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Abstract: The incidence of ulcerative colitis (UC) is increasing worldwide, and it has become a
growing problem in Asia. Previous research on UC has focused on serum, plasma, urine, gut tissues,
and fecal metabolic profiling, but a comprehensive investigation into the correlation between the
severity of colitis and changes in liver metabolism is still lacking. Since the liver and gut exchange
nutrients and metabolites through a complex network, intestinal diseases can affect both the liver and
other organs. In the present study, concentration-dependent dextran sodium sulfate (DSS)-induced
ulcerative colitis was employed to examine changes in liver metabolism using a proton nuclear
magnetic resonance spectroscopy (1H-NMR)-and ultra-performance liquid chromatography time
of flight mass spectroscopy (UPLC-TOF MS)-based metabolomics study. Using the multivariate
statistical analysis method orthogonal projections to latent structures discriminant analysis (OPLS-DA),
changes in metabolites depending on the DSS dose could be clearly distinguished. Specifically,
hepatic metabolites involved in one-carbon metabolism, carnitine-related metabolism, and nucleotide
synthesis were found to be affected by intestinal inflammation, implying the existence of a metabolic
connection between the gut and liver. We are currently investigating the significance of this metabolic
condition in UC.
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1. Introduction

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD), which includes chronic
inflammation of the gastrointestinal tract [1]. The primary symptoms of UC are acute and chronic
inflammation of the mucosa, diarrhea, and rectal bleeding [2]. The incidence of IBD is increasing
in Asians because of the westernization of their lifestyle and changes in environmental factors [3].
Recent studies have suggested that the etiology of IBD is multifactorial, resulting from the interplay of
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immunological, molecular, genetic, microbial, diet, drug use-related, and environmental factors [1,4,5].
IBD is considered to affect liver homeostasis, and in fact, the occurrence of non-alcoholic fatty liver
disease (NAFLD) has been found in IBD patients [6–8]. Anatomically, it is easy to suppose that
abrogated homeostasis in the gut affects liver health. Obtaining about 70% of the blood supply from
the portal vein, which is the direct venous outflow of the intestine, the liver is the first and main organ
exposed to gut-derived substances, such as ingested nutrients and bacterial products [9]. Crohn’s
disease (CD) patients, characterized by a loss of epithelial barrier, as well as chronic inflammation in
the intestine, display enhanced bacterial colonization in portal blood and liver, further emphasizing the
fact that disruption of the intestinal barrier increases the hepatic exposure of intestinal microbes [10].

Bacteria and their products can be harmful or beneficial to the liver, depending on the situation.
Exposure to high levels of lipopolysaccharide (LPS) in the liver in certain disease states can lead
to the recruitment of inflammatory cells, destroying the parenchyma of the liver [11]. Increased
hepatic and blood LPS and peptidoglycans—bacterial products derived from the intestine due to an
increased gut permeability—are found in alcoholic liver disease [12–14]. The activation of toll-like
receptors (TLRs) specific for bacterial products in Kupffer cells and other liver cells promotes a series
of responses resulting in the generation and release of inflammatory cytokines such as TNF-α and
IL-1β. This leads to excessive inflammatory reactions and eventually damages liver cells [15]. It is
well-known that an increase in intestinal microbial products causes or worsens liver disease. However,
no pronounced inflammatory response was shown under constant exposure to low concentrations
of LPS in the liver [16], suggesting that there is a threshold to activate the inflammatory response.
On the contrary, it has also been shown that bacteria and their products have beneficial effects on the
liver. Mice supplemented with broad-spectrum antibiotics to reduce intestinal microflora displayed
an impairment of liver regeneration following partial hepatectomy [17]. Furthermore, a beneficial
role of symbiotic microflora was demonstrated in models of alcoholic liver injury and hepatic fibrosis,
which were protected by microbiota under certain circumstances [18,19]. Although the significance of
the relationship between the intestinal tract and liver has been studied, extensive research is required
to elucidate the interactions and their consequences in detail.

Recently, metabolite profiling of the blood, urine, gut tissues, and feces of mice and humans with
IBD lesions has revealed unique characteristics that can be applied to diagnose IBD by distinguishing
between IBD patients and healthy controls [20–25]. However, there is a lack of comprehensive
studies investigating the correlation between the severity of colitis and changes in liver metabolism.
In this study, we hypothesized that the degree of intestinal inflammation affects liver homeostasis,
and investigated the relationship between the severity of colitis and changes in metabolites in the
liver. To comprehensively profile metabolic changes in the liver, depending on the severity of colitis,
we used proton nuclear magnetic resonance spectroscopy (1H-NMR) and ultra-performance liquid
chromatography time of flight mass spectroscopy (UPLC-TOF MS). Subsequently, the multivariate
statistical method [26] and target profiling method [27] were applied to analyze the acquired data and
search for metabolites characteristic of livers affected by UC.

2. Materials and Methods

2.1. Animals

Male BALB/cKorl mice were obtained from the Department of Laboratory Animal Resources of
the National Institute of Food and Drug Safety Evaluation (NIFDS, Cheongju, Korea) for the induction
of colitis using dextran sodium sulfate (DSS). All animals were acclimated in temperature- (22 ◦C ±
2 ◦C) and humidity (55 ± 5%)-controlled rooms under a 12 h light/dark cycle for 7 days prior to use.
Before starting any experimental procedure, animals of all experimental groups were weighed and
gently manipulated in the laboratory environment for 30 min every day for at least 1 week, to minimize
stress. The mice were allowed ad libitum access to standard laboratory chow diet and water until
they reached the desired age (6–7 weeks) and/or weight (19–22 g). The animal protocol for this study
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was approved by the Institutional Animal Care and Use Committee of Pusan National University
(Approval Number: PNU-2019-2229).

2.2. Induction of Ulcerative Colitis

Colitis was induced by feeding the mice for 7 days with control (n = 6), 2% (n = 6), 3.5% (n = 6), or 5%
(n = 6) DSS (molecular weight, 40 kDa; ICN Biomedicals Inc, Cleveland, OH, USA) in their drinking
water, and the DSS solution was replenished daily. Control mice received normal drinking water.

2.3. Assessment of the Disease Activity Index

The disease activity index (DAI) was determined by scoring the stool consistency, bleeding, and
weight loss after colitis induction, according to the classical scoring system suggested by Cooper [28],
as detailed in Table 1. All parameters were examined and scored from day 0 to day 7 during
DSS treatment.

Table 1. Disease activity index score parameters.

Weight Loss Stool Consistency Bleeding

0 = no weight loss 0 = formed 0 = normal color stool
1 = 5–10% weight loss 1 = mild-soft 1 = brown color stool
2 = 11–15% weight loss 2 = very soft 2 = reddish color stool
3 = 16–20% weight loss 3 = watery stool 3 = bloody stool
4 = 20% weight loss

2.4. Examination of Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) Activities

Serum samples were obtained from the abdominal aorta of each test mouse using BD Microtainer
Serum Collection Tubes (Becton, Dickinson and Company, Franklin Lakes, NJ, USA). The sera were
stored at −80 ◦C until analysis. The serum activities of alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) were measured using the protocol described by Reitman and Frankel [29]
and spectrophotometrically quantified using a Multiskan GO reader (Thermo Scientific, Waltham,
MA, USA).

2.5. Histopathological Analysis

Colons were excised, and segments of the transverse colon were fixed in neutral-buffered formalin.
Each colon tissue segment was washed in 0.1 M phosphate buffer (pH 7.4), and its length and weight
were then measured. For histopathological analysis, small pieces of colon and the left lateral lobe of
the liver were fixed in 10% phosphate-buffered formalin and embedded in low-melting-point paraffin.
The tissue sections (5 µm) were stained with hematoxylin-eosin (HE) and examined by microscopy.

2.6. Sample Collection and Preparation

Metabolites were extracted from the right posterior lobe of the liver (0.25 mg) using distilled water,
methanol, and chloroform. This extraction method is a modification of Bligh and Dyer’s method [30].
Briefly, 1.6 mL cold methanol and 0.6 mL distilled water were added to each liver sample. The samples
were vortexed for 5 min and sonicated for 15 min; this was followed by the addition of 0.8 mL cold
chloroform and keeping the samples in an ice bath for 10 min. Next, 0.8 mL cold chloroform and 0.8
mL distilled water were added. The final mixture was centrifuged at 1000× g for 10 min at 4 ◦C. The
polar phase supernatant of each sample (2 mL) was transferred to a glass vial and lyophilized. After
lysophilization, the samples were dissolved in 700 µL deuterium oxide (D2O, 99.9% D) containing 2 mM
3-(Trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TSP-d4) as the reference (0 ppm). All samples
(700 µL) were then transferred to 5 mm NMR tubes for quantification.
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2.7. NMR Analysis

All 1H-NMR spectra were acquired using a 600 MHz Agilent NMR spectrometer (Agilent, Santa
Clara, CA, USA) operating at 600.167 MHz (14.1T). A Carr-Purcell-Meiboom-Gill (CPMG) pulse
sequence was used to suppress the water and macromolecule peak. The 1H-NMR spectra were
measured using a 9.8 µs 90◦ pulse, 1.5 s relaxation delay, 3 s acquisition time, and 13 min total
acquisition time. A total of 128 scans were acquired for each sample at a spectral width of 24,038.5 Hz.

2.8. LC-MS/MS Analysis

After NMR analysis, each sample was reused. The samples were centrifuged at 10,000× g for
10 min at 4 ◦C, and the supernatant (500 µL) was diluted in water 1:1 (v/v). Chromatography was
performed on an Agilent 1290 infinity UHPLC system (Agilent, Santa Clara, CA, USA) using a 2.1 ×
100 mm (1.7 µm) HSS T3 Acquity (Waters, Milford, MA, USA). The mobile phase consisted of (A) 0.1%
formic acid in water and (B) 0.1% formic acid in acetonitrile. The flow rate was 300 µL/min, and the
injection volume was 3 µL for liver samples. A linear gradient with the following proportions (v/v) of
phase B (t, %B) was used: (2, 1), (6, 15), (9, 50), (12, 95), (13, 1), and (16, 1). The UHPLC system was
coupled with a quadrupole Time-of-Flight (Q-TOF) 4600 system (SCIEX, Framingham, MA, USA) and
autosampler G4226A (Agilent). The autosampler temperature was set at 4 ◦C. TOF MS and MS/MS
acquisition were performed in positive ionization and 50–1000 (m/z) scan modes.

For reproducibility of the HPLC-MS/MS analysis, quality control (QC) samples were analyzed
once every seven samples to monitor the stability of the system. The QC sample consisted of 18
standard metabolites. The blank samples (50% acetonitrile) were run after seven injections, in order to
monitor background noise. Additionally, an automated calibration was run after seven injections. The
use of an automated calibrant delivery system, employing a calibration standard solution, ensured that
the mass accuracy of the system was maintained throughout batch acquisition.

2.9. Metabolite Identification and Statistical Analysis

Chenomx NMR suite 8.4 (Chenomx Inc., Edmonton, AB, Canada), which includes an accurate
library of fully searchable pH and magnetic field strength-dependent data, was used to enable an
accurate qualitative and quantitative analysis of metabolite NMR data. Additionally, for more accurate
quantification, single spectral and overlapping spectral areas were confirmed by spike-in experiments
with authentic standards and 2D correlation spectroscopy (COSY) NMR spectra. The TSP-d4 peak at 0
ppm was used as the reference to calibrate the chemical shift. Each 1H-NMR spectrum was binned
from 0.5 to 10 ppm, and the water peak area (4.7–4.9 ppm) was excluded. The binning size was 0.001
ppm, and the spectra were normalized to the total area. All binning data were imported into SIMCA-P+

12.0 software (Umetrics, Umeå, Sweden). The multivariate analyses were performed using orthogonal
partial least squares discriminant analysis (OPLS-DA), with unit variance scaling. In MS data analysis,
to perform the library search and quantification of the metabolites, complete raw data were processed
using the PeakView 2.2 software with the MasterView 1.1 package and Metabolomics library 1.0
(SCIEX) containing MS/MS spectra of 536 metabolites acquired at 16 different collision energies. The
qualitative and quantitative analysis was performed based on the mass accuracy, isotopic pattern fit,
MS/MS fragmentation pattern library, searching and retention time. The MasterView search parameters
were set as follows: XIC intensities, above 200 count or signal to noise ratio (S/N) > 10; XIC width,
0.02 Da; peak integration, mono isotope. Library search parameters were set as follows: search
algorithm, confirmation search; precursor mass tolerance, 0.4 Da; fragment mass accuracy, 5 ppm;
polarity filter, applied; intensity factor, 5. Peak lists, representing a matrix of m/z_RT pairs for each
sample, were extracted from the raw data, and the peak intensity of each sample was normalized to a
total area sum using the MarkerView 1.3 software (SCIEX). The MarkerView search parameters were
set as follows: RT range, 1–10 min; approximate LC peak width, 10 sec; minimum intensity in counts,
5; RT tolerance, 0.2 min; mass tolerance, 5 ppm; intensity threshold, 200; remove peaks in, <5 samples.
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For OPLS-DA analysis, the normalized data were imported into the SIMCA-P+ 12.0 software and were
scaled through unit variance scaling.

3. Results

3.1. Induction of Colitis in DSS-Treated Mice

To characterize the dose dependence of DSS-induced colitis, mice were administered 0% (control),
2%, 3.5%, or 5% DSS for 7 days. There was no significant difference in water intake (Figure S1A),
but food intake significantly decreased, depending on the DSS concentration, from day 6 (Figure S1B).
The time-course-dependent changes in the body weight, DAI, and colon length were then determined.
Body weight started to decrease from day 4 in 5% DSS-treated mice. Significant differences in body
weight were observed between the groups on day 7 in a dose-dependent manner (Figure 1A). The DAI,
calculated based on the percentage of body weight decrease, diarrhea, and bloody feces, increased
significantly from day 3 and 4 in the 5% and 3.5% DSS-treated groups, respectively (Figure 1B). The
DAI of 2% DSS-treated mice increased significantly compared to that of the control group mice from
day 6. The average colon lengths were 9.4, 6.8, 4.9, and 4.4 cm in control, 2%, 3.5%, and 5% DSS-treated
mice, respectively (Figure 1C). Figure 2 shows the representative H&E-stained images of the colons on
day 7 for mice treated with 2%, 3.5%, and 5% DSS and the untreated mice. Colons of the untreated
mice had intact mucosa, whereas inflammatory cell infiltration was observed in the colons of the mice
in 2%, 3.5%, and 5% DSS-treated groups. An increase in the thickness of the mucosa and submucosa
and erosion of the epithelium were observed in the colons of 3.5% DSS-treated mice, while progressive
alteration of the entire epithelium was detected in the colons of 5% DSS-treated mice.
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3.2. Effect of DSS-Induced Colitis on Liver Injury Parameters 

Figure 1. Assessment of (A) body weight change, (B) disease activity index (DAI), and (C) colon length
in dextran sodium sulfate (DSS)-treated mice. Mice were given 2%, 3.5%, and 5% DSS in drinking
water for 7 days. Each value is presented as the mean ± SD for six mice. *** Significantly different from
the control (DSS 0%) (Student’s t-test, p < 0.001).
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3.2. Effect of DSS-Induced Colitis on Liver Injury Parameters 

Figure 2. Histopathological analysis of the colon of the DSS-induced colitis mouse model. Colon
tissues were stained with H&E (200×magnification).

3.2. Effect of DSS-Induced Colitis on Liver Injury Parameters

To evaluate whether acute colitis induced by DSS treatment causes liver injury, an analysis of
biochemical indexes of liver damage, such as the relative liver weight, serum activity of ALT and
AST, and histology, was conducted on day 7 of DSS administration. No changes were observed in the
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liver-to-body weight ratio in either the DSS-treated group or the control group (Figure 3A). The serum
activities of ALT and AST in the DSS-treated group were comparable to those in the control group
(Figure 3B,C) and, in agreement with these results, neither morphological differences nor hepatocellular
necrosis were observed in the DSS-treated groups (Figure 4).
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Figure 4. Histopathological changes in the liver of the DSS-induced colitis model. Liver tissues were
stained with H&E (400×magnification).

3.3. Metabolomic Analysis of the Liver of DSS-Induced Colitis Mice

3.3.1. NMR Data

The 1H-NMR spectrum data were analyzed for liver samples of all mice in the control group (0%
DSS-treated mice) and ulcerative colitis group (2% DSS-, 3.5% DSS-, and 5% DSS-treated mice). Figure 5
shows the representative 1H-NMR spectra for a mouse liver sample with assigned metabolites. For the
liver samples, a total of 34 metabolites were quantified. The average concentration of the metabolites,
as determined using Student’s t-test, is shown in Table 2. The levels of most metabolites, including
those of amino acids and their derivatives (alanine, arginine, betaine, glutamate, glutamine, glutathione,
glycine, isoleucine, leucine, lysine, phenylalanine, proline, pyroglutamate, threonine, tyrosine, and
valine), lipids (2-octenoate, choline, glycerol, O-phosphocholine, and sn-glycero-3-phosphocholine),
sulfur compounds (methionine and taurine), N-acetylglucosamine, carnitine, formate, fumarate, lactate,
trimethylamine N-oxide, uridine, glucose, and mannose, increased, while the level of maltose decreased
in the DSS-treated group compared to the control group. Therefore, the levels of 33 out of 34 metabolites
increased, while the level of one metabolite decreased in the DSS-treated group compared to the control
group. In particular, arginine, betaine, carnitine, N-acetylglucosamine, and O-phosphocholine levels
were significantly increased with the increasing dose of DSS. Figure 6 shows the relative concentration
of these metabolites in the DSS-treated group and control group livers.
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leucine; 3, valine; 4, lactate; 5, threonine; 6, acetoin; 7, alanine; 8, arginine; 9, acetate; 10, proline; 11,
N-acetylglucosamine; 12, methionine; 13, 2-octenoate; 14, glutamate; 15, pyroglutamate; 16, glutamine;
17, glutathione; 18, dimethylamine 19, lysine; 20, choline; 21, O-phosphocholine; 22, carnitine; 23,
sn-glycerol-3-phosphocholine; 24, betaine; 25, taurine; 26, trimethylamine N-oxide; 27, glucose; 28,
glycerol; 29, glycine; 30, maltose; 31, fumarate; 32; tyrosine; 33, phenylalanine; 34, formate.

Cells 2020, 9, x  7 of 18 

 

 

Figure 5. The representative 600 MHz 1H-NMR spectra of rat liver extracts. Key: 1, isoleucine; 2, 

leucine; 3, valine; 4, lactate; 5, threonine; 6, acetoin; 7, alanine; 8, arginine; 9, acetate; 10, proline; 11, 

N-acetylglucosamine; 12, methionine; 13, 2-octenoate; 14, glutamate; 15, pyroglutamate; 16, 

glutamine; 17, glutathione; 18, dimethylamine 19, lysine; 20, choline; 21, O-phosphocholine; 22, 

carnitine; 23, sn-glycerol-3-phosphocholine; 24, betaine; 25, taurine; 26, trimethylamine N-oxide; 27, 

glucose; 28, glycerol; 29, glycine; 30, maltose; 31, fumarate; 32; tyrosine; 33, phenylalanine; 34, formate. 

 

 

Figure 6. The percent change in metabolite levels in the DSS-treated mouse liver relative to the control 

mouse liver. % Change = ([DSS-treated liver]–[control liver])/[control liver] × 100). The concentrations 

of metabolites were calculated through the integration of peak areas using Chenomx. GPC, sn-

Glycero-3-phosphocholine; TMAO, Trimethylamine N-oxide. 

Figure 6. The percent change in metabolite levels in the DSS-treated mouse liver relative to
the control mouse liver. % Change = ([DSS-treated liver]–[control liver])/[control liver] × 100).
The concentrations of metabolites were calculated through the integration of peak areas using Chenomx.
GPC, sn-Glycero-3-phosphocholine; TMAO, Trimethylamine N-oxide.
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Table 2. The relative concentrations of metabolites acquired by 1H-NMR spectroscopy from DSS 0%, DSS 2%, DSS 3.5%, and DSS 5% livers.

DSS 0% DSS 2% DSS 3.5% DSS 5%

Mean ± SE Mean ± SE (p-value) Mean ± SE (p-value) Mean ± SE (p-value)

2-Octenoate 1.961 ± 0.236 2.686 ± 0.641 (0.1598) 2.690 ± 0.359 (0.0701) 2.956 ± 0.405 (0.0378) *
Acetate 2.465 ± 0.224 2.779 ± 0.272 (0.1993) 3.835 ± 0.489 (0.0208) * 2.485 ± 0.368 (0.4825)
Acetoin 1.256 ± 0.494 1.311 ± 0.332 (0.4648) 1.556 ± 0.198 (0.2807) 2.277 ± 0.548 (0.1039)
Alanine 1.141 ± 0.178 1.469 ± 0.121 (0.0828) 2.192 ± 0.455 (0.0390) * 2.439 ± 0.511 (0.0272) *
Arginine 0.632 ± 0.107 1.388 ± 0.295 (0.0214) * 1.862 ± 0.452 (0.0194) * 2.220 ± 0.420 (0.0043) **
Betaine 0.597 ± 0.136 0.996 ± 0.177 (0.0559) 1.369 ± 0.323 (0.0357) * 2.147 ± 0.566 (0.0190) *
Carnitine 0.631 ± 0.042 0.958 ± 0.180 (0.0575) 1.391 ± 0.285 (0.0201) * 2.034 ± 0.627 (0.0369) *
Choline 1.269 ± 0.362 2.208 ± 0.466 (0.0749) 2.154 ± 0.401 (0.0712) 2.684 ± 0.350 (0.0104) *
Formate 1.400 ± 0.307 2.010 ± 0.452 (0.1485) 2.671 ± 0.329 (0.0107) * 2.578 ± 0.455 (0.0353) *
Fumarate 1.632 ± 0.237 2.100 ± 0.341 (0.1461) 2.307 ± 0.339 (0.0762) 3.066 ± 0.522 (0.0223) *
Glucose 4.696 ± 0.216 5.754 ± 0.618 (0.0723) 6.002 ± 0.372 (0.0092) ** 6.004 ± 0.269 (0.0025) **
Glutamate 1.365 ± 0.199 2.961 ± 0.575 (0.0153) * 2.623 ± 0.287 (0.0036) ** 2.693 ± 0.337 (0.0053) **
Glutamine 0.967 ± 0.167 1.374 ± 0.286 (0.1274) 1.793 ± 0.491 (0.0884) 2.656 ± 0.309 (0.0007) ***
Glutathione 1.522 ± 0.086 1.744 ± 0.235 (0.2004) 2.388 ± 0.647 (0.1299) 2.774 ± 0.238 (0.0007) ***
Glycerol 2.936 ± 0.200 4.093 ± 0.689 (0.0728) 3.536 ± 0.217 (0.0380) * 4.235 ± 0.352 (0.0071) **
Glycine 0.957 ± 0.073 1.550 ± 0.178 (0.0075) ** 1.961 ± 0.316 (0.0099) ** 2.612 ± 0.557 (0.0128) *
Isoleucine 1.323 ± 0.051 2.287 ± 0.495 (0.0443) * 2.212 ± 0.327 (0.0187) * 2.658 ± 0.508 (0.0211) *
Lactate 3.359 ± 0.289 4.661 ± 0.524 (0.0306) * 3.600 ± 0.293 (0.2884) 3.797 ± 0.461 (0.2317)
Leucine 1.612 ± 0.074 2.648 ± 0.437 (0.0238)* 2.659 ± 0.366 (0.0156)* 3.130 ± 0.466 (0.0085) **
Lysine 0.924 ± 0.089 1.647 ± 0.307 (0.0269) * 1.448 ± 0.304 (0.0821) 2.310 ± 0.598 (0.0335) *
Maltose 2.686 ± 0.266 1.898 ± 0.426 (0.0775) 1.704 ± 0.482 (0.0636) 1.096 ± 0.257 (0.0010) **
Mannose 4.006 ± 0.089 5.056 ± 0.812 (0.1174) 4.499 ± 0.280 (0.0793) 4.866 ± 0.259 (0.0090) **
N-Acetylglucosamine 0.515 ± 0.030 0.591 ± 0.160 (0.3264) 1.431 ± 0.354 (0.0221) * 1.889 ± 0.559 (0.0267)*
O-Phosphocholine 0.319 ± 0.041 0.820 ± 0.263 (0.0484) * 1.251 ± 0.311 (0.0122) * 1.746 ± 0.595 (0.0292) *
Phenylalanine 1.249 ± 0.115 1.893 ± 0.359 (0.0631) 1.866 ± 0.227 (0.0245) * 2.580 ± 0.625 (0.0447) *
Proline 1.295 ± 0.143 2.452 ± 0.469 (0.0230) * 2.550 ± 0.408 (0.0127) * 2.801 ± 0.373 (0.0034) **
Pyroglutamate 1.194 ± 0.120 2.062 ± 0.517 (0.0704) 1.907 ± 0.253 (0.0209) * 2.353 ± 0.565 (0.0505)
Taurine 0.775 ± 0.066 1.031 ± 0.148 (0.0763) 1.191 ± 0.229 (0.0720) 2.084 ± 0.668 (0.0556)
Threonine 0.895 ± 0.113 1.799 ± 0.504 (0.0592) 1.847 ± 0.325 (0.0157) * 2.247 ± 0.493 (0.0187) *
Trimethylamine N-oxide 2.271 ± 0.130 2.998 ± 0.537 (0.1124) 3.234 ± 0.217 (0.0028) ** 3.675 ± 0.513 (0.0192) *
Tyrosine 1.355 ± 0.160 2.687 ± 0.609 (0.0337) * 2.394 ± 0.265 (0.0055) ** 2.810 ± 0.373 (0.0044) **
Uridine 1.593 ± 0.155 2.697 ± 0.498 (0.0336) * 2.627 ± 0.418 (0.0303) * 2.934 ± 0.399 (0.0088) **
Valine 1.186 ± 0.073 2.066 ± 0.390 (0.0287)* 2.075 ± 0.322 (0.0182) * 2.586 ± 0.557 (0.0250) *
sn-Glycero-3-phosphocholine 2.233 ± 0.224 3.111 ± 0.674 (0.1258) 2.788 ± 0.302 (0.0946) 3.474 ± 0.351 (0.0097) **

Metabolites that were significantly different between the different DSS-treated groups are shown in bold and with an asterisk. * p < 0.05; ** p < 0.01; *** p < 0.001, compared to the control
(DSS 0%).
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3.3.2. MS Data

Mass spectrometry analysis identified changes in some metabolites that were not identified
in the NMR, such as nucleic acids (5’-methylthioadenosine, adenosine monophosphate, guanosine,
guanosine monophosphate, uridine 5’-diphosphate, uridine 5’-monophosphate, and xanthosin),
purines (hypoxanthine and xanthine), pyrimidines (uracil), N,N-dimethylglycine, glycerol 3-phosphate,
hydrocinnamic acid, acetylcarnitine, malic acid, maltoriose, methionine, niacinamide, and tyramine.
The average concentrations of these metabolites, as determined using the Student’s t-test, are shown
in Table 3, and Figure 7 shows the relative concentrations of these metabolites in the DSS-treated
group liver compared to the control group liver. From among the abovementioned 19 metabolites,
the levels of six metabolites increased (methionine, N,N-dimethylglycine, uridine 5’-monophosphate,
uridine 5’-diphosphate, guanosine monophosphate, uracil, and acetylcarnitine), while those of five
metabolites decreased (glycerol 3-phosphate, hypoxanthine, xanthine, xanthosine, and maltotriose)
in the DSS-treated group compared to the control group. Overall, the levels of purine metabolites
(hypoxanthine, xanthine, and xanthosine) decreased and those of pyrimidine metabolites (uridine
5’-monophosphate, uridine 5’-diphosphate, uridine, and uracil) increased in the DSS-treated group
compared to the control group.

Table 3. The relative concentrations of marker metabolites, acquired by MS spectroscopy of DSS 0%,
DSS 2%, DSS 3.5%, and DSS 5% livers.

DSS 0% DSS 2% DSS 3.5% DSS 5%

Mean ± SE Mean ± SE (p-value) Mean ± SE (p –value) Mean ± SE (p –value)

5’-Methylthioadenosine 5.973 ± 0.460 5.968 ± 0.519 (0.4974) 6.255 ± 0.472 (0.3410) 6.854 ± 0.242 (0.0538)
Adenosine
monophosphate 5.340 ± 0.374 5.571 ± 0.318 (0.3249) 5.801 ± 0.482 (0.2418) 5.265 ± 0.522 (0.4571)

N,N-Dimethylglycine 2.866 ± 0.399 4.049 ± 0.412 (0.0365) * 3.332 ± 0.393 (0.2149) 3.870 ± 0.421 (0.0610)
Glycerol 3-phosphate 3.768 ± 0.278 3.248 ± 0.299 (0.1195) 2.486 ± 0.331 (0.0090) ** 1.726 ± 0.204 (0.0001) ***
Guanosine 3.553 ± 0.513 3.673 ± 0.237 (0.4183) 2.853 ± 0.414 (0.1551) 4.398 ± 0.276 (0.0809)
Guanosine
monophosphate 2.957 ± 0.231 3.740 ± 0.397 (0.0634) 3.714 ± 0.393 (0.0754) 4.258 ± 0.500 (0.0276)*

Hydrocinnamic acid 5.097 ± 0.582 5.289 ± 0.451 (0.3999) 4.601 ± 0.390 (0.2422) 5.007 ± 0.374 (0.4480)
Acetylcarnitine 1.652 ± 0.155 1.723 ± 0.192 (0.3905) 2.845 ± 0.307 (0.0050) ** 3.129 ± 0.500 (0.0146) *
Malic acid 5.843± 0.250 6.029 ± 0.216 (0.2942) 5.513 ± 0.615 (0.3279) 5.356 ± 0.445 (0.1961)
Methionine 4.001 ± 0.281 4.535 ± 0.320 (0.1227) 4.120 ± 0.500 (0.4243) 5.282 ± 0.370 (0.0130)*
Maltotriose 4.091 ± 0.379 2.936 ± 0.093 (0.0091) ** 3.828 ± 0.525 (0.3526) 3.666 ± 0.446 (0.2479)
Niacinamide 6.631 ± 0.628 7.072 ± 0.350 (0.2788) 6.837 ± 0.307 (0.3811) 7.468 ± 0.434 (0.1445)
Tyramine 2.660 ± 0.578 2.699 ± 0.623 (0.4825) 2.173 ± 0.313 (0.2283) 1.886 ± 0.186 (0.1004)
Uracil 3.633 ± 0.368 4.199 ± 0.201 (0.1070) 4.656 ± 0.360 (0.0400) * 5.697 ± 0.171 (0.0002) ***
Uridine 5’-diphosphate 3.030 ± 0.114 3.616 ± 0.176 (0.0118) * 3.751 ± 0.589 (0.1513) 4.340 ± 0.407 (0.0097)**
Uridine
5’-monophosphate 3.482 ± 0.173 4.130 ± 0.244 (0.0312) * 4.457 ± 0.445 (0.0458) * 4.750 ± 0.532 (0.0335) *

Xanthosine 3.480 ± 0.307 3.123 ± 0.198 (0.1784) 2.118 ± 0.460 (0.0216) * 2.010 ± 0.329 (0.0053) **
Hypoxanthine 4.463 ± 0.173 3.299 ± 0.179 (0.0008) *** 2.621 ± 0.237 (0.0001) *** 2.164 ± 0.257 (0.0000) ***
Xanthine 4.616 ± 0.226 3.635 ± 0.177 (0.0045) ** 2.883 ± 0.242 (0.0003) *** 2.335 ± 0.241 (0.0000) ***

Metabolites that had significantly different concentrations between the different DSS-treated groups are shown in
bold and accompanied by an asterisk. * p < 0.05; ** p < 0.01; *** p < 0.001, compared to the control (DSS 0%).
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Figure 7. The percent change in liver metabolite levels in the DSS-treated mouse liver relative to the
levels in normal liver. % Change = ([DSS-treated liver]–[control liver])/[control liver] × 100). The
concentrations of metabolites were calculated based on the integration of peak areas using SCIEX
peak view. AMP, adenosine monophosphate; 5′-UMP, uridine 5′-monophosphate; 5′-UDP, uridine
5′-diphosphate; GMP, guanosine monophosphate.

3.4. Multivariate Statistical Analysis

3.4.1. NMR Data

To investigate the 1H-NMR spectrum data and remove the possible intragroup confounding
factors or structure noise, OPLS-DA was applied. The OPLS-DA results are shown in Figure 8. The
OPLS-DA score plots (R2X = 0.738, R2Y = 0.919, and Q2 = 0.258) demonstrated significant differences
between the DSS-treated groups and the control group. The R2 value is defined as the proportion
of variance in the data explained by the models and the overall goodness of fit, and the Q2 value
is defined as the proportion of variance in the data predictable by the model and the overall cross
validation coefficient.
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Figure 8. OPLS-DA score plot based on the 1H-NMR spectra of the DSS-treated group and control
group. #: DSS 0%; �: DSS 2%; 4: DSS 3.5%; 3: DSS 5% (R2X = 0.738, R2Y = 0.919, and Q2 = 0.258).
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3.4.2. UPLC-QTOF-MS/MS Data

The OPLS-DA results are shown in Figure 9. The OPLS-DA score plots (R2X = 0.69, R2Y = 0.97,
and Q2 = 0.554) demonstrated a differentiation between the DSS-treated groups and the control group,
depending on the concentration of DSS used. The high DSS concentration groups (DSS 3.5% and DSS
5%) and low DSS concentration groups (DSS 0% and DSS 2.5%) are separated on the x = 0 axis.
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Figure 9. OPLS-DA score plot based on the MS spectra of the DSS-treated group and control group. #:
DSS 0%; �: DSS 2%; 4: DSS 3.5%; 3: DSS 5% (R2X = 0.69, R2Y = 0.97, and Q2 = 0.554).

4. Discussion

Recent experimental and clinical studies have revealed the pivotal role of the gut–liver axis in
the onset of metabolic disturbances related to lipid and glucose homeostasis [31–35]. In particular,
the resident microbiota in the gut have been recognized as key players in the gut–liver interaction.
They not only influence the absorption and disposal of nutrients in the liver, but also condition
hepatic inflammation by supplying toll-like receptor ligands, which can stimulate the liver cells to
produce pro-inflammatory cytokines. The gut–liver crosstalk is implicated in promoting simple lipid
accumulation, as well as in the initiation of inflammation and fibrogenesis in the liver. Reportedly,
NAFLD and primary sclerosing cholangitis have been found to occur in patients with IBD [6–8,36].
Therefore, the modification of intestinal bacterial flora by specific probiotics has been proposed as a
therapeutic approach for the treatment of a wide spectrum of fatty liver disease. In spite of all the
studies mentioned above, communication between the gut and liver still requires further exploration.

In order to identify the direct link between liver metabolism and the intestinal barrier function,
we examined various metabolites in the liver of mice with DSS-induced acute colitis, which is a
well-established mouse model of UC and has features similar to human UC [37,38]. In particular,
increasing dosages of DSS from 0% to 5% were administered to the mice to study different grades of
colitis. The supplementation of DSS induced significant colon injury, with inflammatory cell infiltration
and disruption of the epithelial barrier, in a dose-dependent manner, as reported previously [39];
however, the liver was not damaged, as evidenced by the results of the analysis of ALT and AST serum
activity, as well as histology. Although liver injury was not induced, in a recent study, we noted that
the combined administration of a high-fat diet and DSS to C57BL/6 mice not only aggravated lipid
accumulation, but also induced steatohepatitis in the liver [40]. These results suggest that changes
in the intestinal environment induced by DSS could affect hepatic metabolism and exacerbate the
metabolic burden of high-fat diets in the liver.

Endogenous metabolites are known to be easily changed by environmental stress, chemical
exposure, and genetic variations, even in the absence of a diseased state; thus, metabolite analysis



Cells 2020, 9, 341 12 of 17

provides comprehensive information on energy metabolism, precursors of proteins and carbohydrates,
gene expression regulation, and signaling molecules [41–46]. In this study, we analyzed small molecular
metabolites, including the intermediate and final products of cellular regulatory processes, and they
could be clearly distinguished by multivariate statistical analysis (Figures 8 and 9), depending on the
supplemented DSS dosage.

The metabolites determined by 1H-NMR and UPLC-QTOF-MS/MS in the present study responded
differently to different concentrations of DSS and significant differences (p < 0.05) in their levels
were observed between the DSS-treated group and control group. The levels of acetyl-carnitine
and carnitine were elevated in the DSS-treated group. Acetyl-carnitine and carnitine are important
for the β-oxidation of fatty acids, which mainly occurs in the mitochondria (Figure 10), to regulate
lipid metabolism and transport fatty acids into the mitochondria [47,48]. They also have antioxidant
and anti-inflammatory properties [49]. Carnitine also has an antioxidant and anti-inflammatory
capacity [48,50]. Some studies have reported that acetyl-carnitine and carnitine are associated with
liver function, liver diseases, neurologic disorders, and IBD [22,51–54]. Therefore, liver damage due
to intestinal inflammation occurs as a result of changes in the concentrations of acetyl-carnitine and
carnitine. These changes suggest that intestinal inflammation affects oxidative stress, inflammatory
cells, osmosis, and β-oxidation of fatty acids in the liver.Cells 2020, 9, x  12 of 18 
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Figure 10. Overview of acetyl-carnitine- and carnitine-related metabolism in the liver of mice with
ulcerative colitis (UC).

The levels of methionine, choline, betaine, N,N-dimethylglycine, glycine, threonine, glutathione,
and taurine, which are related to the pathway of one-carbon metabolism, were significantly increased in
the DSS-treated group. One-carbon metabolism plays an important role in the transsulfuration pathway
and nucleotide synthesis, which is essential for DNA replication and repair [55]. Moreover, it transfers
the methyl group to acceptors, including DNA, RNA, proteins, and phospholipids [56]. Figure 11
shows a summary of one-carbon metabolism, purine metabolism, pyrimidine metabolism, and the
transsulfuration pathway in the liver with UC. The levels of choline and O-phosphocholine, which are
essential nutrients, and phospholipids in the mitochondrial membranes [57,58], were increased. These
are associated with one-carbon metabolism via betaine and lipid metabolism. The changes in choline
and O-phosphocholine levels suggested the possibility of damage to the membrane or progress towards
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membrane disruption [59]. The intestine in the DSS-treated group is in a high osmotic environment,
which causes osmotic stress, cell cycle arrest, DNA damage, oxidative stress, and inflammation [60].
In our study, one-carbon metabolism-related changes in the metabolite levels occurred in response
to the severity of intestinal inflammation. Intestinal inflammation may affect epigenetic regulation.
Moreover, pyrimidine metabolism-related metabolite (uracil, uridine, UMP, and UDP) levels and
purine metabolism-related metabolite (xanthosine, xanthine, hypoxanthine, and GMP) levels were
altered. These metabolites are associated with the synthesis of nucleotides and are known to act against
inflammation and DNA damage. The increase in the levels of betaine, carnitine, and proline, which are
osmoprotectants, may help reduce osmotic stress [48,61,62]. Betaine can be metabolized to carnitine via
a multistep process. Therefore, changes in betaine levels may have affected the carnitine levels. Betaine
can be utilized in different metabolic pathways, depending on the present environmental stressors,
such as osmotic stress, oxidative stress, inflammation, and energy metabolism disorders [63]. In the
liver, the primary role of betaine is as a methyl group donor [64,65]. The level of betaine is significantly
elevated in the DSS-treated group, suggesting that intestinal inflammation leads to the upregulation of
one-carbon metabolism, which plays an important role in maintenance of the inflammatory response.
Considering acute intestinal injury of this model, it seems that the altered metabolites in one-carbon,
purine, pyrimidine, and transsulfuration pathways may be compensatory or acute phase responses to
protect the liver against changes in the intestinal environment.Cells 2020, 9, x  13 of 18 
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In summary, the results of the present study show that the overall changes in liver metabolism in
response to DSS administration are clearly associated with the severity of colon injury and thus suggest
the importance of gut condition in the maintenance of liver homeostasis. However, the significance of
metabolic changes in response to DSS-induced acute colitis remains unknown. Further investigation of
the role of colitis-specific metabolites in the liver may prove to be useful for clinical application and
preventive approaches against colitis-associated liver disease.
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