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Abstract: Bone morphogenetic protein-7 is (BMP-7) is a potent anti-inflammatory growth factor
belonging to the Transforming Growth Factor Beta (TGF-β) superfamily. It plays an important role
in various biological processes, including embryogenesis, hematopoiesis, neurogenesis and skeletal
morphogenesis. BMP-7 stimulates the target cells by binding to specific membrane-bound receptor
BMPR 2 and transduces signals through mothers against decapentaplegic (Smads) and mitogen
activated protein kinase (MAPK) pathways. To date, rhBMP-7 has been used clinically to induce
the differentiation of mesenchymal stem cells bordering the bone fracture site into chondrocytes,
osteoclasts, the formation of new bone via calcium deposition and to stimulate the repair of
bone fracture. However, its use in cardiovascular diseases, such as atherosclerosis, myocardial
infarction, and diabetic cardiomyopathy is currently being explored. More importantly, these
cardiovascular diseases are associated with inflammation and infiltrated monocytes where BMP-7
has been demonstrated to be a key player in the differentiation of pro-inflammatory monocytes,
or M1 macrophages, into anti-inflammatory M2 macrophages, which reduces developed cardiac
dysfunction. Therefore, this review focuses on the molecular mechanisms of BMP-7 treatment in
cardiovascular disease and its role as an anti-fibrotic, anti-apoptotic and anti-inflammatory growth
factor, which emphasizes its potential therapeutic significance in heart diseases.
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1. Introduction

In 1970, a physician named Marshall Urist coined the term bone morphogenetic protein (BMP)
after demonstrating that these proteins play an important role in osteogenesis and bone formation.
Thereafter, more than 20 BMPs have been identified and subdivided into the following four groups; (i)
BMP-2/4, (ii) BMP-5/6/7/8a/8b, (iii) BMP-9/10, and (iv) BMP-12/13/14 based on their function and amino
acid sequence similarity [1–4]. BMP signaling plays a crucial role in several developmental pathways.
BMPs regulate erythropoiesis and neurogenesis during embryonic development by interacting with the
BMP receptors (BMPR) I and II [5,6]. Accordingly, their function in embryogenesis has been extensively
studied in several model organisms including frogs, mice, and zebrafish. After birth, they maintain
bone mass by inducing the differentiation of mesenchymal stem cells (MSCs) into osteoblasts and
regulating their differentiation potential [7–12]. Specifically, BMP-2/4/6/7/9/12/13 have the ability
to induce MSC differentiation, whereas BMP-3 plays a role in inducing MSC proliferation [7–13].
In addition to MSCs, existing studies reveal that adipocyte, fibroblast, myoblast and neural cell
differentiation and proliferation is also regulated by BMPs [14–18].

Evidence suggests that BMP-2, 4 and 10 deletion is embryonically lethal [19–21] whereas loss of
BMP-7/11 leads to death immediately after birth [22,23]. Moreover, deletion of BMP receptors [24–26]
and downstream transducers (Smad-1/4/5/7) are also embryonically lethal [27–30]. BMP-4 insufficiency
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prompted an imbalance in the hematopoietic stem cell (HSC) proliferation and differentiation, whereas
the lack of BMP-4 has disrupted gastrulation and subsequent formation of the mesoderm, obstructing
the generation of major tissues such as cardiac, skeletal, and vascular muscle cells that resulted in
animal lethality [31]. BMP-2/10 play a key role in myocardial patterning, chamber formation and
maturation [21,32,33]. The diverse biological activities of BMPs [3,25,26] along with their receptors
are highlighted in Table 1 [34–36], and it is clear that BMP deficiency can result in numerous human
pathophysiological diseases and death.

Table 1. Types of bone morphogenetic proteins (BMPs) and their functions.

Types Alternate Names Tissues that Express Functions Receptors

BMP-1 BMP-1 is a
metalloproteinase

major end organs (heart, lung, liver,
pancreas, kidney, and brain),

lymphoid organs (bone marrow,
thymus, spleen and lymph nodes),

exocrine glands (prostate and
mammary gland) organ protectors

(muscle and bone)

Metalloprotease that cleaves
COOH–propeptides of

procollagens
I, II, and III/induces cartilage

formation/cleaves BMP
antagonist chordin

_____

BMP-2
BMP-2A, XBMP2,

xBMP-2,
MGC114605

major end organs (lung, pancreas, and
kidney), lymphoid organ (spleen)

Induces bone and cartilage
formation. Plays a role in

skeletal repair and
regeneration/heart formation

ALK-2, 3, 6
BMPR-II; ActR-IIA,

ActR-IIB

BMP-3a
& 3b

Osteogenin,
BMP-3A

major end organs (brain, heart,
pancreas),

exocrine gland (prostate), organ
protector (skeletal muscle), lymphoid

organs (bone marrow, spleen and
thymus), BMP-3b also expresses in

spinal cord

Negative regulator of bone
morphogenesis

Cell differentiation regulation;
skeletal morphogenesis;

Regulates cell growth and
differentiation in both

embryonic and adult tissues

ALK-4
ActR-IIA, ActR-IIB

BMP-4
BMP-2B, BMP2B1,

ZYME, OFC11,
MCOPS6

major end organs (brain, heart,
pancreas, liver, lung, kidney),

exocrine gland (prostate), organ
protector (skeletal muscle), lymphoid

organs (bone marrow, spleen and
thymus), spinal cord

Skeletal repair and regeneration;
kidney formation; Induces

cartilage and bone formation;
limb formation; tooth

development.

ALK-2,3,5,6
BMPR-II, ActR-IIA

BMP-5 MGC34244

major end organs (brain, heart,
pancreas, liver, lung, kidney),

exocrine gland (prostate), organ
protector (skeletal muscle), lymphoid

organs (bone marrow, spleen and
thymus), spinal cord

Limb development; induces
bone and cartilage

morphogenesis; connecting soft
tissues

ALK-3
BMPR-II; ActR-IIA,

ActR-IIB

BMP-6 Vgr1, DVR-6

major end organs (brain, heart,
pancreas, liver, lung, kidney);

exocrine gland (prostate); organ
protector (muscle and bone),

lymphoid organs (bone marrow,
spleen and thymus); spinal cord

Cartilage hypertrophy; bone
morphogenesis; nervous system

development; Plays a role in
early development

ALK-2, 3, 6
BMPR-II; ActR-IIA,

ActR-IIB

BMP-7 OP-1

major end organs (brain, heart,
pancreas, liver, lung, kidney),

exocrine gland (prostate) organ
protector (skeletal muscle), lymphoid

organs (bone marrow, spleen and
thymus), spinal cord.

Skeletal repair and regeneration;
kidney and eye formation;

nervous system development
plays a major role in calcium

regulation and bone
homeostasis

ALK 2, 3, 6
BMPR-II;

BMP-8a
& 8b

OP-2, FLJ14351,
FLJ45264

OP-3, PC-8,
MGC131757

major end organs (brain, heart, kidney,
lung, liver, pancreas), exocrine gland
(prostate), organ protector (skeletal
muscle), lymphoid organs (spleen,
thymus bone marrow) spinal cord

Induces cartilage formation;
Bone morphogenesis and
spermatogenesis; calcium

regulation and bone
homeostasis.

ALK 2; 3; 4; 6; 7
BMPR-II;
ALK3,6

BMPR-II; ActR-IIA,
ActR-IIB

BMP-9 GDF-2 major end organ (liver)

Bone morphogenesis;
cholinergic neurons

development; in glucose
metabolism;

potent inhibitor of angiogenesis

ALK-1,2
BMPR-II; ActR-IIA,

ActR-IIB
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Table 1. Cont.

Types Alternate Names Tissues that Express Functions Receptors

BMP-10 MGC126783

major end organs (brain, heart, kidney,
lung, liver, pancreas), exocrine gland
(prostate), organ protector (skeletal
muscle), lymphoid organs (spleen,
thymus, bone marrow) spinal cord.

Heart morphogenesis maintains
the proliferative activity of

embryonic cardiomyocytes by
preventing premature activation

of the negative cell cycle
regulator;

inhibits endothelial cell
migration and growth

ALK-1, 3, 6
ActR-IIA, ActR-IIB

BMP-11 GDF-11

major end organs (brain, pancreas),
exocrine gland (prostate), lymphoid

organs (spleen, thymus bone marrow)
spinal cord.

Pattering mesodermal and
neural tissues, dentin formation

ALK-3, 4, 5, 7
BMPR-II; ActR-IIA,

ActR-IIB

BMP-12 GDF-7, CDMP-3 _____
Ligament and tendon

development/sensory neuron
development

ALK-3, 6
BMPR-II; ActR-IIA

BMP-13

GDF-6, CDMP-2,
KFS, KFSL, SGM1,

MGC158100,
MGC158101

_____

Normal formation of bones and
joins; skeletal morphogenesis

and chondrogenesis
Plays a key role in establishing

boundaries between skeletal
elements during development

ALK-3, 6
BMPR-II; ActR-IIA,

ActR-IIB

BMP-14
GDF-5, CDMP-1,

OS5, LAP4,
SYNS2, MP52

sensory organs (eye, skin), major end
organs (brain, heart; kidney, liver,

lung), embryonic tissue, mixed
connective tissue, pituitary gland,

salivary gland; exocrine gland
(prostate), reproductive system

related (uterus), lymphoid organ
(bone marrow)

Bone and cartilage formation;
Skeletal repair and regeneration

ALK-3, 6
BMPR-II; ActR-IIA

BMP-15 GDF-9B, ODG2,
POF4 _______ Oocyte and follicular

development ALK-6

BMP-16 _____ embryonic tissue;
reproductive system (testis)

Skeletal repair and regeneration
Essential for mesoderm

formation and axial
patterning during embryonic

development

_____

BMP-17 _____

major end organ (brain, lung, liver,
pancreas, spleen) lymphoid organ

(lymph node); exocrine gland
(mammary gland); sensory organ
(skin); reproductive organ (testis);

bladder; embryonic tissue; intestine;
joints;

Required for left-right axis
determination as a regulator of

LEFTY2 and NODAL
_____

BMP-18 _____
major end organ (brain), embryonic

tissue,
reproductive system (testis)

Required for left-right (L-R)
asymmetry determination of
organ systems in mammals.

May play a role in endometrial
bleeding

_____

ALK: activin receptor-like kinase; Actr: activin receptor; BMPR: bone morphogenetic protein receptor.

In addition to BMP receptors, BMP-7 also exerts its biological effects through the type 1 and
type 2 receptors of activin [35,36]. It has been reported that BMP-7 deletion leads to death and its
deficiency induces different diseases such as osteoporosis. Therefore, BMP-7 was used for the treatment
of osteoporosis [37–39], a widespread condition affecting several millions of people worldwide.
This disease is characterized by the loss of bone mineral density, resulting in an increased susceptibility
to osteoporosis induced bone fracture [40–42]. However, further studies are required to understand
the role of BMP-7 in tissue-specific disease development and therapeutic applications. In recent years,
the use of BMP-7 has been extended to several other inflammatory diseases, including cardiovascular
diseases (CVD) and cellular plasticity to neurological disorders. Therefore, the focus of this review
article was to provide an overall structure of BMP-7, mechanistic pathways and its potential therapeutic
significance in CVD.
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2. Structure of BMP-7

BMP-7 is expressed by several tissues, including, sensory organs (eye and skin), major end organs
(heart, lung, liver, pancreas, kidney, and brain), lymphoid organs (bone marrow, thymus and lymph
nodes), the reproductive system (testis, ovary, uterus and placenta), exocrine glands (prostate and
mammary gland), and organ protectors (muscle and bone) [22,43–49]. It is synthesized in the cells as
pro-protein form of 431 amino acid residues, including N-terminal signal peptide of 29 amino acid
residues, a pro-peptide of 263 amino acids, and a mature peptide of 139 amino acid residues [50]
(Figure 1). During processing, pro-BMP-7 is hydrolyzed in the cell by furin-like proteinase on its
carboxy terminal, where it is converted into mature BMP-7 of 139 amino acid residues and secreted into
the extracellular matrix [51]. BMP-7 is approximately a 35 kDa glycoprotein with three N-glycosylation
sites and seven cysteine residues involved in three intramolecular disulfide bonds Cys38-104, Cys67-136
and Cys71-138 [52]. More importantly the intermolecular disulfide bond formed via the 103rd cysteine
form dimers in two mature BMP-7 monomers with enhanced biological activity. BMP-7 has the ability
to form homodimers as well as heterodimers to induce bone formation. It has been reported that BMP-7
can form heterogenous dimers with other BMPs, specifically, BMP-2 and BMP-4 [53–55]. However,
heterodimers are more potent than homodimers in osteogenic differentiation assays [56–58]. Moreover,
it has been demonstrated that the biological activity of these heterogenous dimers is almost 20 times
higher than that of homodimers [39,58,59]. These heterodimers also showed enhanced activity in
embryonic assays of Xenopus and Zebrafish [60,61]. According to these studies, co-injection of RNA
encoding BMP-7 with BMP-2 or BMP-4 into embryonic blastomere enhanced embryo ventralization
and patterning compared with individual injection. Additionally, combined injection of purified
recombinant proteins of BMP4/7 or BMP2/7 increased BMP signaling (SMAD pathway) in Xenopus
and Zebrafish, whereas varied concentrations of individual injections of homodimers did not have
that level of BMP signaling alterations, suggesting that heterodimes are more potent in BMP cell
signaling [55,61,62].
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Figure 1. BMP-7 Structure: During processing, Pro-BMP-7 hydrolyzation by Furin on its carboxy
terminal and converts into BMP-7 with three intra-chain disulfide bond forming cysteine residues and
one inter-chain disulfide bond forming cysteine residue (highlighted).

Recently, to evaluate the heterodimer presence in vivo, Kim et al. generated knock in mice carrying
a mutation (Bmp7R-GFlag) that prevents proteolytic activation of the dimerized BMP-7 precursor
protein [63]. This mutation abolishes the ability of BMP-7 homo and heterodimer formation. Further,
the presence of endogenous BMP4/7 heterodimer was confirmed with coimmunoprecipitation assays.
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These studies suggested that BMP-7 predominantly forms heterodimers with BMP-2 or BMP-4 and
plays a major role during mammalian development.

BMP-7 is a pleiotropic growth factor and plays a crucial role in the development of various tissues
and organs as represented in Table 1. It maintains multiple physiological processes such as bone
development, fracture healing, and differentiation of brown adipose tissue in the body. Reduction in
BMP-7 expression is associated with various diseases including osteoporosis, CVD and diabetes. In 1980,
the recombinant human BMP-7 (rhBMP-7) expressed in Chinese hamster ovary cells was approved to
use as a therapeutic agent in the repair of bone fractures and has been successfully implemented in
clinical trials [64–67]. Moreover, BMP-7containing osteogenic implants have been used widely for the
treatment of long bone non-unions, spinal fusions, and acute fractures [68]. In addition, earlier reports
from our laboratory have demonstrated the potential protective role of BMP-7 in inhibiting plaque
formation, monocyte infiltration and in the inhibition of pro-inflammatory cytokine secretion [69,70].
Further, we also observed reduced circulatory BMP-7 levels as atherosclerosis progressed and that
the exogenous supplementation of BMP-7 significantly attenuated disease progression [71]. Recent
studies revealed that BMP-7 not only reduces body fat, but also strengthens insulin signaling, further
improves glucose uptake and insulin resistance [72]. Considering the beneficial effects of BMP-7 in
metabolism, this review focuses on the molecular aspects of BMP-7 and its regulation in inflammation
in CVD. The current literature has suggested the therapeutic efficacy of BMP-7 mediated through
canonical and non-canonical mechanistic pathways in various animal disease models of CVD, diabetes
and obesity [65,66].

3. Mechanisms of BMP-7

BMP-7 binds to bone morphogenetic protein receptor 2 (BMPR2) on the surface of cells and
activates two major signaling pathways: 1) Canonical/Smad dependent and 2) Non-canonical/Smad
independent pathway [65,66] (Figure 2).

In the canonical or Smad dependent pathway (Figure 2), BMP-7 activates regulatory Smads
(Smad-1, 5, and 8) for subsequent phosphorylation in the cytoplasm. Thereafter, phosphorylated
regulatory Smad proteins form a complex with the co-stimulatory molecule Smad-4. This complex is
then transduced to the nuclei to recruit cofactors and Run-related transcription factor 2 (Runx2) to
regulate osteogenic gene expression and consequently influences osteoblast differentiation [65,73,74].
Mesenchymal stem cell differentiation into osteoblasts is a pre-requisite for embryonic skeletal formation,
homeostatic skeletal remodeling and bone fracture repair. BMP-7 plays a major role in upregulating the
transcription factor osterix (Osx) or SP7 which has the ability to stimulate differentiation of osteoblasts
both in vitro and in vivo [65,75,76]. These studies suggested the involvement of canonical cell signaling
pathway in osteoblast differentiation and embryo skeletal formation induced by BMP-7 [76–82]. BMP-7
induced activation of Smad-1/5 leads to the activation of osterix resulting in increased osteogenic
markers alkaline phosphatase (ALP) activity and mineralization [83]. Lavery et al. demonstrated the
BMP-7 mediated osteoblastic differentiation of primary human mesenchymal stem cells with strongly
enriched established osteogenic marker genes including osteocalcin (OCN), osteopontin (OPN) and ALP
along with several other osteogenic markers of unknown function [84]. It has been reported that BMP-7
differentiates murine C2C12 myoblasts into osteoblasts by suppressing myoblast determination protein
1 (MyoD) expression, and enhancing the ALP activity and the osteogenic specific gene expressions ALP,
Runx2, and OCN via P38 mitogen-activated protein kinase (MAPK) dependent Smad-1/5/8 signaling
pathways [85]. Alongside, a recent study from our laboratory demonstrated monocyte differentiation
into anti-inflammatory M2 macrophages through the Smad-1/5/8 pathway [67].



Cells 2020, 9, 280 6 of 30

Cells 2020, 9, 280 5 of 30 

 

BMP-7 is a pleiotropic growth factor and plays a crucial role in the development of various 
tissues and organs as represented in Table 1. It maintains multiple physiological processes such as 
bone development, fracture healing, and differentiation of brown adipose tissue in the body. 
Reduction in BMP-7 expression is associated with various diseases including osteoporosis, CVD and 
diabetes. In 1980, the recombinant human BMP-7 (rhBMP-7) expressed in Chinese hamster ovary 
cells was approved to use as a therapeutic agent in the repair of bone fractures and has been 
successfully implemented in clinical trials [64–67]. Moreover, BMP-7containing osteogenic implants 
have been used widely for the treatment of long bone non-unions, spinal fusions, and acute fractures 
[68]. In addition, earlier reports from our laboratory have demonstrated the potential protective role 
of BMP-7 in inhibiting plaque formation, monocyte infiltration and in the inhibition of pro-
inflammatory cytokine secretion [69,70]. Further, we also observed reduced circulatory BMP-7 levels 
as atherosclerosis progressed and that the exogenous supplementation of BMP-7 significantly 
attenuated disease progression [71]. Recent studies revealed that BMP-7 not only reduces body fat, 
but also strengthens insulin signaling, further improves glucose uptake and insulin resistance [72]. 
Considering the beneficial effects of BMP-7 in metabolism, this review focuses on the molecular 
aspects of BMP-7 and its regulation in inflammation in CVD. The current literature has suggested the 
therapeutic efficacy of BMP-7 mediated through canonical and non-canonical mechanistic pathways 
in various animal disease models of CVD, diabetes and obesity [65,66]. 

3. Mechanisms of BMP-7 

BMP-7 binds to bone morphogenetic protein receptor 2 (BMPR2) on the surface of cells and 
activates two major signaling pathways: 1) Canonical/Smad dependent and 2) Non-canonical/Smad 
independent pathway [65,66] (Figure 2). 

 

 

 

Figure 2. BMP signaling pathways. BMP-7 transduces signals in target cells by binding to a specific 
membrane bound receptor BMPR2 and phosphorylates BMPR1, which activates both canonical and 
non-canonical pathways. In the canonical pathway, activated BMPR2 leads to phosphorylation of 
Smad-1/5/8 which complexes with Smad-4 and translocate the signal. In the non-canonical pathway, 
p38 MAPK, JNK, ERK and NFKB were activated via the activation of XIAP, TAK1 and TAB1 whereas 
PI3K, Akt were activated by both BMPR2 and Smad-1/5/8. Altogether, this influences the different 

Figure 2. BMP signaling pathways. BMP-7 transduces signals in target cells by binding to a specific
membrane bound receptor BMPR2 and phosphorylates BMPR1, which activates both canonical and
non-canonical pathways. In the canonical pathway, activated BMPR2 leads to phosphorylation of
Smad-1/5/8 which complexes with Smad-4 and translocate the signal. In the non-canonical pathway,
p38 MAPK, JNK, ERK and NFKB were activated via the activation of XIAP, TAK1 and TAB1 whereas
PI3K, Akt were activated by both BMPR2 and Smad-1/5/8. Altogether, this influences the different
transcription factors and regulates the gene expression. BMP: Bone morphogenetic protein; BMPR:
Bone morphogenetic protein receptor; XIAP: X-linked inhibitor of apoptosis protein; TAK1:TGF-beta
activated kinase 1; TAB1: TAK1 binding protein; Runx2: Run-related transcription factor 2; MAPK:
Mitogen-activated protein kinase; JNK: c-Jun-N terminal Kinase; ERK: Extracellular signal-regulated
kinase; PI3K: Phosphotidylinositol 3 kinase; Akt: RAC-alpha serine/threonine-protein kinase; mTOR:
mammalian target of rapamycin.

On the other hand, in the non-canonical pathway (Figure 2), BMP-7 transduces the signal to the
MAPK signaling via c-Jun-N terminal kinase (JNK)1/2/3, extracellular signal-regulated kinase (ERK)1/2,
nuclear factor kappa-light-chain-enhancer of activated B (NFκB), and p38 to regulate different target
gene expressions [86,87]. Activated BMPR1A receptor complex initiates these pathways through a
series of protein interactions including bone morphogenetic protein receptor associated molecule 1
(BRAM1) or X-linked inhibitor of apoptosis protein (XIAP), and downstream signaling molecules
TGF-beta activated kinase 1 (TAK1) and TAK1 binding protein (TAB1) [88]. TAK1 and TAB1 binding
activates downstream NFkB, p38, and JNK pathways that induces cell death and differentiation [86–89].
In addition, BMP-7 activates ERK, Phosphoinositol 3-kinase (PI3K), Protein Kinase (PK) C, and D
which play a role in cell survival, apoptosis, migration and differentiation [90–92].

Hu et al. showed that BMP-7 stimulates renal epithelial cell morphogenesis via p38 MAPK and
that its action is counteracted by Smad-1. Further, these studies also revealed that responses to low
doses of BMP-7 lead to increased cell proliferation, which are regulated by the p38 MAPK pathway
while responses to high doses of BMP-7 suppress cell proliferation, and are controlled by the Smad
pathway. In addition, suppression of the p38 MAPK activity by high doses of BMP-7 might integrate
the dose-dependent cellular response to BMP-7 [93].

BMP-7 promotes proliferation of nephron progenitor cells through TAK1-mediated JNK activation
as well as further activation of transcription factor Jun and activating transcription factor 2 (ATF2) [94].
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BMP-7 also plays a major role in the induction of tissue factor in human mononuclear cells (MNCs)
through NF-KB activity, leading to increased F3 (tissue factor gene) transcription [95] and resulting in
an increased procoagulant activity.

Additionally, it has been noticed that BMP-7 binding to its receptor BMPR-II can also
activate the Smad dependent and independent PI3K pathways. In this process, activation of
PI3K subunit p85 occurs either by Smad-1/5/8 or BMP-7 binding to BMPR II and its subsequent
phosphorylation leads to down-stream phosphorylation of phosphotidylinositol biphosphate (PIP2)
to phosphatidylinositol triphosphate (PIP3) [96,97] which, in turn, leads to the phosphorylation of
RAC-alpha serine/threonine-protein kinase (Akt) and downstream activation of mammalian target
of rapamycin (mTOR) [98]. In immune regulation, the PI3K pathway plays an important role in
maintaining the anti-inflammatory environment [97]. Furthermore, studies from our laboratory
demonstrated that the Smad-PI3K-Akt-mTOR pathway specifically inhibits pro-inflammatory cytokine
secretion (TNF-α, IL-6 and MCP-1), enhances anti-inflammatory cytokines (IL-10 and IL-1ra) and plays
a key role in M2 macrophage polarization [67,70].

4. Inhibitors of BMP-7

Several extra- and intra-cellular regulators, which play a major role in BMP signaling pathways
via binding receptors and blocking pathways have been identified. Almost 15 BMP antagonists have
been identified and classified into four major groups based on the size and cysteine knot as represented
in Table 2 [3,99–104]. Similarly, intracellular BMP signaling is inhibited by micro-RNAs, I-Smads
(Smad-6 and 7) and phosphatases (PP1 and PP2A) which play a role in dephosphorylation of both
phosphorylated R-Smads and type I receptors [105–108]. Noggin, chordin and follistatin have been
considered as major antagonists for BMP-7 [99,109–111]. Noggin blocks the effects of BMP-7 in osteoblast
differentiation and inhibits membrane ossification and further limb development [99,109]. Similarly,
Chordin stops binding of BMP-7 to the receptor and further the phosphorylation of down-stream
proteins, resulting in inhibition of several biological functions [110]. Follistatin inhibits the binding of
the BMP-7 to BMPR2 and prevents the activation of the Smad-1/5/8 pathway [111].

BMP antagonists also play a crucial role in embryonic development. To elaborate, embryogenesis
is mediated by the activity of extracellular proteins such as chordin, noggin, cerberus, and dan family
protein gremlin2. Amongst these antagonists, gremlin2 acts as the strongest BMP ligand inhibitor [112].
Alongside, chordin is involved in neural induction and mesoderm dorsalization during embryonic
development. Deficiency of chordin leads to abnormalities in the skull, cardiovascular defects,
malfunction in cervical and thoracic vertebrae, and also the absence of parathyroid and thymus [113].
Similarly, Noggin plays an important role in bone formation, and neural tissue formation during
embryogenesis. Lack of Noggin leads to abnormalities in the skeleton and is lethal [114]. Animal
studies have revealed that chordin deficiency results in stillborn mice [115] while noggin deficiency
results in fetal death [114].
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Table 2. Types of antagonists and their functions.

Inhibitors Name Role

Neuroblastoma Dan
family DAN plays a role in tumor suppression; cell proliferation

PRDC/GRem2
(protein related to DAN and

Cerberus)

PRDC is a secreted, cysteine knot-containing BMP antagonist; play a role in regulation of
BMP signaling in ovary, brain, and other adult tissues

Gremlin

higher level expression in Basal cell carcinoma stromal cells; promotes proliferation and
tumor growth; induces cell cycle progression via p21; interacts directly with target

endothelial cells; acts as a proangiogenic factor to regulate angiogenesis; blocks osteoblast
differentiation and function by blocking BMP signaling

Cerberus/Cer1
anterior neural induction and somite formation during embryogenesis; regulate Nodal

signaling during gastrulation as well as the formation and patterning of the primitive streak
Blocks Nodal, BMP, and Wnt signaling

Coco/Dand5 antagonizes NODAL and BMP4 signaling during development, organogenesis, tissue growth
and differentiation; Blocks BMP/TGF-β and Wnt signaling

Caronte antagonizing symmetrically expressed BMP signals

USAG-1 BMP and Wnt antagonist during the development of kidney, tooth, and mammary tissues

Sclerostin/
SOST

endogenous antagonist of the Wnt/β-catenin pathway in the regulation of bone mass; acts as
negative regulator of bone formation

Dante/Dte plays potential role during early stages of mouse embryonic development; inhibit BMP
signaling

Chordin family Chordin, functions as BMP antagonist that blocks BMP activity by binding to the BMPs and inhibiting
their interaction with their receptors

Ventroptin/
Chordin-like-1/

Neuralin 1
regulates retinal angiogenesis via modulation of BMP4 actions in endothelial cells.

Chordin-like-2,
prevents the binding of BMPs to type 1 and type 2 receptors as well as BMP-induced cellular

responses; reduces the rate of matrix deposition by mesenchymal cells, acts as a negative
regulator of cartilage formation.
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Table 2. Cont.

Inhibitors Name Role

Kielin enhances BMP signaling in a paracrine way; inhibits both the activin-A and TGFB1-mediated
signaling pathways

Nell
promotes the osteogenic differentiation of adipose-derived stromal/stem cells and inhibits

adipogenic differentiation. Binding of NELL1 to Integrin beta 1 was shown to be critical for
its role in promoting osteogenic differentiation and adhesion to the extracellular matrix.

Crossveinless2 bone morphogenetic protein-binding endothelial cell precursor-derived regulator (BMPER).
Secreted CV-2 interacts with BMP and inhibits its function

Brorin Brorin binds and antagonizes BMPs, interacting via the von Willebrand factor C domain. It
promotes neurogenesis in mouse neural precursors

Noggin
promotes skin tumorigenesis; reduces tumor size and decreases bone loss compared to

untreated control animals; suppresses BMP4 induction of vascular endothelial growth factor
receptor 2 in embryonic blood vessels; inhibits BMP interaction with their receptors

Follistatin acts as a modulator of gonadal tumor progression and the activin stimulated wasting
syndrome; inhibits BMP interaction with their receptors

Twisted gastrulation
regulates the extracellular availability of a mesoderm inducer, BMP 4 As agonist-enhances

cleavage of BMP/chordin complex by BMP1/tolloid (releasing free BMP)
Required to specify the dorsal-most structures in embryo.

Follistatin-related gene
(FLRG) acts as activin antagonist and inhibits tumor cell growth

Note: Information obtained from Ref 3, 89-94 and some information from Uniprot. DAN: differential screening-selected gene aberrant in neuroblastoma; USAG1: uterine
sensitization-associated gene1.
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5. Regulators of BMP-7

The secreted proteins Chordin-like (CHRDL1), Crossveinless-2 (BMPER/CV-2), Kielin/chordin-like
protein (KCP/CRIM2), and connective tissue growth factor (CTGF) act both as agonists and antagonists,
depending on the particular ligands they regulate and the presence or absence of other factors in
cell-type-specific microenvironment they encounter.

CHL/Neuralin (CHRDL1): Chordin-like (CHL/CHL1, CHRDL1) is a secreted molecule with three
cysteine-rich repeat (CR) modules and is known as neuralin in the mouse [116–118]. CHRDL1 enhances
BMP-4 and BMP-7 signaling in several cell lines when expressed alone. However, it switches into
a selective BMP-7 antagonist when it complexes with Twsg1 and plays a role in inhibition of injury
repair and homeostasis of the mammalian kidney [109].

Crossveinless-2 (BMPER/CV-2): CV-2 also known as BMPER, has been identified in mice, and
humans. BMPER contains an additional carboxy-terminal trypsin inhibitor-like cysteine-rich domain.
BMPER is expressed in mice at sites that require elevated BMP signals, such as the posterior primitive
streak and ventral tail bud. CV-2/BMPER binds BMP-2, -4, -6, -7, -9. BMPER enhances BMP signaling
during gastrulation, neural crest specification, nephrogenesis, cardiovascular development, and axial
skeletal formation. It blocks BMP-9 in the vascular endothelium whereas, CV-2/BMPER overexpression
showed the activities that are consistent with functions in both enhancing and inhibiting BMP
signaling [119–124].

Kielin/chordin-like protein (KCP/CRIM2): CRIM2 contains 18 CR motifs and a carboxy-terminal
vWF type D domain. KCP binds BMP-7 and increases BMP-7 binding to BMPRIA/ALK-3. It also
enhances Smad1 activation and further promotes BMP-responsive gene expression and signaling
to attenuate renal interstitial fibrosis [125]. It has been noticed that KCP also binds activin A and
TGF-b1, and blocks Smad2/3 activation and inhibits Smad2/3-mediated transcription [125]. Hence,
KCP functions in opposite ways to regulate activin/TGF-b and BMP signals. In addition, Soofi et al.
demonstrated that KCP attenuates acute and chronic renal injury [126].

Connective tissue growth factor (CTGF): CTGF binds BMP-2,-4,-7 via its CR domain. Disruption
of CTGF gene in mice revealed its requirement for coordination of chondrogenesis and angiogenesis
during skeletal development [127], which depends on the CTGF activity to modulate BMP signaling
during chondrocyte differentiation [128,129].

BMP signaling is controlled by different types of regulators, including extracellular matrix proteins
(ECM), I-smads, ubiquitin proteasome complex, corepressors and miRNA. Based on the availability
of ligands, ECM controls BMP signaling whereas I-smads antagonize the steps involved in smad
signaling. Similarly, ubiquitin proteasome controls different types of inhibitors and signal transducers
involved. Corepressors regulate BMP signaling at the transcriptional level and miRNAs regulate at the
translational level [7].

6. BMP-7 as an Anti-Inflammatory Agent in Atherosclerosis

Atherosclerosis is a serious cardiovascular condition that involves the constriction of the arterial
wall leading to the development of myocardial infarction. Atherogenesis is regulated by cholesteryl
ester (CE) accumulation, foam cell formation, smooth muscle cell migration, necrotic core formation,
and increased calcification [66,130–132]. Moreover, the developed atherogenesis creates turbulence
in blood flow leading to plaque rupture and thrombosis. Although these atherogenic factors are
well-established, recent data suggests the involvement of modified LDL, extracellular components in
the plaque activation and rupture [133]. Therefore, atherosclerosis was considered to be the product of
lipoprotein accumulation, particularly LDL in the arterial wall [134,135].

Recently, it is speculated that atherosclerosis is a complex process that involves the participation
of both immune systems, oxidative stress, various cell types, receptors, lipids, enzymes, signaling
pathways, trace elements, and other products [136–138]. Inflammation and oxidative stress are
considered to be major players in the progression of the disease [139–142]. Altered vessel wall
structure and disturbed blood flow patterns include inflammation and varied stress levels in
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developed atherosclerosis [143]. Despite the abundance of research literature on the topic, the
role of lipids, especially fatty acids and their oxidation products like peroxidized linoleic acid (HPODE),
4-hydroxynonenal (HNE), oxo-nonanoic acid (ONA), and their interaction with inflammatory molecules
such as oxidized LDL, phospholipids, TNF-α, vascular cell adhesion molecule (VCAM1) in many of
these processes are poorly understood.

Monocytes, which are precursors of macrophages as well as dendritic cells (DCs) and migrate into
the areas of “injury” as a result of a chemotactic stimuli such as monocyte chemotactic protein 1 and 3
(MCP-1&3). Migration of monocytes into the arterial wall has been considered as one of the initial
events in atherogenesis which persists in different stages of disease progression [140–142]. In tissues,
based on the environmental growth factors and pro-inflammatory cytokines, monocytes differentiate
into either M1 macrophages or DCs. Monocyte adherence, their differentiation into pro-inflammatory
macrophages/dendritic cells that release pro-inflammatory cytokines which are involved in the
generation of complex pathophysiology of atherosclerosis [140] (Figure 3). Macrophages were initially
viewed as a mere scavenger of altered lipoproteins. However, the presence of macrophages along
with lymphocytes in atherosclerotic plaques showed enhanced inflammatory immune response and
release of pro-inflammatory molecules. The specific roles of different stages of atherosclerosis and
presence of these inflammatory macrophages, foam cells, lymphocytes, and vascular smooth muscle
cells are not yet completely understood. For example, M2 macrophages, are known for high endocytic
clearance capacity due to their higher expression of scavenger receptors (SR) during wound healing
and repair processes [144]. Van Tits et al. demonstrated that M2 macrophages are susceptible in
forming foam cells in presence of oxidized LDL and shift towards the M1 phenotype with enhanced
secretion of the pro-inflammatory cytokines IL-6, IL-8 and MCP-1 [145]. Furthermore, this increased
production of pro-inflammatory cytokines by polarized M1 macrophages from M2 macrophages which
are residing in subendothelial space of the vessel wall might lead to the initiation of the inflammatory
cascade that mediates disease progression [145]. Similarly, in human atherosclerotic lesions different
macrophage phenotypes exist in different plaque locations. M2 (CD68+ CD206+) macrophages were
located in plaque stable zones far from the lipid core, whereas M1 (CD68+ CCL2+) macrophages
exhibited a distinct tissue localization pattern [146] suggesting that the tissue microenvironment
decides the fate of macrophage polarization. Subsequent research studies confirmed this finding by
demonstrating the presence of lipid droplets in CD68+ CD206+ macrophages in comparison with
CD68+ CD206− macrophages [147]. This discovery suggests that despite the anti-inflammatory nature
of M2 macrophages they tend to form foam cells, a significant contributor of atherogenesis.
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We demonstrated from our laboratory that rhBMP-7 is able to inhibit the atherosclerosis associated
inflammation at both acute (Day-14) and mid-stage (Day-28) time points of atherosclerosis by promoting
monocyte differentiation into the anti-inflammatory M2 phenotype via reducing phosphorylated
kinases p-38 and JNK while increasing p-Smad and ERK pathways [69,71]. Additionally, a recent
study from our laboratory demonstrated the significantly increased BMPR2 expression on monocytes
following BMP-7 treatment, and further polarization into M2 macrophages [67]. BMP-7 treatment
showed increased M2 macrophages [approximately 25% at Day-14 and 60% at Day-28] than M1
macrophages [15% at Day-14 and 30% at Day-28] leading to decrease in pro-inflammatory cytokines
such as tumor necrosis factor alpha (TNF-α), IL-6 and MCP-1 associated with atherosclerotic lesion
development and to an increase in anti-inflammatory cytokines such as IL-10 and IL-1ra levels. Further,
BMP-7 improved blood flow in the artery after post ligation, reduced the inflammatory kinases, and
completely slowed down disease progression (Figure 3). In addition, we also demonstrated that, upon
macrophage depletion by liposomal clodronate, BMP-7 fails to significantly reduce plaque progression
and inflammation suggesting the direct role of BMP-7 on macrophages [71]. The literature on BMP-7
in macrophage polarization is new and growing; however, there are certain unanswered questions
such as whether BMP-7 can inhibit the formation of foam cells; and if BMP-7 can inhibit the conversion
of M2 macrophage into foam cell formation in atherosclerosis?

7. BMP-7 as an Anti-Calcifying Agent

Calcification is an important step in atherosclerosis as a result of inflammation and is classified into
two main types; (1) intimal and (2) medial calcification [148–150]. Intimal calcification occurs during
the progression of atherosclerotic lesions, whereas medial calcification occurs in between the layers of
smooth muscle cells. Existing reports suggest that vascular calcification is a cell mediated process in
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which vascular smooth muscle cells (VSMCs) and pericytes, differentiate and mineralize the vascular
matrix through abnormal deposition of calcium phosphate [148–151]. Recently, Riad et al. demonstrated
the role of lipid peroxidation derived dicarboxylic acid, azelaic acid in calcium sequestration and
subsequent calcification [152]. Evidence suggests that BMP-2 plays a major role in vascular calcification
by inhibiting VSMC proliferation through p21 cyclin dependent kinases inhibition and subsequent cell
cycle arrest [153–157]. In addition, it also causes the loss of smooth muscle cell markers while promoting
the osteoblastic gene expression markers including ALP, OPN etc. by stimulating the osteogenic
transcription factor Msx2 and inducing apoptosis, which is a critical step in calcification initiation.
In contrast to BMP-2, BMP-7 counteracts atherosclerotic calcification by increasing SMC proliferation
via upregulating p21 cyclin dependent kinases and regulating skeletal remodeling and maintaining
SMC phenotype [158,159]. Several factors, including reactive oxygen species (ROS), reactive nitrogen
species (RNS), vitamin D, phosphate, azeloate and parathyroid hormone increase the calcification
process [152,160,161]. Various studies showed that BMP-7 inhibits vascular calcification by preserving
the SMC phenotype and the process towards osteoblastic phenotype [156,157,162,163]. Kang et al.
demonstrated that rhBMP-7 inhibited vitamin D and phosphate induced vascular calcification in vivo
(mice) and in vitro (human aortic smooth muscle cells) [164]. In this study, C57BL/6J mice were treated
with high concentrations of vitamin D in the presence and absence of rhBMP-7 and calcification
markers were analyzed by IHC and western blotting. Vitamin D significantly increased osteoblastic
markers (OPN and OCN) and calcium staining of aortas and hearts; whereas, pre-treatment with
rhBMP-7 completely abolished the Vit-D mediated effects on osteoblastic markers and calcium staining.
Further, these studies also demonstrated the efficacy of BMP-7 in attenuation of beta-glycerophosphate
promoted osteogenic markers and calcium staining in vascular smooth muscle cells. Therefore, these
studies also suggested the potential beneficial role of BMP-7 in reducing CVD related to vascular
calcification [164].

8. BMP-7 Inhibits Inflammation and Adverse Remodeling in the Infarcted Heart

Myocardial infarction (MI) (Figure 3) is a condition due to the formation of lesions in the arteries,
resulting in reduced blood flow of nutrients and oxygen supply, which leads to myocardial injury.
Cardiac myocyte cell loss in the infarcted region happens via apoptosis, pyroptosis and necrosis
leading to end stage heart failure [130,165–168]. Furthermore, cardiac hypertrophy and fibrosis
has been considered as a major remodeling mechanism to compensate for the requirements under
pathophysiological conditions in which increased cardiac cell size (hypertrophy) and expression ofECM
proteins (collagens types I and III) have been observed [169,170]. In the injured myocardium, fibrosis
stiffens the heart muscle and affects the systolic and diastolic function. Moreover, these ECM proteins
can be degraded by endopeptidases such as matrix metalloproteinases (MMPs) leading to alterations in
ventricular structure and function post-MI. Moreover, following myocardial injury, the heart undergoes
a sequence of molecular events including cell death, cytokine release, and infiltration/recruitment
of immune cells, which play a major role in cardiac wound healing and stabilization of cardiac
remodeling [171].

After 48–72 h of MI, monocytes were recruited to the infarct area of the heart in two phases [172].
In the first phase, a significant increase in number of Ly-6chigh monocytes are observed in the MI which
are chemokine receptor type 2 (CCR2) dependent [173,174]. These monocytes secrete TNF-α and IL-1β
and are converted to pro-inflammatory macrophages to clear the debris of dead cells and extracellular
matrix by phagocytosis. It is postulated that monocytes infiltrated in response to cardiac cellular injury
to clear the dead cardiac cells, and also generate an inflammatory microenvironment, that triggers
adverse cardiac remodeling. In the second phase, Ly-6clow monocytes are recruited which are C-X3-C
motif chemokine receptor (CX3CR1) dependent [175]. These monocytes are less in number, but convert
to macrophages, which play a role in wound healing and repair [176] by promoting collagen deposition,
angiogenesis, and myofibroblast accumulation. These infiltrated monocytes interact with ECM and
release fibronectin, which stabilizes/reduces the infarct [176]. In addition, early efferocytosis promotes
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the conversion of M1 macrophages into M2 macrophages, reduces secretion of pro-inflammatory
cytokines and increases production of anti-inflammatory cytokines IL-10 and TGF-β [177–179].

Cell death due to apoptosis has been considered as a key step in the development and progression
of post-MI remodeling which further leads to chronic heart failure [180,181]. Apoptosis is a type of
programmed cell death, which occurs during aging and development as a homeostatic process as well
as a defense mechanism in various diseases. Apoptosis leads to a cascade of cellular events including
cytoplasmic blebbing, cell shrinkage, protein cleavage by caspases, chromatin condensation and DNA
fragmentation [182]. Cardiac myocyte apoptosis is mediated through extrinsic and intrinsic pathways.
TNF-α, FAS ligand, and TNF-related apoptosis-inducing ligand (TRAIL) triggers the extrinsic pathway
whereas caspases triggers the intrinsic pathway [183]. Further, cardiac myocyte apoptosis provides a
microenvironment to infiltrate monocytes, and initiates inflammation that activates cardiac fibroblasts,
which play a major role in the cascade of inflammation, cellular infiltration, and fibrosis in both
infarcted and peri-infarcted areas. These cellular alterations lead to adverse cardiac remodeling that
generates organ dysfunction. Interstitial fibrosis occurs between cardiac myocytes whereas vascular
fibrosis occurs in and around vessel walls [182,184]. Several pro-inflammatory as well as profibrotic
cytokines released by leukocyte infiltration lead to fibroblasts activation, increased TGF-β secretion
and ECM protein synthesis [185–192].

The role of TGF-β1 in inflammation and cardiac injury is reported in myocardial
infarction [5,193,194]. Upregulation of TGF-β activates Smad signaling proteins 2,3,4 in the infarct area
of the heart and also the peri-ischemic zone under pathological conditions [193,195], which might play
a role in increased collagen type-I expression [196]. Schneiders et al. demonstrated the involvement of
Smad proteins in cardiomyocyte apoptosis [197]. It has been noticed that cardiomyocyte treatment
with TGF-β1 enhances cardiomyocytes apoptosis, increases caspase3/7 activity and decreases B-cell
lymphoma 2 (Bcl-2) expression by upregulating Smad-7 [198]. Activation of the TGF-β/Smad pathway
leads to increased ECM components, such as fibronectin, type-1 collagen, connective tissue growth
factor (CTGF), and transcription genes related to the collagen production, which leads to fibrosis
development [199]. It has been reported that overexpression of TGF-β1 in mice showed a significant
increase in left ventricular fibrosis [200]. In addition, TGF-β1 is known to increase plasminogen
activator inhibitor-1 which plays a major role in ECM degradation [200,201]. Evidence suggests that
cardiac fibrosis is mediated by TGF-β/Smad signaling [202–204]. Smad-4 plays a role in initiation of
Smad-2/3 associated TGF-β induced fibrosis whereas Smad-7 inhibits collagen, smooth muscle actin,
and reduces matrix protein by inhibiting phosphorylation of Smad-2/3 [205].

BMP-7 acts as an antifibrotic factor through the Smad pathway in which it induces the
phosphorylation of Smad-1/5/8 and downregulates TGF-β signaling, which is mediated by Smad-2/3
phosphorylation [206]. The downregulation of BMP-7 in pathological fibrosis of organs has been
reported [207–212]. Additionally, administration of exogenous BMP-7 or overexpression of BMP-7
protects the tissues such as kidneys [207,210], liver [208], lungs [209] and heart [211] from fibrosis.
Moreover, exogenous administration of BMP-7 downregulates myocardial interstitial fibrosis as well as
kidney fibrosis by inhibiting TGF-β signaling pathway and protects cardiac function. Recently, Jin et al.
demonstrated that exogenous BMP-7 facilitates cardiac function recovery after acute myocardial
infarction by attenuating myocardial fibrosis through counteracting TGF-β1 signaling pathway [211].
In this study, the group established acute myocardial infarction by ligating the left anterior descending
artery with and without BMP-7 treatment. BMP-7 treatment significantly attenuated myocardial fibrosis,
reduced the infarct size, and improved cardiac function. In addition, this study also reported that BMP-7
treatment inhibited myocardial fibrosis by attenuating TGF-β signaling and its downstream effectors
Smad-2 and Smad-3 [211]. Furthermore, the beneficial role of BMP-7/Smad signaling has been shown
in fibrotic disease of the heart [212,213]. However, the direct role of BMP-7 in monocyte differentiation
or M1 macrophage polarization into M2 macrophages in the infarcted heart is still unknown.
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9. BMP-7 Ameliorates Diabetic Cardiomyopathy

Diabetes is a major metabolic disorder and an alarming epidemic affecting millions of people
globally. It is considered as the seventh leading cause of death [214]. Pre-diabetes is a condition in
which impaired glucose levels have been considered as markers for diagnosis which leads to type 1
and type 2 diabetes (T2DM) [215]. Type I diabetes is known as an autoimmune disease caused by
insulin deficiency due to the destruction of insulin producing pancreatic beta cells of the islets of
Langerhans [216]. Similarly, T2DM is characterized by insulin resistance resulting from impairment of
the normal function of pancreatic β-cells which induces hyperglycemia, and eventually leads to cardiac
failure and nephropathy [217–219]. Diabetes is usually accompanied with hyperglycemia, oxidative
stress, and inflammation potentially leading to CVD, muscle atrophy, nephropathy, neuropathy,
periodontal disease, retinopathy, impaired wound healing, and tissue damage [217–219].

Diabetic cardiomyopathy (DC) is the leading cause of death worldwide and has attracted global
attention. Due to the fact that low levels of glucose can initiate microvascular complications; therefore,
the impaired glucose tolerance has been considered as a major risk factor for CVD related deaths [220].
Increased inflammation and oxidative stress have been observed in both clinical and experimental
diabetes mellitus which are also implicated in the etiology of chronic diabetic complications [221–224]
such as diabetes-induced cardiomyopathy and muscle toxicity. However, the exact mechanisms of
developed chronic diabetic complications are not yet completely understood. Diabetes results from
the functional imbalance of innate and adaptive immune response [225]. The elevated blood levels of
pro-inflammatory cytokines such as TNF-α and IL-6 have been noticed in diabetic subjects [226,227].
Recent studies have suggested that increased levels of IL-6 should be considered as a risk factor for
diabetes [228]. Inhibition and decreased expression of TNF-α and IL-6 might play a possible role in
alleviating diabetic complications.

TNF-α is known to induce cardiomyocyte apoptosis in vitro by initiating the apoptotic cascade
via caspase-3 triggering in vitro [229]. Cardiac apoptosis can be induced by various mechanisms,
including oxidative stress, inflammatory cytokines, loss of normal insulin signaling, hyperglycemia
and advanced glycation end products (AGEs). Recent evidence suggested the upregulation of
cardiomyocyte apoptosis in diabetic subjects as well as in animal models [230–233].

Izhumi et al. demonstrated the ability of BMPs in attenuating apoptosis in rat cardiomyocytes.
According to this study, BMP-2 can attenuate the serum deprivation induced apoptosis in cardiac
myocytes. In addition, these studies elucidated the up-regulation of B-cell lymphoma-extra-large
(Bcl-xL) via the Smad-1 pathway, which has a protective effect and plays an important role in regulation
of the myocardium [233]. Studies from our laboratory correlated with these in vitro studies in that
BMP-7 attenuates cardiac myocyte apoptosis in diabetes-induced mice [234]. BMP-7 treated pre-diabetic
group has shown significantly increased levels of anti-inflammatory IL-10 and reduction in TNF-α [234].
IL-10 has been known to decrease TNF-α induced cardiomyocyte apoptosis [72]. Further, BMP-7
reduced diabetic cardiac apoptosis is mediated through Phosphatase and tensin homolog (PTEN)
and Akt pathways [234]. Elevated levels of PTEN protein were observed in pre-diabetic mice hearts
as compared to control mice whereas significant downregulation of PTEN was observed in BMP-7
treated pre-diabetic mice. In addition to anti-apoptotic effects of BMP-7, this study also reported the
anti-fibrotic effects that leads to improved cardiac function in pre-diabetic mice [234]. According to
Kurlawalla et al., PTEN decreases insulin sensitivity, and lack of PTEN increases glucose tolerance
and insulin sensitivity in adipose tissue. It has been shown that PTEN knock-out mice are resistant
to streptozotocin (STZ)-induced diabetes which might suggest PTEN as promising target to aim in
reversing insulin resistance [235]. Moreover, BMP-7 inhibits apoptosis via PTEN-Akt pathway and
decreases hyperglycemia in pre-diabetic mice.

10. BMP-7 Differentiates Monocytes into M2 Macrophages in Heart Diseases

Monocyte polarization plays a key role in the progression of various inflammatory diseases such
as atherosclerosis, myocardial infarction, and diabetic cardiomyopathy [236–238]. Infiltrated monocyte
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differentiation depends on the tissue microenvironment they reside in and the external stimuli they
receive [239]. Monocytes will differentiate into M1 macrophages if tissues have an inflammatory
microenvironment stimulated with interferon gamma (IFN-γ), macrophage colony stimulating factor
(MCSF) and TNF-α [240]. Conversely, infiltrated monocytes will polarize into M2 macrophages or
alternative macrophages if the tissue microenvironment is surrounded by certain specific factors, such as
granulocyte macrophage colony stimulating factor (GMCSF) and anti-inflammatory cytokines, such as
IL-4 and IL-13 [187]. In addition, two distinct subsets of M2 macrophages, M2a and M2c are notable
in which the former participates in wound healing and are induced by IL-4 and IL-13 whereas the
latter takes part in regulation of disease progression, which is induced by glucocorticoids, TGF-β and
IL-10 [187,241]. Differentiated M1 macrophages are known to secrete pro-inflammatory cytokines such
as inducible nitric oxide synthase (iNOS), IL-6, TNF-α, and MCP-1, while alternative M2 macrophages
are known to secrete anti-inflammatory cytokines as such IL-10 and arginase-1 [67,242–244].

The exact role of infiltrated monocytes and their differentiation into pro-inflammatory M1 and
anti-inflammatory M2 macrophages, as well as their role in development and progression at different
stages of the diseases of atherosclerosis, myocardial infarction, and diabetic cardiomyopathy is far from
clear; however, we are beginning to understand that increased M2 macrophages attenuate developed
cardiac pathophysiology and function. In early onset of disease, monocytes move to the injury site and
polarize into M2 macrophages [65] to repair by secreting anti-inflammatory cytokines such as IL-10
and IL-1Ra as well as scavenge the apoptotic cells [245–247]. As the disease progresses, the infiltrated
monocytes polarize into M1 macrophages due to the microenvironment resulting in increased secretion
of pro-inflammatory cytokines including MCP-1, TNF-α and IL-6, further increasing the necrotic core
formation and calcification [223,248]. Balancing the ratio of M1 to M2 could control the severity of
disease progression.

Considering the beneficial effects of M2 macrophages in the attenuation of inflammation, wound
healing, and repair processes, the factors/molecules/compounds that have the ability to convert the
monocytes into M2 macrophages have attained major attention due to their potential therapeutic
implications. BMP-7 is one such factor which has the ability to polarize monocytes into M2 macrophages
in both normal as well as under stressed conditions. A recent study demonstrated the potential efficacy
of BMP-7 in monocyte polarization to M2 macrophages by upregulating M2 macrophage marker
CD206, and down regulating the monocyte marker CD14 [67]. In addition, it was also noticed that
BMP-7 significantly reduced pro-inflammatory cytokines such as IL-6, TNF-α, MCP-1, but enhanced
the anti-inflammatory cytokines secretion of IL-10 and IL-1Ra [67] suggests that BMP-7 has a potential
to enhance M2 macrophages which are anti-inflammatory in nature. Further, this study suggests that
M2 macrophage polarization decreases the activation of the inflammatory p38 and JNK pathways
while increases the activation of Smad and ERK pathways at mid-stage (Day-28) time point of
atherosclerosis [69].

BMP-7 upregulates and binds BMPR2, phosphorylates SMAD1/5/8, and activates PI3K, which
results in downstream activation of Akt and mTOR as shown in Figure 2. Evidence demonstrated that
the expression of p-PTEN, an inhibitor of the PI3K pathway was significantly upregulated in apoptotic
conditions and significantly downregulated upon BMP-7 treatment, suggesting the ability of BMP-7
to not only promote PI3K signaling through upregulated mediators but also by directly blocking
inhibition of the signaling cascade [70,97]. Furthermore, these studies also demonstrated how BMP-7
inhibitor follistatin inhibitied p-SMAD1/5/8 expression and decreased PI3K expression, which supports
and suggests the necessity of BMP-7 to bind BMPR2 thus activating SMAD1/5/8 and subsequently
PI3K [111,249]. As mentioned above, the PI3K pathway plays a key role in increased anti-inflammatory
markers such as arginase-1 and IL-10 as well as inhibition of the production of pro-inflammatory
markers [97,250,251]. It has been noticed that activation of the PI3K pathway resulted in increased
polarization of M2 macrophages, specifically in bone marrow derived macrophages [98]. Evidence
has also suggested that inhibition of either PI3K or mTOR results in M1 macrophage polarization
signifying the role of these pathways in monocyte polarization into M1 macrophages [98,250]. Moreover,
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Rocher et al. demonstrated that BMP-7 administration along with apoptotic conditional medium
to monocytes resulted in an increased expression of anti-inflammatory cytokines (IL-1ra, IL-10 and
arginase-1) and inhibited expression of pro-inflammatory cytokines (iNOS, TNF-alpha, IL-6 and
MCP-1) which promoted paracrine effects on monocytes and macrophages yielding increased M2
macrophage polarization [70]. According to Mantovani et al. M2 macrophages counteract inflammation
by enhanced secretion of IL-10 [252]. It has also been reported that these anti-inflammatory cytokines
have the ability to inhibit pro-inflammatory cytokines IL-6 and TNF-α from immune cells and can be
used as therapeutic agents [253] in several inflammation-associated diseases.

11. Conclusions and Future Directions

In conclusion, these studies support that BMP-7 is an effective growth factor that has the potential
to inhibit apoptosis, fibrosis and acts as an anti-calcifying agent, which ultimately improves cardiac
function in different heart diseases, as summarized in this review. The novel and most interesting
role of BMP-7 is its ability to promote the differentiation of infiltrated pro-inflammatory monocytes
into anti-inflammatory M2 macrophages in different cardiac diseases. However, further studies
are required to understand whether BMP-7 can acts as a direct anti-inflammatory agent to inhibit
cardiac pathophysiology. Further investigation is needed to determine if BMP-7 treatment differentiates
monocytes or polarizes M1 to M2 macrophages, and whether it can be reverted due to low concentration
of BMP-7. It is also not yet clear whether a single dose of BMP-7 is enough to decrease diabetes and
diabetic cardiomyopathy as long-term studies are not well established. Therefore, a new significant
research avenue remains to be explored to understand the cell protective role of BMP-7 in treating
heart diseases.
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ALP alkaline phosphatase
Akt RAC-alpha serine/threonine-protein kinase
ATF2 activating transcription factor 2
Bcl-2 B-cell lymphoma 2
BMP bone morphogenetic protein
BMPR bone morphogenetic protein receptor
BRAM1 bone morphogenetic protein receptor associated molecule 1
CCR2 C-C chemokine receptor type 2
CE cholesteryl ester
CTGF connective tissue growth factor
CVD cardiovascular disease
CX3CR1 C-X3-C motif chemokine receptor
DC dendritic cells
ECM extracellular matrix
ERK extracellular signal-regulated Kinase
GMCSF granulocyte macrophage colony stimulating factor
HSC hematopoietic stem cell
IFN-γ interferon gamma
iNOS inducible nitric oxide synthase
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JNK c-Jun-N terminal Kinase
MAPK mitogen-activated protein kinases
MCP-1 monocyte chemotactic protein
MCSF macrophage colony stimulating factor
MMP matrix metalloproteinase
MNC mononuclear cells
MSC mesenchymal stem cells
mTOR mammalian target of rapamycin
MyoD myoblast determination protein 1
NFkB nuclear factor kappa-light-chain-enhancer of activated B
OCN osteocalcin
OPN osteopontin
OSX osterix
PI3 phosphatidylinositol 3
PK protein kinase
PTEN phosphatase and tensin homolog
RON reactive nitrogen species
ROS reactive oxygen species
Runx2 run-related transcription factor 2
SR scavenger receptor
T2DM type 2 diabetes
TAB1 TAK1 binding protein
TAK1 TGF-beta activated kinase 1
TF tissue factor
TGF-β1 transforming growth factor beta1
TNF-α tumor necrosis factor alpha
TRAIL TNF-related apoptosis-inducing ligand
VSMC Vascular smooth muscle cells
XIAP X-linked inhibitor of apoptosis protein
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