Angiotensin-II-evoked Ca²⁺ entry in murine cardiac fibroblasts does not depend on TRPC channels Juan E. Camacho Londoño^{1,2,†*}, André Marx^{1,†}, Axel E. Kraft^{1,2}, Alexander Schürger^{1,2}, Christin Richter¹, Alexander Dietrich², Peter Lipp⁴, Lutz Birnbaumer⁵ and Marc Freichel^{1,2,*} - ¹Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, INF 366, 69120 Heidelberg, Germany. - ²DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany. - ³Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität, 80336 München, Germany. - ⁴Medical Faculty, Centre for Molecular Signalling (PZMS), Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany. - ⁵Laboratory of Neurobiology, NIEHS, North Carolina, USA and Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina. - *Correspondence: juan.londono@pharma.uni-heidelberg.de and marc.freichel@pharma.uni-heidelberg.de Graphical Abstract: Angiotensin-II-evoked Ca²⁺ entry in murine cardiac fibroblasts (CFs) does not depend on TRPC channels. - Figure S1. AngII- and Thrombin- induced Ca²⁺ transients in TRPC1/C4-DKO cardiac fibroblasts. - Figure S2. AngII-induced Ca^{2+} release and Ca^{2+} entry in the absence of TRPC3/C6 or after TGF- β pre-treatment. - Figure S3. AngII-induced Ca²⁺ release and Ca²⁺ entry in cardiac fibroblasts after acute blockage with the TRPC blocker T320722. - Figure S4. AngII-induced Ca²⁺ release and Ca²⁺ entry in cardiac fibroblasts in the absence of all seven TRPC proteins. - Table S1. Primers used for qPCR analysis of *Trpc* transcripts. - Table S2. Immunocytochemistry conditions used for characterization and analysis of cardiac fibroblasts. [†]These authors contributed equally to this work. Graphical Abstract: Angiotensin-II-evoked Ca²⁺ entry in murine cardiac fibroblasts (CFs) does not depend on TRPC channels. Using genetic and pharmacological tools we evaluated the Angiotensin II (AngII)-induced Ca²⁺ release and Ca²⁺ entry. We concluded: 1. that complete deletion of all 7 TRPC proteins does not alter this acute response to AngII, and 2. that GSK7975A, a CRAC blocker, was able to abolish the AngII-induced Ca²⁺ entry in CFs. Figure S1. AngII- and Thrombin- induced Ca^{2+} transients in TRPC1/C4-DKO cardiac fibroblasts. (A) Analysis of α-smooth muscle actin after 6 days in culture from WT cardiac fibroblasts cultivated at (A) Analysis of α -smooth muscle actin after 6 days in culture from WT cardiac fibroblasts cultivated at low and high density conditions. (B) AngII-induced Ca²⁺ transients in primary cardiac fibroblasts from WT (black) and TRPC1/C4-DKO (red) mice. Ca²⁺ transients were measured in the presence of 2 mM extracellular Ca²⁺. Left panels: Original traces and right panels: Mean values of three independent preparations (hearts). (C) Ca²⁺ transients in WT fibroblasts induced by different concentrations of Thrombin. (D) Thrombin-induced Ca²⁺ transients in primary cardiac fibroblasts from WT (black) and TRPC1/C4-DKO (red) mice. Ca²⁺ transients were measured in the in the presence of 2 mM extracellular Ca²⁺. n= number of independent preparations (hearts). All cells were cultured at high density. Figure S2. AngII-induced Ca²⁺ release and Ca²⁺ entry in the absence of TRPC3/C6 or after TGF- β pre-treatment. (A) AngII-induced Ca²⁺ release and Ca²⁺ entry in primary CFs from WT (black) and TRPC3/C6-DKO (red) mice. Ca²⁺ release was measured in the absence of extracellular Ca²⁺ (300 μM EGTA) and Ca²⁺ entry was monitored in the presence of 2 mM extracellular Ca²⁺. Left panels: Original traces and right panels: Mean values from three independent preparations (hearts). (B) Measurements performed as in (A) but in cells pre-incubated (10 min) with the TRPC3/C6/C7 antagonist SAR7334 (1 μM). (C) AngII-induced Ca²⁺ release and Ca²⁺ entry in primary CFs from WT mice cultivated in the presence of 10 ng/ml TGF- β (green) or under control conditions (black). Left panels: Original traces from Ca²⁺ measurements and right panels: Mean values from 3 independent preparations. n= number of independent preparations (hearts). All cells were analyzed 6 days after isolation and were cultured at high density. *p< 0.05 according to the unpaired Student's t-test. Figure S3. AngII-induced Ca²⁺ release and Ca²⁺ entry in cardiac fibroblasts after acute blockage with the TRPC blocker T320722. (A) AngII-induced Ca²⁺ release and Ca²⁺ entry in primary cardiac fibroblasts from WT mice pre-incubated (10 min) with 10 μ M of the TRPC4/C5 blocker T320722. Ca²⁺ release was measured in the absence of extracellular Ca²⁺ (300 μ M EGTA) and Ca²⁺ entry was monitored in the presence of 2 mM extracellular Ca²⁺. Left panels: Original traces and right panels: Mean values of three independent preparations (hearts); cells were analyzed after 4 (A) or 5 days (B) of isolation and were cultured at high density. n= number of independent preparations (hearts). *p< 0.05 according to the unpaired Student's t-test. Figure S4. AngII-induced Ca²⁺ release and Ca²⁺ entry in cardiac fibroblasts in the absence of all seven TRPC proteins. (A) AngII- and (B) thrombin-induced Ca²⁺ transients in primary CFs from WT (black) and TRPC-hepta (*Trpc1*/2/3/4/5/6/7-/-) KO (red) mice. Ca²⁺ transients were measured in the presence of 2 mM extracellular Ca²⁺. Left panels: Original traces and right panels: Mean values of three independent preparations (hearts). (C) AngII-induced Ca²⁺ release and Ca²⁺ entry in primary CFs from WT (black) and TRPC-hepta KO (red) mice. Ca²⁺ release was measured in the absence of extracellular Ca²⁺ (300 μM EGTA) and Ca²⁺ entry was monitored in the in the presence of 2 mM extracellular Ca²⁺. Left panels: Original traces and right panels: Mean values of three independent preparations. n= number of independent preparations (hearts). All cells were analyzed 6 days after isolation and were cultured at high density. **Table S1. Primers used for qPCR analysis of** *Trpc* **transcripts.** Primers sequences and probe number for from the Universal Probe Library (Roche). | Primer name | Primer sequence | Probe number | | |-------------|--------------------------|--------------|--| | TRPC1 fw | ctgaaggatgtgcgagaggt | 63 | | | TRPC1 rev | cacgccagcaagaaaagc | | | | TRPC2sv1 fw | gtgtggatcgagggcttg | 31 | | | TRPC2sv1 fw | acaggatgaccacgtccag | | | | TRPC2sv2 fw | tccttgtcttcctcggagtc | 52 | | | TRPC2sv2 fw | ttcacagatagggcactggac | | | | TRPC3 fw | ggtgaactgaaagaaatcaagca | 19 | | | TRPC3 rev | cgtcgcttggctcttatctt | | | | TRPC4 fw | aaacttttggttcagaaaggtgtc | 104 | | | TRPC4 rev | acagttacagcggacctcgt | | | | TRPC5 fw | ggcataaaagtcatcttgctgaa | 10 | | | TRPC5rev | gctaagcagaagttccacagc | | | | TRPC6 fw | aggcaaaaggttagcgacaa | 20 | | | TRPC6 rev | ggcataaaagtcatcttgctgaa | | | | TRPC7 fw | aatggcgatgtgaacttgc | 77 | | | TRPC7 rev | gtttgattcggctcagacttg | | | | H3F3A fw | gccatctttcaattgtgttcg | 19 | | | H3F3A rev | agccatggtaaggacacctc | | | | AIP fw | accagtcatccaccaagagg | 66 | | | AIP rev | aggcgatggcgtcatagta | | | | CXCC1 fw | tagtgccgaccgctgact | 26 | | | CXCC1 rev | ggcctctcccctaactgaat | | | Fw: Forward, rev: reverse. Table S2. Immunocytochemistry conditions used for characterization and analysis of cardiac fibroblasts. | | anti-P4HB | anti-DDR2 | anti-α-actinin | anti-α-SMA | anti-CD31 | |---|---|---|---|--|--| | positive control | fibroblasts | fibroblasts | cardiomyocytes | iSMC | MAEC | | acetone permeabilization | yes | yes | yes | yes | no | | blocking | 1 % BSA in PBST | 1 % BSA in PBS | | concentration | 1 μg/ml (in PBST) | 1 μg/ml (in PBST) | 150 μg/ml (in PBST) | 10 μg/ml (in PBST) | 10 μg/ml (in PBS) | | incubation time | 1 h | 1 h | 2 h | 2 h | 2 h | | secondary antibody
2 nd -ab provider
2 nd -ab dilution
2 nd -ab incubation time | anti-rabbit AlexaF488
Invitrogen (A11008)
1:1000 (in PBST)
1 h | anti-goat FITC
Sigma-Aldrich (F9012)
1:200 (in PBST)
1 h | anti-mouse AlexaF594
Invitrogen (A11005)
1:200 (in PBST)
1 h | anti-rabbit AlexaF488
Invitrogen (A11008)
1:200 (in PBST)
1 h | anti-mouse AlexaF594
Invitrogen (A11005)
1:200 (in PBS)
1 h | SMA: Smooth muscle actin, iSMC: ileum smooth muscle cells, MAEC: Mouse aortic endothelial cells, PBS: Phosphate buffered saline, PBST: PBS-Tween 20 and Alexa-F: Alexa Fluor.