-Germain-en-Laye, France). Cell lines were authenticated
based on growth, morphology and spectral karyotyping. All cells were grown at 37 ◦C in a humidified
incubator containing 5% CO2.

2.2. Dose Response Curves

Dose-dependent changes in micronucleus formation were evaluated by treating cells with the
established genotoxic agents, etoposide (Selleck, Houston, TX, USA) and bleomycin (Sigma, Oakville,
ON, Canada). Briefly, 1000 HCT116, FT194, or FT246 cells were seeded into 96-well optical bottom
plates, permitted to attach for 24 h and subsequently treated in triplicate with a two-fold serial dilution
of etoposide (39 nM to 10 µM) or bleomycin (70 nM to 18 µM) and vehicle control (DMSO or H2O,
respectively). Due to differences in doubling times, cells were permitted to grow for an additional
four (HCT116 and FT194) or six (FT246) days, so that equivalent population doublings occurred. Cells
were fixed (4% paraformaldehyde) and counterstained (Hoechst 33342, 300 ng/mL) and subjected to
scQuantIM as described in the Results.

2.3. Gene Silencing

Micronucleus formation was evaluated following the silencing of SMC1A, an established CIN
gene [29,30]. Briefly, 1000 HCT116, FT194, or FT246 cells were seeded into 96-well optical plates,
permitted to attach for 24 h and transfected with a pool of four distinct ON-TARGETplus (Dharmacon)
siRNAs targeting SMC1A or Non-targeting control (siControl) with RNAiMax (Invitrogen), as detailed
elsewhere [31]. Transfected cells were grown for an additional four (HCT116 and FT194) or six
(FT246) days, at which point cells were fixed (paraformaldehyde), counterstained (Hoechst 33342), and
subjected to the scQuantIM as described in the Results.

2.4. ScQuantIM

To quantify the micronuclei, nine central, non-overlapping images were acquired from each well
using a Cytation 3 Cell Imaging Multi-Mode Reader (BioTek) equipped with a 20× objective (0.45
numerical aperture) and a 16-bit gray scale charged couple device camera. Gen5 (BioTek, Winooski,
USA) image analysis software (Image Prime and Spot Counting software features) was used to
automatically detect and enumerate the total numbers of micronuclei and primary nuclei within each
image series from each experimental condition. To optimize micronucleus enumeration, a maximal
mean fluorescence intensity filter was applied to each image to eliminate brightly labeled apoptotic
or mitotic cells, while a size inclusion filter was employed to limit the analyses to micronuclei with
a diameter of ≤1/3 the size of an average (control) nucleus. In this regard, the average nuclear area
for each cell line (control conditions) were empirically determined from which the maximum 1/3 area
(size) threshold was calculated. Finally, an x, y image periphery exclusion filter (30 µm) was applied to
eliminate partial nuclei located along the image periphery. Figure panels were assembled in Photoshop
CS6 (Adobe, San Jose, USA).

2.5. Statistical Analyses

To identify changes in micronucleus formation in any given condition (i.e., drug or siRNA)
relative to the controls, the mean number of micronuclei/nucleus was calculated by determining the
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total number of micronuclei/the total number of nuclei ± standard deviation (SD). Dose response
curves were generated wherein a dose-dependent mean ± SD was derived from all three technical
replicates (at a given dose) that is presented relative to the vehicle control. For gene silencing, the mean
frequency of micronuclei for each technical replicate of each experimental or control condition was
determined. The fold change in micronucleus formation is presented relative to the siControl and is
determined by dividing each technical replicate value by the mean micronucleus frequency of the
siControl. Mann–Whitney (MW) tests were performed to determine whether the mean of the ranks
between the SMC1A silenced and siControl conditions were statistically different, with a p-value < 0.05
considered significant. All descriptive statistics (e.g., n, mean, SD), dose response curves, dot plots,
and MW tests were generated in Prism v7 (GraphPad, San Diego, USA).

3. Results

3.1. The Development of a scQuantIM Approach to Determine the Frequency of Micronucleus Formation

The appearance of micronuclei in cells has traditionally been employed as a beacon that signals
an underlying genome instability event or the impact of a genotoxic agent or stress [2–4]. As genome
instability occurs in up to 90% of all cancers [26,32], the formation and prevalence of micronuclei
have far-reaching implications for cancer development, progression, and ultimately health outcomes.
Unfortunately, however, previous studies involving micronuclei were limited in that they typically
only focus on micronucleus detection and rarely determine the frequency of micronuclei within a given
experimental or clinical context [2,3,33–35]. As a consequence, those studies are inherently limited in
their capacity to rank the severity of a specific experimental condition, or to correlate the frequency of
micronucleus formation with disease development, progression, and outcomes. Accordingly, there is
an unmet need for a quantitative approach capable of rapidly identifying and enumerating micronuclei
within a variety of experimental and clinical contexts at the single cell level.

Determining the frequency of micronucleus formation is critical to establish and rank the severity
of a specific experimental condition (e.g., drug or gene candidates), and is essential to determine
the clinical utility of micronuclei as potential biomarkers of disease progression, treatment response,
and patient outcomes. To enable these types of studies mandates the development of an unbiased,
reproducible, and automated scQuantIM approach capable of accurately quantifying micronuclei (or
the frequency of micronuclei) within a diverse array of experimental and clinical contexts. The central
concept of scQuantIM is that the qualitative differences existing between various conditions can be
quantified in such a manner that statistical comparisons can be used to identify significant impacts
on genome stability. To enable these quantitative comparisons requires all images to be collected in
an identical fashion, that is, the image exposure times must be optimized and maintained constant
throughout the entire image acquisition process for a given experiment.

To accurately quantify micronuclei, three key image features (primary nuclei, cell bodies and
micronuclei) need to be accurately identified through a process referred to as image segmentation
(Figure 1). To segment an image, a primary (nuclear) mask is first applied to define each individual
nucleus within a given image, while a secondary (cell body) mask is generated using an average
ring width feature (i.e., distance from the nuclear periphery) to approximate the associated cell
bodies/boundaries. Finally, spot (micronucleus) detection is used to delineate micronuclei that are
spatially located within the secondary (cell body) mask, but are found outside the primary (nuclear)
mask. Importantly, each of these key image features must be empirically determined and optimized for
each independent cell line employed, and should be established using the control conditions. Note that
not all cell lines may be appropriate for this type of analysis. Once segmented, these three key image
features can be used to extract quantitative data such as the total number and sizes (areas) of both
nuclei and micronuclei. Once extracted, standard statistical analyses can be performed to identify
significant differences relative to the controls such as two-sample Kolmogorov-Smirnov (KS) tests
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comparing the cumulative distribution frequencies of micronuclear sizes (not discussed), or MW tests
comparing the rank orders of the mean micronucleus frequencies (detailed below).Cells 2019, 8, x FOR PEER REVIEW 5 of 16 

 

 
Figure 1. Automated image segmentation and spot detection of micronuclei. Representative images 
presenting the scQuantIM approach used to detect micronuclei (arrowheads; bottom left image) 
labelled with Hoechst 33342 in FT246 cells (SMC1A silenced conditions). Note that only a portion of 
a 20× image (i.e., crop image) is presented in the top row, while the bottom row presents the magnified 
region identified by the bounding box. Gen5 software segments images by applying a primary 
(nuclear) mask (middle images; yellow lines) and a secondary (cell body) mask (right images; yellow 
lines), prior to applying spot detection to identify micronuclei (right images; green lines). Scale bar 
represents 30 μm. 

3.2. Image Segmentation: Key Considerations to Enhance Accurate Data Extraction 

To enhance feature recognition and data extraction, several image filters/thresholds should be 
optimized prior to their consistent application within a given data series. These filters include: (1) A 
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(micronucleus) detection size filter set to ≤ 1/3 the size of the average nucleus to ensure only 
micronuclei are scored; (3) an x,y image boundary exclusion filter to prevent the inclusion of partial 
nuclei located along the image periphery; and (4) a Hoechst signal intensity threshold to prevent 
brightly stained apoptotic or mitotic bodies from being erroneously included in the analyses. The use 
of additional user-defined inclusion/exclusion criteria may also be critical to ensure accurate image 
quantification. Size filters including minimum and maximum areas for primary (nuclear) and 
secondary (cell body) masks, along with spot (micronucleus) detection, can greatly enhance image 
segmentation and the accuracy of data extraction. For example, the use of a defined ring width for 
the secondary (cell body) mask will limit the detection of spots (micronuclei) to a defined region 
surrounding each primary (nuclear) mask. Alternatively, cell boundaries can be readily defined 
through the use of membrane dyes or the use of antibodies recognizing the cell surface markers; 
however, these approaches can be time-consuming, costly, and may require optimization prior to 
experimental execution. 

If the image filters/thresholds are not properly optimized prior to data extraction, then a variety 
of image segmentation and data extraction errors may occur (detailed below). In this regard, many 
image features may be cell type/line dependent, and thus, will require independent optimization. For 
example, HCT116 cells generally have smaller nuclei and cell bodies that benefit from smaller mask 
sizes (particularly for the cell body mask), while FT194 and FT246 typically have larger nuclei and 
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Figure 1. Automated image segmentation and spot detection of micronuclei. Representative images
presenting the scQuantIM approach used to detect micronuclei (arrowheads; bottom left image) labelled
with Hoechst 33342 in FT246 cells (SMC1A silenced conditions). Note that only a portion of a 20×
image (i.e., crop image) is presented in the top row, while the bottom row presents the magnified region
identified by the bounding box. Gen5 software segments images by applying a primary (nuclear) mask
(middle images; yellow lines) and a secondary (cell body) mask (right images; yellow lines), prior to
applying spot detection to identify micronuclei (right images; green lines). Scale bar represents 30 µm.

3.2. Image Segmentation: Key Considerations to Enhance Accurate Data Extraction

To enhance feature recognition and data extraction, several image filters/thresholds should be
optimized prior to their consistent application within a given data series. These filters include: (1) A
primary (nuclear) mask size filter to ensure only intact nuclei are included in the analyses; (2) a spot
(micronucleus) detection size filter set to ≤ 1/3 the size of the average nucleus to ensure only micronuclei
are scored; (3) an x,y image boundary exclusion filter to prevent the inclusion of partial nuclei located
along the image periphery; and (4) a Hoechst signal intensity threshold to prevent brightly stained
apoptotic or mitotic bodies from being erroneously included in the analyses. The use of additional
user-defined inclusion/exclusion criteria may also be critical to ensure accurate image quantification.
Size filters including minimum and maximum areas for primary (nuclear) and secondary (cell body)
masks, along with spot (micronucleus) detection, can greatly enhance image segmentation and the
accuracy of data extraction. For example, the use of a defined ring width for the secondary (cell body)
mask will limit the detection of spots (micronuclei) to a defined region surrounding each primary
(nuclear) mask. Alternatively, cell boundaries can be readily defined through the use of membrane
dyes or the use of antibodies recognizing the cell surface markers; however, these approaches can be
time-consuming, costly, and may require optimization prior to experimental execution.

If the image filters/thresholds are not properly optimized prior to data extraction, then a variety
of image segmentation and data extraction errors may occur (detailed below). In this regard,
many image features may be cell type/line dependent, and thus, will require independent optimization.
For example, HCT116 cells generally have smaller nuclei and cell bodies that benefit from smaller
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mask sizes (particularly for the cell body mask), while FT194 and FT246 typically have larger nuclei
and cell bodies that benefit from larger mask sizes. Finally, as CIN is frequently associated with large
changes in chromosome complements (e.g., increases in ploidy), the ultimate thresholding parameters
employed, especially for the primary (nuclear) mask, must be empirically optimized for each cell line
or condition. To assist in this initial optimization step, Table 1 is provided as a reference point as it
presents the optimized thresholds and filters employed for HCT116, FT194, and FT246 cells.

Table 1. Optimized image thresholds and filters employed for the HCT116, FT194, and FT246 cells.

Cell Line
Primary Mask Secondary Mask Spot Detection

Min OS 1 (µm) Max OS 2 (µm) DT 3 (a.u.) Ring Width (µm) Min SS 4 (µm) Max SS 5 (µm) DT 3 (a.u.)

HCT116 10 100 7000 10 1 5 3000
FT194 10 100 7000 15 1 6 3000
FT246 10 100 7000 15 1 6 3000

1 Minimum object size; 2 Maximum object size; 3 Detection threshold (arbitrary units); 4 Minimum spot size; 5

Maximum spot size.

3.3. Optimizing Image Segmentation: Strategies to Prevent Type I and II Errors

The ability to accurately define and detect image features of specific sizes and signal intensities is
of paramount importance, as inaccurate image segmentation can lead to both type I (false negative)
and type II (false positive) errors. On one hand, false negative errors (Figure 2A) may arise from
inaccurate segmentation underlying the inclusion of micronuclei within the primary (nuclear) mask,
and/or poor primary mask and spot detection whereby nuclei and micronuclei are not detected. On the
other hand, false positive errors (Figure 2B) may arise from: (1) inadequate image segmentation so that
only a portion of an intact nucleus is recognized (masked) and the remaining (unmasked) portion is
identified as a micronucleus; (2) weak spot detection in which a single micronucleus is recognized as
multiple micronuclei; (3) excessive spot detection so that the background (i.e., non-specific) features are
identified as micronuclei; (4) image effects in which partial nuclei located along the image periphery are
scored as micronuclei (Figure 2C); and (5) apoptotic bodies, mitotic cells, or congressing chromosomes
are recognized as nuclei and/or micronuclei (Figure 2D).

Many of the common errors listed above are overcome by adjusting the thresholds and filters
employed for a given condition. For example, it is critical to optimize mask (primary and secondary)
and spot (micronucleus) detection to enhance feature extraction. Conceptually, inappropriately low
thresholds may inadvertently cluster multiple distinct objects (nuclei or micronuclei) into a single
object, or fail to recognize small or weakly stained micronuclei. Conversely, overly high thresholds
may segment single objects into multiple objects/spots, or erroneously include irrelevant background
signals as micronuclei. Beyond mask and spot detection thresholds, image periphery filters should
also be applied to prevent partial nuclei from being recognized as micronuclei. In general, restricting
the analyses to primary (nuclear) masks located at least 30 µm (x and y dimensions) from the image
periphery (20× image) is highly effective at eliminating these types of errors. Finally, since apoptotic
bodies and mitotic chromosomes often fluoresce brighter than interphase nuclei and micronuclei [1],
a maximum Hoechst signal intensity threshold should be applied to prevent them from being included
in downstream analyses. As a general rule, a maximum intensity threshold should be established by
sampling representative regions of images and determining the mean signal intensities of the apoptotic
bodies/mitotic cells to be eliminated and the interphase nuclei to be included in the analyses.
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Figure 2. Optimizing image segmentation to enhance micronucleus enumeration. Examples of common
detection errors that must be optimized to accurate ensure micronucleus enumeration. Note that only
magnified portions of the original 20× images are presented. (A) Inadequate image segmentation
associated with false negative errors such as micronuclei that are erroneously incorporated into the
primary (nuclear) mask (left), micronuclei that are not identified within the secondary (cell body)
mask (middle), or, micronuclei located outside the secondary mask (right). Scale bars represent 25 µm.
(B) Inappropriate image segmentation leading to false positive errors including under segmented
images (left and middle), leading to excessive calling of micronuclei, or over segmented images
in which background elements are identified as micronuclei (right). Scale bars represent 25 µm.
(C) Inaccurate segmentation of elements along the image periphery, resulting in false positive errors.
Scale bar represents 30 µm. (D) Inclusion of mitotic cells in which mitotic chromosomes are erroneously
identified as micronuclei. Scale bar represents 30 µm. Note that (A) and (B) are FT246 cells treated with
etoposide and bleomycin, respectively, while (C) and (D) are negative controls (dimethyl sulfoxide
[DMSO] treated).

To further reduce false negative and positive errors, many image analysis software programs
contain additional features that can be employed to enhance image segmentation. For example,
in Gen5 (BioTek) these include: (1) A ‘reduce primary mask’ option designed to improve the spatial
resolution between the primary nucleus and a proximal micronucleus; (2) a background subtraction
option to eliminate non-specific or autofluorescent features that may adversely impact nucleus or
micronucleus detection; and (3) a ‘rolling ball’ option to enhance micronucleus detection by better
distinguishing non-specific background signals. Finally, Table 2 provides a list of common errors and
potential solutions aimed at enhancing image segmentation and feature detection to minimize type I
and II errors.
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Table 2. Troubleshooting for common types of spot detection errors.

Error Type Probable Cause(s) Interpretation and Potential Solution(s)

Type I
(False Negative)

Micronuclei located proximal to a primary
(nucleus) mask are not accurately identified

and/or segmented

• Primary mask intensity threshold is too low; increase
intensity threshold for the primary (nuclear) mask.

• Distance between the spot (micronucleus) and primary
mask (nuclear) is too small; reduce the primary (nuclear)

mask size.

Micronuclei located within a secondary mask
are not accurately detected

• Spot (micronucleus) intensity threshold is too high;
reduce intensity threshold for spot detection.

• Spot (micronucleus) detection size is too small; increase
maximum spot size.

• Problem with background flattening parameters;
reduce rolling ball size.

Micronuclei are not included within secondary
mask (not detected)

• Poor fitting of primary (nuclear) mask; adjust intensity
threshold for the primary (nuclear) mask option.

• Poor fitting of primary (nuclear) mask; adjust object
size of primary (nuclear) mask.

• Secondary (cell body) mask is too small; increase ring
width of secondary (cell body) mask.

Type II
(False Positive)

A single object (nucleus or micronucleus) is
segmented into multiple objects

• Primary (nuclear) mask intensity threshold is too high;
decrease intensity threshold for the primary (nuclear)

mask.

• Spot (micronucleus) detection size is too small; increase
maximum spot size.

Non-specific background labeling is recognized
as an object

• Spot (micronucleus) detection intensity threshold is too
low; increase intensity threshold for spot detection.

• Problem with background flattening parameters;
increase rolling ball size.

Objects along the image periphery are
erroneously detected/included

• Apply an x, y exclusion filter in to restrict the analysis
to an internal region.

Mitotic or apoptotic bodies are erroneously
included

• Apply a mean object intensity exclusion filter to restrict
analysis to primary objects below a particular threshold.

3.4. Optimization and Execution of the scQuantIM Workflow

As many common cell lines exhibit genome (karyotypic) instability and/or harbor high levels of
micronuclei, it is critical to assess the utility of each cell line prior to evaluating the impact that drug
administration or gene silencing may have on micronucleus formation. Accordingly, it is necessary to
determine the frequency of micronuclei (on a per cell basis) for each line to be employed in a given
study. For demonstration purposes, we carefully selected three different and karyotypically stable
cell lines in which to conduct this work: HCT116, FT194, and FT246. Briefly, HCT116 is a malignant
colorectal cancer cell line and has been used extensively in CIN-based studies [6,7,29,36], while FT194
and FT246 are non-malignant, hTERT-immortalized fallopian tube secretory epithelial cell lines isolated
from two distinct individuals.

To execute the scQuantIM approach, cells (HCT116, FT194, and FT246) are seeded into individual
wells of a 96-well plate in triplicate such that they are ~80% confluent on the day of imaging. This ensures
that cells are actively growing and are not arrested in G0 due to high confluency, which can adversely
impact image segmentation. Cells are permitted to attach to the vessel, treated (drugs or siRNAs)
and grown for up to 6-days (assay dependent), at which point cells are fixed (paraformaldehyde) and
counterstained (Hoechst). Cells are subjected to scQuantIM, where the image exposure time (Hoechst)
is first optimized so that the maximum exposure time that produces ~80% of saturated values within
typical interphase nuclei is identified. This specific exposure limit allows for dimly stained micronuclei
to be more easily quantified, but also accounts for biological variation whereby some nuclei may stain
brighter than others.

Once determined, the optimal exposure time is set and maintained at constant throughout the
acquisition process. In general, nine non-overlapping images (20×) are collected from the central region
of each well to eliminate edge effects like cell stacking along the well periphery. At this magnification,
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nine images typically provide data on ≥2000 HCT116 primary nuclei from, or ≥1000 FT194/FT246
primary nuclei.

Next, image segmentation is optimized and performed as detailed above and key image feature
data are extracted including the total numbers of primary nuclei and micronuclei. To eliminate
technical errors and ensure accurate image segmentation (including primary/secondary mask and spot
detection), it is imperative to establish the accuracy of the image segmentation through manual (visual)
confirmation of a subset of randomly selected images from both the control and experimental conditions.
If the image features are not accurately detected/scored, then subsequent rounds of optimization are
required prior to data extraction. To account for potential differences in cell confluency resulting
from distinct experimental conditions, the frequency of micronuclei in a given well is calculated and
expressed as a percentage of the total number of nuclei analyzed within that well. Once collected,
al data are imported into a statistical software program (e.g., Prism, GraphPad, San Diego, CA, USA)
where statistical tests (e.g., MW tests) are conducted. In general, untreated HCT116, FT194, and FT246
have low frequencies of micronuclei ranging from 1.0% to 3.8% and 2.8%, respectively. These low
frequencies (<10%) are consistent with genome (karyotypic) stability and thus identifies each as a
suitable cell line model in which to conduct subsequent work.

3.5. Determining the Frequency of Micronucleus Formation Following the Administration of Genotoxic
Compound

To demonstrate the scQuantIM approach, we purposefully selected two well-characterized
genotoxic agents, etoposide and bleomycin (reviewed in [37,38]), which both induce micronucleus
formation [39,40]. Briefly, etoposide indirectly induces DNA double-strand breaks by inhibiting the
re-ligation activity of topoisomerase II [41,42], while bleomycin is a radiomimetic that directly induces
single and double-strand breaks via free radical attack [43,44]. To demonstrate the ability of the
scQuantIM approach to detect dose-dependent increases in micronucleus formation and establish the
limits of detection, cells were treated with a two-fold serial dilution of either etoposide or bleomycin
and the vehicle control (see Figure 2 for qualitative examples). Using the experimental approaches
detailed above, Figure 3A,B show that increasing concentrations of both etoposide and bleomycin,
respectively, induced increases in micronucleus formation within all three lines, with maximum
numbers reaching ~20 times those of the vehicle control. Upon further scrutiny, a high degree of
variation in the micronuclei counts occurred at higher drug concentrations, which coincides with
increases in cell cytotoxicity and an overall decrease in nuclear counts. Accordingly, the increases in
well-to-well variation observed at these higher doses simply reflects the large decreases in the cells
(nuclei) remaining, as dead and/or dying cells tend to lift off the plates. Further comparisons between
these graphs (Figure 3) also renders it possible to gain insights into the innate differences existing
between the three different cell lines employed. For example, HCT116 appears to be more sensitive to
etoposide and bleomycin (i.e., genotoxic stress) than FT194 and FT246, as HCT116 generally exhibit
larger increases in micronuclei at lower doses. In summary, these results establish the utility of the
scQuantIM approach in detecting dose-dependent changes in the frequency of micronuclei in various
cellular contexts.
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Figure 3. Increasing concentrations of etoposide and bleomycin correspond to increases in micronucleus
formation. (A) Increasing concentrations of etoposide correspond to increases in micronucleus formation
in HCT116 (left), FT194 (middle), and FT246 (right) cells. The (top) graphs present full dose ranges,
while the (bottom) graphs present refined ranges. Presented are the mean ± SD for each concentration
relative to the vehicle control. Each experimental condition was performed in triplicate. (B) Increasing
concentrations of bleomycin induce increases in micronucleus formation in HCT116 (left), FT194
(middle), and FT246 (right) cells. (Top) graphs present full dose ranges, while (bottom) graphs present
optimal ranges. Presented are the mean ± SD relative to the vehicle control for the experiments
performed in triplicate.

3.6. Determining the Frequency of Micronucleus Formation Following Gene Silencing

To establish the ability of the scQuantIM approach to assess genes for their impact on micronucleus
formation and CIN, we purposefully selected SMC1A, an established CIN gene [29,30]. SMC1A encodes
an essential member of the sister chromatid cohesion complex, which has established roles in DNA
double-strand break repair [45,46] and genome stability [29,30]. Using a similar experimental approach
to that detailed above, the frequency of micronucleus formation was determined following SMC1A
silencing. Briefly, cells were seeded, allowed to attach and grow for 24 h prior to transfection with
siRNAs targeting SMC1A or a non-targeting control (siControl). Cells were permitted to grow for an
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additional four (HCT116, FT194) or six (FT246) days, so that equivalent population doublings occurred.
Cells were subsequently fixed, counterstained, imaged, and subjected to the scQuantIM analyses, as
detailed above (see Figure 1 for qualitative examples). As expected, SMC1A silencing corresponded
with visual increases in micronucleus formation relative to siControl and untransfected conditions in
all three cell lines (Figure 4). In general, SMC1A silencing corresponded with a ~3- to 6-fold increase
in micronucleus formation that was most pronounced in HCT116 cells and least pronounced within
FT194 cells. Subsequent MW tests revealed statistically significant increases in the mean rank of SMC1A
silenced cells relative to siControl in all three cell lines. These findings are in agreement with those of
previous studies, showing that SMC1A is a CIN gene in HCT116 cells [29,30], but further establish that
SMC1A is a CIN gene in FT194 and FT246 cells. In summary, this single example establishes the utility
of this scQuantIM approach to quantify micronucleus formation following gene silencing, and thus
validates its ability to identify CIN genes.
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Figure 4. Increases in micronucleus formation accompany reduced SMC1A expression. Mann-Whitney
tests reveal statistically significant increases in the fold change in micronucleus formation following
SMC1A silencing relative to siControl in HCT116 (left), FT194 (middle) and FT246 (right) cells (NS,
not significant; ** p-value < 0.01; N = 3). Data are presented relative to the siControl with red lines
identifying the median and the dashed horizontal line identifying the mean of the siControl (1.00).

4. Discussion

In this article, we describe the development and application of a scQuantIM approach to detect
and analyze micronucleus formation following drug administration or gene silencing. This automated
and multi-purpose tool is capable of quantifying micronuclei induced through multiple mechanisms
in a variety of cellular contexts including transformed and normal immortalized human cell lines
from different tissue types. This scQuantIM approach represents a significant advancement over
traditional approaches in that it quantifies the frequency (i.e., level) of micronucleus formation,
which may be useful in distinguishing or ranking the level of genotoxic stress ascribed to query
compounds or genes. Although the assay was performed using a Cytation 3 Cell Imaging Multi-Mode
Reader and Gen5 software (BioTek), the general principles and approaches are readily extractable to
virtually any fluorescent microscope (epi-fluorescent or confocal) equipped with image acquisition
and analytical software.

Currently, the cytokinesis block micronucleus (CBMN) assay is perhaps the most common
approach used for toxicological assessment. In this approach, cytochalasin B (disrupts actin filament
formation and cytokinesis) is added to cells to induce the formation of binucleated cells that are
subsequently scrutinized for the presence of micronuclei [47]. While the CBMN assay is a traditional
endpoint analysis that provides an accurate estimate of micronucleus formation induced following a
specific genotoxic exposure, it may not be appropriate in certain contexts. For example, cells harboring
genetic defects in CIN genes by definition exhibit persistent and ongoing karyotypic changes, and so
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the temporal kinetics of micronucleus formation is expected to be dynamic and change with time. Thus,
single measurements may not be sufficient to accurately capture the ongoing changes in micronucleus
formation within a given population. In addition, the CBMN approach requires multiple labeling steps
to delineate nuclei/micronuclei and the cell body, and frequently relies on manual scoring efforts that
are subjected to user bias. Automated CBMN algorithms have been devised to identify binucleated
cells, but this may not be easily or rapidly achieved on all imaging and analytical systems. Additional
in vitro micronucleus tests have also been developed that can be used with or without the use of
cytochalasin B [33,35]. In general, these approaches require that cells are exposed to a test chemical
and grown to provide sufficient time for chromosomal damage and/or cell cycle proliferation defects
to manifest, which are required for micronucleus formation. Many of these approaches involve
microscopy, flow cytometry, or image-based flow cytometry and include the use of DNA counterstains
(Giemsa or fluorescent DNA dyes), fluorescence in situ hybridization (FISH) probes (chromosome
enumeration probes), or kinetochore antibodies to identify micronuclei and/or their contents [48–54].
As an alternative, our scQuantIM approach does not depend on the efficient inhibition of cytokinesis
by cytochalasin B, a compound that by itself has been shown to induce genome instability [34,55]
and could conceivably synergize with test compounds or gene silencing to exacerbate micronucleus
formation. In contrast, the scQuantIM approach is performed on an asynchronous population of
cells. Furthermore, the scQuantIM approach can be easily adapted to live cell imaging through the
use of Hoechst 33342 (a membrane permeant DNA counterstain), or through the generation of a
cell line model that expresses a fluorescently tagged protein such as histone H2B-green fluorescent
protein (H2B-GFP), which will enable live-cell monitoring of the nuclei and micronuclei. Finally, as the
scQuantIM approach is automated, it eliminates the user bias/subjectivity commonly associated with
manual enumeration to enhance experimental reproducibility and robustness. Overall, the scQuantIM
approach presented here offers significant enhancements over traditional approaches and can be easily
adapted to a diverse array of conditions including both traditional endpoint and live cell analyses.

The scQuantIM approach is a versatile and rapid tool that will expedite biomedical research.
Here, we established the utility of the scQuantIM approach through direct tests (i.e., low throughput)
involving both genotoxic agents and a CIN gene. A fundamental limitation of this approach is that it
requires the use of adherent cell lines, or that suspension cells be adhered to substrates (detailed below).
In addition, the scQuantIM approach is unable to detect micronucleus clusters that generally arise due
to mitotic slippage (reviewed in [16]). Although not the principle focus of this report, micronucleus
clusters are cytologically distinct and easily identifiable, so they can be manually enumerated within
the image series. In any case, this approach is also well-suited to increased throughput and will
work equally well in moderate to high throughput screens. In fact, with the appropriate research
infrastructure (e.g., automated plate handlers and liquid dispensers), the direct tests presented in
this report can easily be expanded into 96-, 384-, or 1536-well plate formats. As such, compound or
gene (coding or non-coding [miRNAs, lncRNAs, circRNAs]) libraries can be screened and ranked
based on the magnitude of micronucleus formation. Thus, the overall impact reduced gene expression
has on micronucleus formation can be assessed using siRNA, shRNA, or CRISPR/Cas9 technologies.
In addition to reduced gene expression, overexpression of specific genes is also known to impact
genome stability and/or micronucleus formation [56–59]. Thus, in a similar fashion, direct tests or gene
overexpression libraries could also be quantitatively assessed using this scQuantIM approach for their
impacts on micronucleus formation and CIN.

A fundamental benefit of the scQuantIM approach is that it can be easily optimized and applied
in a variety of contexts, particularly in clinical settings. For example, this approach could be adapted
and applied in hematological malignancies where cancer cells are easily isolated. Similarly, circulating
tumor cells could be isolated from blood and readily assessed, and they represent a minimally invasive
resource that could enable ongoing monitoring of key clinical features including disease progression or
treatment response. In both of these circumstances, the suspension cells would need to be adhered to
glass microscope slides or within wells prior to imaging, and is readily accomplished using standard
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approaches including the use of cytospins (centrifugation of cells onto slides), or slides specially coated
with poly-l-lysine or fibronectin. Alternatively, the frequency of micronuclei could be determined
within solid cancers following the isolation of cancer cells from primary or metastatic sites, or through
the interrogation of tissue microarrays housing tumor samples isolated from hundreds of patients.
However, this would require additional optimization to account for the 3D nature of nuclei within
tissue samples. In any case, the information gleaned from this work will enable novel studies aimed at
assessing the clinical utility of micronuclei, or the frequency of micronuclei, as novel disease biomarkers.
In this regard, health outcome analyses are easily envisioned that would determine the association
between the frequency of micronuclei and disease progression, treatment response, drug resistance, or
overall survival. Accordingly, the scQuantIM approach described herein has tremendous implications
in cancer, as it will uniquely enable a myriad of future studies in both experimental and clinical settings.

5. Conclusions

In summary, we present a scQuantIM approach that accurately detects and determines the
frequency of micronuclei within a variety of cellular texts. Importantly, this automated approach
represents a significant advancement over traditional manual approaches that are frequently impacted
by user bias and fatigue. Through the use of two genotoxic agents and a validated CIN gene, we
demonstrated the utility of this approach in quantifying increases in micronucleus formation following
treatments. We further highlight that with minimal optimization, this approach is easily scaled to
assess compound or gene libraries, and will enable novel studies to identify, rank, and validate those
experimental conditions inducing the most severe phenotypes. We also highlight the potential utility of
this approach in various clinical settings, highlighting the potential utility of micronuclei as biomarkers
of disease. As such, this scQuantIM approach has tremendous potential in a myriad of experimental
and clinical contexts and will undoubtedly shed unprecedented insight into the molecular determinants
driving disease development, progression, and outcomes.
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