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Abstract: Chromosome-specific regulatory mechanisms provide a model to understand the
coordinated regulation of genes on entire chromosomes or on larger genomic regions. In fruit
flies, two chromosome-wide systems have been characterized: The male-specific lethal (MSL)
complex, which mediates dosage compensation and primarily acts on the male X-chromosome, and
Painting of fourth (POF), which governs chromosome-specific regulation of genes located on the 4th
chromosome. How targeting of one specific chromosome evolves is still not understood; but repeated
sequences, in forms of satellites and transposable elements, are thought to facilitate the evolution of
chromosome-specific targeting. The highly repetitive 1.688 satellite has been functionally connected
to both these systems. Considering the rapid evolution and the necessarily constant adaptation of
regulatory mechanisms, such as dosage compensation, we hypothesised that POF and/or 1.688 may
still show traces of dosage-compensation functions. Here, we test this hypothesis by transcriptome
analysis. We show that loss of Pof decreases not only chromosome 4 expression but also reduces the
X-chromosome expression in males. The 1.688 repeat deletion, Zhr1 (Zygotic hybrid rescue), does not
affect male dosage compensation detectably; however, Zhr1 in females causes a stimulatory effect
on X-linked genes with a strong binding affinity to the MSL complex (genes close to high-affinity
sites). Lack of pericentromeric 1.688 also affected 1.688 expression in trans and was linked to the
differential expression of genes involved in eggshell formation. We discuss our results with reference
to the connections between POF, the 1.688 satellite and dosage compensation, and the role of the 1.688
satellite in hybrid lethality.

Keywords: painting of fourth; dosage compensation; satellite DNA; heterochromatin; epigenetics;
Drosophila melanogaster

1. Introduction

Chromosome-wide targeting is widely appreciated to form part of dosage-compensation
mechanisms, i.e., mechanisms that equalize the transcriptional output from, e.g., the single
X-chromosome in males to the two X-chromosomes in females. Several different mechanisms
have evolved that solve the gene dosage problem between the two sexes and have been described
in the literature [1–5]. Importantly, although sex chromosomes often acquire chromosome-specific
regulatory mechanisms, they are not an evolutionary dead end since examples of sex chromosomal
reversion to autosomes do exist. One such model example is provided by the 4th chromosome in D.
melanogaster (the Muller F-element). The 4th chromosome exhibits many indications of a relationship to
the X-chromosome [1,2,6,7] and evolutionary studies suggest that the 4th chromosome was ancestrally
an X-chromosome that has reverted to an autosome [8,9]. This reversion from a sex chromosome to an
autosome may, in fact, explain the existence of two chromosome-wide regulatory systems in Drosophila.
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In Drosophila, the most well-known example of a chromosome-wide system is the dosage
compensation system which doubles the expression of genes on the male X-chromosome.
The mechanism involves a combination of general buffering effects that act on all monosomic
regions [10–12] and the specific targeting and stimulation of the male X-chromosome by the male-specific
lethal (MSL) complex, which together result in an approximately 2-fold increase in gene expression [4,11].
The MSL complex consists of five proteins (MSL1, MSL2, MSL3, MLE, and MOF) and two redundant
long non-coding RNAs (roX1 and roX2) [4,13]. The roX RNAs are essential in maintaining the correct
targeting of the MSL complex and the correct expression from the X-chromosome [14,15].

The second chromosome-wide regulatory system in Drosophila is represented by the protein
Painting of fourth (POF) which is involved in the global regulation of the genes on Drosophila’s
chromosome 4 [16–19]. The level of compensation mediated by POF is in the same range as the level of
compensation mediated on the male X-chromosome by the MSL complex; furthermore the POF mediated
compensation of the 4th chromosome is required for the survival of haplo-4 flies [17]. POF binding is
restricted to chromosome 4-specific genes; however, binding necessitates the targeted genes to be under
‘heterochromatic pressure’ and so POF binding is dependent on heterochromatin protein 1 (HP1a) and
the histone methyltransferase Setdb1 [17,20,21]. Taken together, these observations support a model in
which POF originated as an ancestral dosage-compensation system with a stimulatory function and
that this gene regulatory system was trapped on the 4th chromosome once the latter reverted from
being an X-chromosome to an autosome with an accumulation of repeats and heterochromatin.

These genome-wide regulatory systems are remarkably dynamic and there are several examples
of species in which the MSL complex machinery has evolved dosage compensation on new additions,
e.g., neo X-chromosomes [22–25]. In most of the tested species within the Drosophila genus, POF
specifically targets the Muller F-element both in males and females (corresponding to chromosome
4 in D. melanogaster) [1,2,26]. However, there are some species, e.g., D. busckii, in which POF targets
only the male X-chromosome, and some other species, e.g., D. ananassae, in which POF targets the
F-element both in males and females, as well as the male X-chromosome together with the MSL
complex [26,27]. It remains unknown how the dynamics and acquisition of these chromosome-specific
systems can be explained while they retain their high specificity. A growing amount of evidence
suggests that repeated elements, such as from the expansion of microsatellites and transposable
elements, are important in the de novo evolution of binding sites that can assist chromosome-specific
targeting [24,25,28–30]. This argument has strengthened further evidence that in several Drosophila
species both the X-chromosome and the F-element are over-populated by certain repetitive elements [31].
Forming de novo binding sites for chromosome-specific regulatory complexes seems to rely on the use
of repeated elements and certain mutational pathways that depend on the genomic properties of a
given species [24].

The 359 bp 1.688 g/cm3 satellite repeat is one of the four major satellites in D. melanogaster [7].
In contrast to the other three major satellites, the 1.688 is a sequence-wise complex satellite and is,
remarkably, enriched ~50-fold on the X-chromosome compared to its presence on autosomes [32]. This
extreme enrichment on the X-chromosome and the fact that it is barely detected on autosomes suggests
a sex-specific role such as dosage compensation [30,31,33,34]. Evidence of a functional connection
between the 1.688 satellite and dosage compensation has been lacking until recently when a functional
link was demonstrated with the 1.688 satellite targeting both the MSL complex and POF [27,32,35,36].

In addition to the 1.688 repeats scattered on the euchromatic X-chromosome arm, the satellite
is the principle component of the X-chromosome’s heterochromatin [37,38]. Interestingly, lncRNAs
originating from the 1.688 satellite localises to centromeric regions of chromosomes; the depletion
of these lncRNAs causes mitotic defects [39,40]. Furthermore, the deletion of the pericentromeric
multi-mega base pair block of 1.688 repeats on the proximal X-chromosome was originally identified
as the Zygotic hybrid rescue mutation (Zhr1). In a cross of D. melanogaster Zhr1 females and D. simulans
males, the otherwise lethal female hybrid offspring survive [41–43].
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To further our understanding of the role of the 1.688 satellite DNA in chromosome-specific
targeting and regulation, and to test if ancient dosage-compensation mechanisms have some remaining
regulatory impact, we here provide an expression analysis of Pof mutant and 1.688 deletion mutants
(PoX2Df1.688 and Zhr1). We show that loss of Pof decreases not only chromosome 4 expression but
also reduces the X-chromosome expression in males. The 1.688 deletion in Zhr1 does not affect male
dosage-compensation detectably; however, Zhr1 in females causes a stimulatory effect on the X-linked
genes with a strong binding affinity to the MSL complex (genes close to high-affinity sites).

2. Materials and Methods

2.1. Fly Strains

Drosophila melanogaster flies were cultivated and crossed at 25 ◦C in vials containing potato
mash-yeast-agar. The mutant alleles analysed were PofD119, Zhr1, and PoX2Df1.688. Oregon R was used
as the wild type. The PofD119 allele is a deletion of around 1 kb uncovering the Pof coding region [17].
The PoX2Df1.688 allele lacks the seven repeats of the 1.688 satellite downstream of CG1840 [27]. The Zhr1

allele lacks the ~5 Mbp pericentromeric 1.688 satellite block on the X-chromosome [41–43]. The Zhr1

males used in the study carries a non-translocated wild type Y-chromosome. To avoid the risk of 1.688
satellite repeat expansion on the Zhr1 X-chromosome, the genetic background of the mutants and the
wild type were not isogenized.

2.2. Preparation of RNA Library and Sequencing

Adult males and virgin females from each strain were isolated during three fixed time periods
after hatching to decrease potential age differences between samples: 6–8 h (three flies), 14–16 h (four
flies), and 22–24 h (three flies). The adult flies isolated during each period were placed in a 1.5 mL
RNAse-free Eppendorf tube and flash frozen in liquid nitrogen and 0.1 mL TRI Reagent (Ambion) per
fly was immediately added to each tube. The samples were stored at −80 ◦C. Thus, four biological
replicates were isolated for each of the four genotypes and two sexes, totaling 32 samples based on 10
individual flies (6–24 h) per sample. Total RNA was purified with a Direct-zol RNA MicroPrep kit.
The extracted RNAs were quality controlled and quantified using a Fragment Analyzer instrument
(Advanced Analytical) and the reagent (DNF-471-22-SS total RNA 15 nt). The RNA samples with
an RNA integrity number >9 were chosen to make cDNA libraries. The libraries were generated
using the NuGene system (Ovation RNA-Seq System 1–16 for Drosophila- PART NOS. 0350) and
were fragmented (200 bp) with a Covaris E220 Focused Ultrasonicator prior to adapter ligation.
The generated libraries were quality controlled and quantified using the Fragment Analyzer instrument
and reagent (DNF-920-22-DNA 75–15,000 bp). Each library had an exclusive barcode sequence as a
ligated adapter and the libraries were pooled to make multiplex libraries. The samples were sequenced
on a HiSeq 2500 High Output mode (2 × 125 bp Paired-end, Illumina). Sequencing was performed by
the SNP & SEQ Technology Platform in Uppsala. The RNA-seq data reported in this paper have been
deposited in the Gene Expression Omnibus database (GSE136637).

2.3. Raw Data Processing

Adapter removal and quality trimming of raw FASTQ reads for all samples were done using
Trimmomatic [44], version 0.36, with the following settings “ILLUMINACLIP: TruSeq3-PE.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36”. Ribosomal RNAs were filtered using
SortMeRNA [45], version 2.1b, (Bonsai Bioinformatics research group, University of Lille, France),
using default settings and the rRNA databases provided. Trimmed and filtered reads were aligned to
Drosophila melanogaster (D. mel.) reference genome, version 6.13, using the STAR. [46], version 2.5.4b,
aligner with default settings.
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2.4. Genome Read Counting

Read counts were obtained by FeatureCounts [47], version 1.6.3 (Department of Computing and
Information Systems and Department of Mathematics and Statistics, The University of Melbourne,
Australia). Gene read counts were quantified using the D. mel. 6.13 gene annotation file. The annotation
file for repeats was computed using RepeatMasker [48,49], version 4.0.7 (Institute for Systems Biology,
Seattle, WA, USA) with RepBase [50] libraries and settings ‘–nolow –species fly –gff’. The annotation
file for 1.688 satellite sequence blocks was computed by using BLAST [51] and querying 1.688 sequences
(Supplementary File 1) against the D. mel. 6.13 genome. BLAST hits were merged into blocks of
1.688 sequences by merging overlapping and adjacent (20 bp) alignments. A block was output to the
annotation file (Supplementary File 2) if it was at least 269 bp long (~75% of 1.688 satellite sequence
length). The depth of reads for each genomic position as a coverage track was visualised by Integrative
Genomics Viewer (IGV), version 2.4.5 [52]. R, RStudio [53] (RStudio, Inc., Boston, MA, USA), and
Python version 3.6 (The Python Software Foundation Beaverton, OR, USA) were used to process and
analyse read counts.

2.5. Sample Similarity Heatmaps

Sample similarity was determined by subjecting read counts to a regularised logarithm
transformation (RLT) [54], which produces variance stabilizing effects in the dataset, followed by
hierarchical clustering based on Euclidian distance. Sample distances were plotted with the R heatplot.2
function from gplots [55].

2.6. Differential Expression

All differential expression calculations were made with DESeq2 [54] using mutant versus wild
type comparisons. Gene expression analyses were done on the major D. melanogaster chromosomes
2L, 2R, 3L, 3R, 4, and X. Chromosome arms 2L, 2R, 3L, 3R were defined as autosomes (A). In the
DESeq2 analysis, Wald statistics was applied to each gene by a negative binomial generalized linear
model and the genes with Benjamini–Hochberg-adjusted p-values (Padj) < 0.05 were selected for
further downstream analyses. The log2 fold change of significant differentially expressed genes
(Padj ≤ 0.05) per each chromosome were plotted by the ggplot2 R package [56]. The results of Wilcoxon
signed-rank tests were added to the plots by ggsignif (https://github.com/const-ae/ggsignif) and ggpubr
(https://github.com/kassambara/ggpubr) R packages to indicate significantly different chromosomes.
The overlaps within the fly strains for the significant upregulated and downregulated genes were
graphically visualised with the VennDiagram R package [57].

Expression of transposons were analysed in two ways: By quantifying read counts first to each
transposon class, and then to each transposon locus in the genome. DESeq2 was used to create
volcano plots of differentially expressed transposon classes. Dots were coloured in black if considered
significant (Padj ≤ 0.05 and up/downregulation log2 fold change ≥ 1), otherwise they were shown in
grey. Labels are shown for black dots which also have up/downregulation log2 fold change ≥ 2. Labels
were moved manually to avoid text overlaps. Redundant labels, such as for multiple variants of the
same transposon, were removed. Overall differential expression of transposons per chromosome and
locus was performed by importing DESeq2 output data into a Python script. The log2 fold values with
Padj > 0.05 were discarded. All entries which could not be assigned to one of the major chromosomes
were assigned to ‘other’. Python library matplotlib [58] was used to create the box plots.

Differentially expressed 1.688 blocks were plotted in volcano plots with DESeq2. Entries on
the X-chromosome were marked in red colour, otherwise blue. Grey dots are non-significant hits
(Padj > 0.05). Distribution of differentially expressed 1.688 satellite blocks on the X-chromosome was
done by importing DESeq2 output data for each mutant versus wild type pairwise comparison into a
Python script and plotted using matplotlib. The Padj value from DESeq2 was used to classify blocks as
either significant (≤0.05) or non-significant (>0.05), colouring them as black or grey, respectively.

https://github.com/const-ae/ggsignif
https://github.com/kassambara/ggpubr
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2.7. Characterisation of 1.688 Transcripts between CG1840 and Sicily

Total RNA was isolated from five pairs of salivary glands of third instar females and males (Oregon
R), three biological replicates per sex, with TRI Reagent (Ambion) according to the manufacturer’s
protocol. The purified RNA was treated with RNAse-free DNase I (Thermo Fisher Scientific, Waltham,
MA, USA, EN0525) and first strand cDNA was synthesised by RevertAid Reverse Transcriptase
(Thermo Fisher Scientific, Inc., EP0441) using Oligo(dT)18, random hexamer, and gene-specific primers
(sense and antisense), separately. The generated cDNA samples were analysed by PCR using Phusion
Hot Start II DNA Polymerase (Thermo Fisher Scientific, Inc., F549L). The PCR primers used are listed
in Table S1.

2.8. Functional Enrichment Analysis

The significant up- and downregulated genes for each fly strain versus wild type were separately
introduced into FlyMine (http://www.flymine.org) for enrichment analyses following the Gene Ontology,
Berkeley Drosophila Genome Project and Pathways protocol. Overlaps between the enriched lists
created are provided in Tables S2 and S3.

3. Results

3.1. PofD119, Zhr1, and PoX2Df1.688 Mutants Show Chromosome-Specific Differential Expression

To investigate further the relationship between the 1.688 satellite element and chromosome-specific
gene expression, we analysed and compared the genome-wide RNA expression in wild type and PofD119,
Zhr1, and PoX2Df1.688 mutants. For this, we sequenced rRNA depleted RNA from adult males and
females using an Illumina platform (four biological replicates per genotype). The calculated expression
levels thus represent an average of different tissues and cell types. A heatmap of hierarchical clustering
based on Euclidian distances produced from the RLT of the read count data showed that the samples
were clustered perfectly by gender and genotype (Figure 1A). To find the main chromosome-specific
differences between the genotypes, expression ratios for each chromosome were calculated both for the
mutants and wild type (Figure 1B). We have previously shown that POF stimulates gene expression
from the 4th chromosome [11,16,17,59] and as expected, in the PofD119 mutant, the gene expression
on chromosome 4 was significantly decreased in both males and females compared with the other
autosomes (Figure 1B, Figure 2A, and Supplementary Figure S1). Importantly, in PofD119 males,
a significant decrease in average gene expression (7.68%) of the X-chromosome compared to autosomes
was detected (Figure 1B). Of those genes classified as significantly differentially expressed (Padj < 0.05),
275 were downregulated and 153 were upregulated (Figure 3A). Taken together, the results indicate an
effect of the PofD119 mutant on male X-chromosome expression.

It has been suggested that the 1.688 satellite plays a role in chromosome-specific gene regulation,
both in interactions with the dosage-compensating MSL complex [32,35,36] and as an optimal target
for the chromosome 4 specific protein POF [21,27]. We were therefore interested in investigating
any potential chromosome-wide effect on gene expression in the Zhr1 mutant lacking the ~5 Mbp
pericentromeric 1.688 satellite block [41–43]. A significant increase in the expression of X-linked genes
was found in Zhr1 females in which 517 out of 877 significantly altered genes on the X-chromosome were
upregulated (Figure 1B, Figure 3A, and Supplementary Figure S2). Although it has been suggested that
the enrichment of 1.688 satellite sequences on the X-chromosome stabilises the recruitment of the MSL
complex [35,36], the average expression of the X-chromosome in males was not altered, in comparison
with autosomes, upon deletion of the pericentromeric block of 1.688 satellite repeats (Figure 1B).

http://www.flymine.org
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Figure 1. The gender-dependent genome differential analysis shows chromosome-specific alterations 
within genotypes versus wild type. (A) Samples were clustered and depicted in a heatmap based on 
Euclidian distances of gene read count RLT (regularised logarithm transformation). Sex is the major 
sample separator, followed by genotype. (B) Box plots representing expression ratios of whole 
transcripts (except satellites and transposable elements) for individual chromosome arms and 
chromosomes 2 and 3 combined (indicated A) in each mutant versus wild type. The box plots display 
median (line), average (dot), first and third quartiles (box), highest/lowest values within 1.5 × 
interquartile range (whiskers), and outliers. The statistical significance was determined by the 
Wilcoxon signed-rank test and p-values are indicated. 

We have previously shown that the euchromatic 1.688PoX2 element promotes specific targeting of 
POF suggesting that this element retains a targeting function [27]. In wild type, POF exhibits female-
specific targeting to a small number of X-chromosome sites—denoted as PoX sites [21]. This targeting 

Figure 1. The gender-dependent genome differential analysis shows chromosome-specific alterations
within genotypes versus wild type. (A) Samples were clustered and depicted in a heatmap based
on Euclidian distances of gene read count RLT (regularised logarithm transformation). Sex is the
major sample separator, followed by genotype. (B) Box plots representing expression ratios of
whole transcripts (except satellites and transposable elements) for individual chromosome arms
and chromosomes 2 and 3 combined (indicated A) in each mutant versus wild type. The box plots
display median (line), average (dot), first and third quartiles (box), highest/lowest values within 1.5 ×
interquartile range (whiskers), and outliers. The statistical significance was determined by the Wilcoxon
signed-rank test and p-values are indicated.
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Figure 2. Feature analysis of significant differentially expressed genes on chromosome 4. (A) 
Differentially expressed genes on the 4th chromosome. N indicates the number of all altered genes, ↑ 
indicates the number of significant upregulated genes and ↓ indicates the number of significant 
downregulated genes. The grey dots refer to non-significant changes (Padj > 0.05) and black dots 
indicate significant changes (Padj < 0.05). (B) Comparison of expression ratios of housekeeping (H) and 
non-housekeeping (N_H) genes. (C) Comparison of expression ratios of coding (C) and non-coding 
genes (N_C). (D) Comparison of expression ratios of genes binned according to transcript length (bp) 
in which the binned transcript lengths represent the ranges 0–1500, 1500–2500, 2500–5000, 5000–
10,000, and >10,000 bp, respectively. Only significant altered genes (Padj < 0.05) were included in B–D. 
The box plots display median (line), average (dot), first and third quartiles (box), highest/lowest 

Figure 2. Feature analysis of significant differentially expressed genes on chromosome 4.
(A) Differentially expressed genes on the 4th chromosome. N indicates the number of all altered genes,
↑ indicates the number of significant upregulated genes and ↓ indicates the number of significant
downregulated genes. The grey dots refer to non-significant changes (Padj > 0.05) and black dots
indicate significant changes (Padj < 0.05). (B) Comparison of expression ratios of housekeeping (H) and
non-housekeeping (N_H) genes. (C) Comparison of expression ratios of coding (C) and non-coding
genes (N_C). (D) Comparison of expression ratios of genes binned according to transcript length (bp)
in which the binned transcript lengths represent the ranges 0–1500, 1500–2500, 2500–5000, 5000–10,000,
and >10,000 bp, respectively. Only significant altered genes (Padj < 0.05) were included in (B–D).
The box plots display median (line), average (dot), first and third quartiles (box), highest/lowest values
within 1.5 × interquartile range (whiskers), and outliers. The statistical significance was determined by
the Wilcoxon signed-rank test and p-values are indicated.
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changes (Padj < 0.05). (B) Comparison of expression ratios of housekeeping (H) and non-housekeeping 
(N_H) genes. (C) Comparison of expression ratios of coding (C) and non-coding genes (N_C). (D) 
Comparison of expression ratios with genes binned according to transcript length (bp) in which the 
binned transcript lengths represent the ranges 0–1500, 1500–2500, 2500–5000, 5000–10,000, and >10,000 
bp, respectively. Only significant altered genes (Padj < 0.05) were included in B–D. The box plots 
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Figure 3. Feature analysis of significant differentially expressed genes on the X-chromosome.
(A) Differentially expressed genes on the X-chromosome. N indicates the number of all genes, ↑
indicates the number of significant upregulated genes and ↓ indicates the number of significant
downregulated genes. The grey dots refer to the non-significant changes (Padj > 0.05) and black dots
indicate significant changes (Padj < 0.05). (B) Comparison of expression ratios of housekeeping (H) and
non-housekeeping (N_H) genes. (C) Comparison of expression ratios of coding (C) and non-coding
genes (N_C). (D) Comparison of expression ratios with genes binned according to transcript length (bp)
in which the binned transcript lengths represent the ranges 0–1500, 1500–2500, 2500–5000, 5000–10,000,
and >10,000 bp, respectively. Only significant altered genes (Padj < 0.05) were included in (B–D).
The box plots display median (line), average (dot), first and third quartiles (box), highest/lowest values
within 1.5 × interquartile range (whiskers), and outliers. The statistical significance was determined by
the Wilcoxon signed-rank test and p-values are indicated.
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We have previously shown that the euchromatic 1.688PoX2 element promotes specific targeting of POF
suggesting that this element retains a targeting function [27]. In wild type, POF exhibits female-specific
targeting to a small number of X-chromosome sites—denoted as PoX sites [21]. This targeting is
abolished in the PoX2Df1.688 mutant females [27]. Therefore, we included the PoX2Df1.688 mutant that
lacks this specific 1.688 satellite repeat on the X-chromosome in our analysis. In PoX2Df1.688 mutant
females we observed a small but significant increase in gene expression, both on the X-chromosome
and on the 4th chromosome, in comparison with autosomes (Figure 1B, Figure 3, and Supplementary,
Figures S1 and S2). However, unlike the pericentromeric 1.688 satellite block, which has no detectable
function in male X-chromosome dosage compensation, there was a small but significant reduction in
expression of X-linked genes in male PoX2Df1.688 (Figures 1B and 3A). Notably, although the differences
in X-expression observed in female and male PoX2Df1.688 mutants are significant, these differences are
not accompanied by more genes (in number) being up- or downregulated, respectively (Figure 3A).

We conclude that the loss of POF causes a significant decrease of gene expression on the 4th
chromosome in males and females and, in addition, a significant decrease in X-chromosome expression
in males. Removing the pericentromeric block of 1.688 satellites causes a significant increase of
X-chromosome expression in females. Removing the specific short arrays of 1.688 repeats at the PoX2
site causes a slight increase in the expression of the X-linked genes, as well as a small but significant
increase in the expression of the 4th chromosome in females.

3.2. POF Stimulates Expression on the 4th Chromosome Preferentially on Short, Non-Coding, and
Differentially Expressed Genes

We have previously delineated the relationship between POF and HP1a and the repressive role of
HP1a on chromosome 4 genes [16,17,19,59]. We have shown that HP1a preferentially represses long
and non-ubiquitously expressed genes along the 4th chromosome. We were therefore interested in
studying the more detailed activities of POF as an HP1a concomitant on the 4th chromosome. Dividing
the genes on the 4th chromosome into housekeeping and non-housekeeping genes confirms that loss
of POF mainly affects non-housekeeping genes (Figure 2B) [11,59]. Next, we divided the genes on the
4th chromosome into either coding or non-coding and compared these two groups. Interestingly, in
the absence of POF, the expression of non-coding genes in males shows a stronger reduction compared
to coding genes (Figure 2C).

We have previously shown that a loss of HP1a affects gene expression differently depending
on the gene length [59]. We therefore investigated whether differential expression of chromosome 4
genes in the PofD119 mutant correlates with transcript length. Short transcripts (<1500 bp) showed
stronger reduction in expression compared to longer transcripts (Figure 2D). Taken together, our results
confirm that POF stimulates the expression of chromosome 4 genes, and preferentially of differentially
expressed genes. The effects of the PofD119 mutant on the 4th chromosome is similar in males and
females. Short transcripts and non-coding genes show a more dramatic decrease in the male PofD119

mutant. Notably, these two classes are not mutually exclusive.

3.3. Relationship between X-Linked Transcriptional Alterations and MSL Complex Mediated
Dosage-Compensation

Since loss of POF causes a stronger decrease of differentially expressed genes, short genes, and
non-coding genes on the 4th chromosome, we also classified the X-chromosome genes according to
these features and calculated the fold changes (Figure 3). Significant differences were observed in the
size of effects when genes were classified as coding or non-coding, but the observed differences were
small. We conclude that the small X-chromosome effects observed in these mutants (Figure 1B) are not
clearly linked to some of these gene features.

Next, we asked whether relationships or correlations exist between our observed X-chromosome
effects and the MSL complex dosage-compensation system. To characterise the significant X-chromosome
effects observed in the mutants, all X-chromosome genes were divided into four bins based on their
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binding strength with the MSL complex [60,61]. Thus, bin 1 included unbound and weakly bound
genes, while bin 4 included genes highly enriched in MSL protein bindings (Supplementary File 3).
Genes on the autosomes (2L, 2R, 3L, and 3R) with very low enrichments for the MSL complex were
considered as a control for the comparison (Figure 4A). In PofD119 females, we observed a descending
order of gene expression ratios from bin 1 to bin 4. However, only the genes in bin 2 differed
significantly from genes on the autosomes. Interestingly, in PofD119 males, the X-chromosome genes
with stronger MSL complex binding (bins 3 and 4) were mainly responsible for the observed decrease
in X-chromosome expression (Figures 1B and 4A,B).Cells 2020, 9, 323 12 of 25 
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their MSL binding strength (1 lowest to 4 highest). ‘A’ indicates the autosome chromosome arms
combined (2L, 2R, 3L, and 3R). The MSL binding strengths from weakest to highest are shown by light
grey to black, gradually. The box plots display median (line), average (dot), first and third quartiles
(box), highest/lowest values within 1.5 × interquartile range (whiskers), and outliers. The statistical
significance was determined by Wilcoxon signed-rank test and p-values are indicated. (B) Venn
diagrams showing the number of downregulated genes on the X-chromosome in each MSL binding bin
in PofD119-wt males (left) and upregulated genes in Zhr1–wt females (right). (C) Expression analysis
of the individual genes involved in the X-linked dosage compensation in the mutants versus wild
type. The grey standard error bars refer to the non-significant changes (Padj > 0.05) and black indicate
significant changes (Padj < 0.05).

The increased expression of the female X-chromosome in Zhr1 seems to be caused by an increased
expression of those genes that in males show strong binding of the MSL complex, and thus have high
expression in wild type (bins 3 and 4) (Figures 1B and 4A,B). In Zhr1 females the number of upregulated
genes in bin 4 was higher than that of other genotypes versus wild type; these genes are also in closer
proximity to the MSL high-affinity sites HAS and PionX (Supplementary Figure S3A,B).

In PoX2Df1.688 females, we observed a significant up regulation of genes in bin 1. Notably, bin
1 consists of genes with a low expression level [15]. These results therefore suggest a de-repression
of low expressed X-linked genes in PoX2Df1.688 females. In PoX2Df1.688 males, although there was
a descending order of average expression ratios from bin 1 to bin 4; only the genes in bin 3 were
significantly downregulated compared with the autosomes (Figure 4A).

Following the significant alterations of the genes close to high-affinity sites for the MSL complex in
male PofD119 and female Zhr1 mutants, we analysed the expression of some individual genes involved
in X-linked dosage-compensation [4,13,62] in the mutants versus wild type (Figure 4C). The zinc finger
protein CLAMP is a newly identified protein that cooperates with MSL2 in the binding of the MSL
complex to high affinity sites [62–65]. Interestingly, although the expression of roX1 and roX2 was
increased in PofD119 males, mof was significantly downregulated. Although speculative, this decrease
may compromise the H4K16 acetylation and result in a decreased X-chromosome expression. In Zhr1

females, Clamp, mof, msl-1, and msl-3 were significantly overexpressed (Figure 4C). It remains to be
tested if these observed increases in expression have a functional role in the increased X-chromosome
expression observed in Zhr1 females.

3.4. The Zhr1 Mutant Reduces the Expression of 1.688 Satellites in Trans

In our distance analysis of gene expression profiles, the samples were robustly separated firstly by
gender and secondly by genotype (Figure 1A). To test the RNA expression from 1.688 satellite repeats,
we repeated the distance analysis but only included tests for expression of all blocks of 1.688 repeats
throughout the genome. In this analysis, the Zhr1 mutant genotype clearly outgroups. In fact, in the
expression of 1.688 blocks, the Zhr1 mutant outgroups from the other genotypes independent of sex,
i.e., the differences between the Zhr1 mutants and the other genotypes, were larger than the differences
between males and females (Figure 5A). These results suggest that the lack of the pericentromeric
1.688 satellite repeats strongly affects the expression of the remaining 1.688 blocks as well (Figure 5A).
To test this potential trans-effect of 1.688 expression, we analysed all separable 1.688 blocks individually
(see Materials and Methods). The results showed that the lack of the pericentromeric 1.688 strongly
reduces the expression of the remaining 1.688 blocks (Figure 5B). This reduction was mainly seen on
1.688 satellites that are not annotated on the X-chromosome (Figure 5B). In PofD119 females and males,
we observe an increased expression of X-linked 1.688 satellites (Figure 5B). Our results thus confirm cis-
and trans- activities of X-linked satellites and are consistent with other reports [39].
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Figure 5. Satellites analysis in the mutants versus wild type. (A) Heatmap of Euclidian distances of RLT
1.688 satellite block read counts clusters the samples of Zhr1 separated from PofD119 and PoX2Df1.688.
(B) Satellite blocks on the X-chromosome are denoted in red, and satellite block on non-X-chromosomes
are blue. Grey dots are non-significant hits (Padj > 0.05). The largest difference of satellite block
expression on autosomal and unclassified chromosomes is found in Zhr1.

3.5. Expression Analyses of X-Linked 1.688 Satellites

As the 1.688 satellite blocks could be individually assigned, we specifically analysed the
X-chromosome in which (in contrast to the autosomes) a large number of 1.688 blocks are distributed
along the euchromatic arm [27,30,33]. In PofD119 females and males, we observed an increased
expression of 1.688 satellite blocks on the X-chromosome; in particular a set of blocks located at
coordinate 12.79 Mbp (which corresponds to 3.19 kbp of the fourth intron in the Pde9 gene) (Figure 6A
and Supplementary File 2). Notably, these blocks are also upregulated in PoX2Df1.688 females and
males. Note that PoX2Df1.688 was generated by a CRISPR deleted 1.688 block at region 11.9 Mbp. A set
of downregulated 1.688 blocks in the Zhr1 mutant was concentrated at 10.39 Mbp (which corresponds
to 1.01 kbp of the second intron in the flw gene) (Figure 6A). Another downregulated 1.688 block in
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Zhr1 females corresponds to 767 bp of the second intron of CG12065 at 8.5 Mbp. This 1.688 block is
located 100 kbp downstream of the Chorion protein family genes at cytological band 7F1 (Cp7Fa, Cp7Fb,
Cp7Fc, Cp36, and Cp38).Cells 2020, 9, 323 15 of 25 
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the PoX2 locus. Since the 1.688 satellite is a multi-copy repeat with variations in sequence 
composition, we tested our stringency setting by mapping the reads from the different conditions to 
the genome assembly. We were encouraged to note that, in the sequence data from PoX2Df1.688 
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Figure 6. The 1.688 satellite expression analysis across the X-chromosome and at the PoX2 locus.
(A) Differential expression and X-chromosome distribution of 1.688 satellite blocks. Dots are coloured
black if significant (Padj ≤ 0.05) and grey otherwise. The 1.688PoX2 locus (indicated) is located at
approximately 12 Mbp. (B) An Integrative Genomics Viewer screenshot with aligned reads at the PoX2
locus in the different genotypes. Note that no reads map to the 1.688 region between CG1840 and sicily
in PoX2Df1.688 mutant females and males. (C) Reverse transcription PCR using the indicated primer
combinations confirm the short read-through and long non-coding RNA transcription from the 1.688
satellite at the PoX2 site in wild type. In the gel electrophoresis panel, F and M indicate females and
males, respectively.
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Next, we investigated whether we could specifically detect and identify RNAs generated from the
PoX2 locus. Since the 1.688 satellite is a multi-copy repeat with variations in sequence composition,
we tested our stringency setting by mapping the reads from the different conditions to the genome
assembly. We were encouraged to note that, in the sequence data from PoX2Df1.688 mutants, no reads
were mapped to the region downstream of CG1840 (Figure 6B). This shows that the stringency setting
we used can separate the 1.688PoX2 sequence variants from other 1.688 sequence variants. Therefore,
the RNA-seq data confirm the existence of 1.688 transcripts that originate from the PoX2 site both in
wild type males and females (Figure 6B).

In our previous work to characterise PoX2 [27], we detected a read-through transcript starting
from the CG1840 gene and progressing into the downstream 1.688 satellite repeat in wild type (i.e., the
1.688 repeat deleted in PoX2Df1.688). We therefore further surveyed the transcripts from the intergenic
1.688 satellite block in the PoX2 downstream of CG1840. Different primer sets spanning 1.688PoX2

were used (Table S1) in reverse transcription PCR reactions in which total RNAs were extracted from
the salivary gland cells of 3rd instar larvae; the transcripts were detected from the 1.688 satellite
at the PoX2 site (Figure 6C). The identified transcripts included a long non-coding RNA transcript
(amplified with F3 and R1). We conclude that the 1.688 repeat downstream of CG1840 is transcribed
including a full-length read-through generating a 1.688 lncRNA. It has been reported that both strands
of the 1.688 satellite DNA are transcribed in ovaries to provide a double-stranded RNA pool that may
potentially lead to an RNAi-dependent regulation to maintain the silenced state of centromeric and
pericentromeric 1.688 repeats [66]. Therefore, we tested whether the 1.688 repeat at PoX2 is transcribed
from both strands. Sense and anti-sense synthesised cDNAs were separately used as templates in
reverse transcription PCR. The results showed that the 1.688PoX2 satellite region is only detected in
sense direction in the salivary glands of wild type female larvae, while 1.688PoX2 transcripts were
found in both directions in males (Figure 6C).

3.6. Transposon de-Repression in Zhr1 Mutant

In several insect species, transposons consist of a constituent of satellite DNA [67]. Therefore, we
analysed the differential expression of transposons when a multi-mega base pair satellite block was
removed (as in Zhr1) or upon loss of its interacting regulatory systems (as in PofD119 and PoX2Df1.688).
A sample distance analysis of RLT read counts of transposons (genome-wide) showed that the samples
clustered primarily by gender and next by genotype (Figure 7A). In both females and males, PoX2Df1.688

and PofD119 mutants clustered closely together in a further relationship with wild type, while Zhr1

mutants were clustered over a greater distance (Figure 7A). We conclude that the mega base pair block
deletion in Zhr1 causes a stronger differential expression of transposon expression compared with
PofD119 or PoX2Df1.688 (Figure 7A). The identity and fold change of significantly differentially expressed
transposons are shown in Figure 7B and the chromosomal locations are summarised in Supplementary
Figure S4.
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Figure 7. Genome-wide transposon analysis in mutants versus wild type. (A) Sample distance analysis
based on RLT read counts of transposons cluster samples by sex and genotype. (B) Volcano plots of
differentially expressed transposons. Transposons were predominantly de-repressed in Zhr1 mutants,
especially in females. Dots are coloured in black if significant (Padj ≤ 0.05 and up/downregulation log2

fold change ≥ 1), otherwise grey. Labels are shown for black dots which also have up/downregulation
log2 fold change ≥ 2. Labels were moved manually to avoid text overlaps and redundant labels
were removed.

3.7. Female-Biased Genes Related to Eggshell Formation Show Increased Expression in Zhr1 Mutant Females

We have previously hypothesized that the 1.688 satellite functioned in an ancient dosage
compensation system involving POF targeting to the X-chromosome [27]. Therefore, in trying
to find gene regulatory networks with genes and transposons that responded similarly in the different
genotypes, we used Venn diagrams to compare all significant differentially up- and downregulated
genes and transposons from each mutant. The highest numbers of differentially expressed genes in the
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mutants versus wild type were observed in female Zhr1 and male PofD119, respectively (Figure 8A).
A high degree of overlapping upregulated/downregulated transcripts in females was found between
Zhr1 and PoX2Df1.688 mutants (Figure 8A). In males, the highest number of co-upregulated transcripts
was found between Zhr1 and PoX2Df1.688, while PofD119 and Zhr1 mutants showed the most common
downregulated transcripts (Figure 8A).
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Figure 8. Co-regulated and most variable genes and transposons in the mutants versus wild type.
(A) Venn diagram of co-regulated genes and transposons in the mutants versus wild type. (B) Heatmaps
of the most variable genes and transposons in the genotypes (top 50) shows that several upregulated
genes in Zhr1 females are involved in eggshell formation (in bold, indicated by *).
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A Gene Ontology enrichment analysis (excluding transposons) showed that most co-upregulated
genes in Zhr1 and PoX2Df1.688 female mutants are involved in nucleic acid metabolic process and female
gamete generation (Table S2), while the co-downregulated genes in these two mutants were mainly
involved in developmental processes (Table S3). Notably, the gene families of Chorion protein and
Vitelline membrane were found to have increased expression in Zhr1 females and are among the top
50 most variable transcripts in our analysis (Figure 8B). The main variable transposons, e.g., G6 and
Jockey-1 were also found in Zhr1 in both females and males (Figure 8B).

We were intrigued by the increased expression in Zhr1 females of a set of genes encoding Chorion
proteins (Cp16, Cp19, Cp18, Cp15, Cp7Fc, Cp7Fb, Cp38, and Cp36), vitelline membrane proteins (Vm26Aa,
Vm34Ca, psd, Vml, Vm26Ab, Vm32E), and other genes known to be involved in eggshell formation
(dec-1, CG14309, CG4009, and CG15570) [68,69] (Figure 8B). The results suggest that the loss of the
pericentromeric 1.688 satellite block in Zhr1 affects eggshell formation.

4. Discussion

Chromosome targeting and regulatory mechanisms provide a good model to aid our understanding
of the coordinated regulation of genes on an entire chromosome or even larger genomic regions.
Chromosome-specific mechanisms are commonly recognised on sex-chromosomes as a means to
restore the expression output between the heterogametic and homogametic sex. In fruit flies, two
chromosome-wide systems have been characterised: The MSL complex dosage-compensation system
that primarily acts on the male X-chromosome and, the system that we previously discovered, POF—the
chromosome-specific regulation of genes located on the 4th chromosome, which is the first example of
a chromosome-wide, autosome-specific gene regulatory system [16–18]. We have previously proposed
that POF functioned in an ancient dosage-compensation system [2,26]. This hypothesis is supported
by the later finding that the 4th chromosome was ancestrally an X-chromosome that reverted to an
autosome [8,9] and our finding that in D. ananassae the POF protein is in close proximity to MSL3, i.e.,
POF is likely to be part of the MSL complex in D. ananassae [27]. Taken together, these findings support
a hypothesis of POF having an ancient function in sex-chromosome dosage-compensation and that
this function remains in some species.

How targeting of one specific chromosome evolves is still not understood; but repeated sequences
in the form of satellites and transposable elements are considered to facilitate the evolution of
chromosome-specific targeting [25,35,36]. We recently showed that a short array of 1.688 satellite
repeats is essential to recruit the protein POF to a POF-high-affinity-site on the X-chromosome (PoX2),
as well as to various transgenic constructs. Importantly, the 1.688 element has, for a long time,
been considered in X-chromosome specific functions such as dosage compensation [30,31,33,34].
Experimental support for such a functional connection has been lacking until recently when the 1.688
satellite was functionally linked to both targeting of the MSL complex and targeting of POF [27,32,35,36].
Considering the rapid evolution and adaptation of regulatory mechanisms such as dosage compensation
we hypothesised that POF and/or 1.688 may still show traces of dosage-compensation functions and
we here tested this hypothesis using a transcriptome analysis. It is known that chromosome-wide
regulatory systems act with different effect, the size of the effect depending on gene features such
as housekeeping versus non-housekeeping genes, gene length, distance to high-affinity sites, and
enrichment levels [11,15,59,61]. We therefore included these classifications in our analyses to increase
the sensitivity.

4.1. Chromosome Specific Differential Expression in Male PofD119 and Female Zhr1

As previously shown for other developmental stages, loss of Pof caused a significant reduction
in expression output of genes from the 4th chromosome both in females and males. The decrease is
more pronounced on differentially expressed genes as compared to housekeeping genes and also on
non-coding genes as compared to coding genes. Note that these two criteria are not mutually exclusive.
The results are consistent with the known stimulatory effect of POF on chromosome 4 [11,16,17,59].
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In addition to the expected decrease on the 4th chromosome in PofD119 we observed a weak (8%) but
significant reduction of X-chromosome expression in males. The observed reduction may be a remnant
of an ancient function of POF in X-chromosome dosage-compensations. Interestingly, this reduction is
without obvious phenotypic effects and we have recently suggested that tolerance to mis-expression is
a common outcome in the evolution of sex-chromosomes [15]. The possibility that this is a remnant
of a dosage-compensation function is supported by a more pronounced decrease of genes with high
levels of MSL bindings, and genes located close to MSL high-affinity sites. Based on the current models
of acquiring dosage-compensation [25,28] we assume that these genes acquire dosage-compensation
early as an X-chromosome form. It has also been shown that full dosage-compensation is established
earlier in the development of genes close to high-affinity sites [70].

Considering that the 1.688 satellite is ~50 times enriched on the X-chromosome compared to
autosomes [30–32,34] it is tempting to assume a function (current or ancient) in dosage compensation.
It has been shown that expressing siRNA from some specific variants of 1.688, increased MSL complex
targeting and male viability in a genotype where both of these are compromised, i.e., roX1 and
roX2 [35,36]. These results suggest an involvement of 1.688 satellites in dosage compensation. In the
current study we tested if altered 1.688 content cause X-chromosome specific expression alterations
using two genotypes: Zhr1 with a deletion of almost the entire pericentromeric multi Mbp block of 1.688
elements; and PoX2Df1.688, which deletes an X-linked 1.688 block with remaining targeting functions
of POF [27]. We did not observe any convincing decrease of male X-expression in these genotypes.
However, in Zhr1 females we observed a significant increase in X-chromosome expression. In support
of this increase being a remnant of a dosage-compensation function, it is caused by an increase in
the expression of genes with a high enrichment of the MSL complex in males. Why the loss of the
pericentromeric 1.688 satellite block should lead to an increased expression in females, and whether that
observation is connected to the increased expression of genes encoding proteins normally involved in
male-specific dosage-compensation, remains to be tested. Notably, it also remains to be clarified if the
reduction of X-chromosome expression in PofD119 males and the increased X-chromosome expression
in Zhr1 females are caused by a differential expression in most or all cell types or by a cell specific
stronger effect.

4.2. Loss of the Pericentromeric 1.688 Satellite Region on the X-Chromosome Reduces Satellite Expression in
Cis and Trans, and Induces Transposon de-Repression

A growing amount of evidence suggests that regulation, and in particular silencing, of HP1a
enriched heterochromatin is important for proper development and co-ordinated gene expression.
Nevertheless, flies are highly tolerant to dramatic changes in amounts of heterochromatic DNA.
An example is the tolerance to loss of Y-chromosomes in males (X/0), as well as tolerance to additional
Y-chromosomes both in males and females (X/Y/Y, X/X/Y, and X/Y/Y) [7]. The same is true for Zhr1.
Although the X-chromosome in this mutant has lost >5 Mbp of pericentromeric 1.688 repeats, and thus
a significant portion of the X-chromosome [7,71], it causes no obvious change in the phenotype. At the
level of expression output, our results suggest that the 1.688 deletion in Zhr1 causes a strong reduction
of 1.688 expression in cis, as expected, but also in trans. The 1.688 sequence variants that show reduced
expression in Zhr1 are typically annotated to ‘unassigned chromosome’. We cannot exclude that some
of these variants in fact originate from the Zhr repeated region, however, the results show that Zhr1

does not induce de-repression of 1.688 variants in trans. In contrast to the reduced 1.688 expression
in trans, we observed a de-repression of transposon expression in the Zhr1 mutants. The elements
TART-A, G6, TAHRE, and Gypsy were significantly de-repressed in both males and females.

In our previous study, we found that the removal of the 1.688 repeat at the PoX2 locus, i.e.,
PoX2Df1.688, caused the loss of POF targeting also in trans, at a separate locus, PoX1 [27]. In the current
study, we identified 1.688 transcripts generated from the PoX2 locus including a short read-through
from CG1840 and a separate long non-coding RNA transcript. Both sense and antisense transcripts
from 1.688PoX2 in males were detected, which may indicate a double-stranded RNA pool that may



Cells 2020, 9, 323 19 of 22

potentially lead to siRNA formation and enhanced recruitment of the MSL complex to the chromosome;
this would be in agreement with previously reported proposals [35].

4.3. The 1.688 Satellite Modulates Chorion Family Expression in Female D. melanogaster

Crosses between female D. simulans and male D. melanogaster are lethal to the female progeny
and as such represent one of the very few exceptions to Haldane’s rule [72]. The lethality to hybrid
daughters is mainly caused by incompatible pericentromeric loci comprising the Zhr 1.688 satellite
repeats in D. melanogaster, which leads to failure of chromosome segregation during embryonic
mitosis [41]. A possible mechanism is provided by the discovery of a long, non-coding RNA, produced
from the Zhr locus, which has been shown to be localised at centromeric regions and depletion of
which causes mitotic defects [39]. In our analysis of differentially expressed genes we found that those
genes known to be involved in eggshell formation are upregulated in female Zhr1. This is of interest
considering the significant differences in the ultrastructure of the chorion between D. simulans females
and D. melanogaster males [73]. They showed that the chorion ridges in eggshells were thicker in
D. simulans than in D. melanogaster. Considering the lack of the pericentromeric 1.688 satellite repeats
on the X-chromosome, both in female D. simulans and in the D. melanogaster Zhr1 mutant, we speculate
that the Zhr locus directly or indirectly modulates genes involved in eggshell formation.
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