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Abstract: Aquaporins (AQPs) are a family of membrane water channel proteins that control
osmotically-driven water transport across cell membranes. Recent studies have focused on the
assessment of fluid flux regulation in relation to the biological processes that maintain mesenchymal
stem cell (MSC) physiology. In particular, AQPs seem to regulate MSC proliferation through rapid
regulation of the cell volume. Furthermore, several reports have shown that AQPs play a crucial role
in modulating MSC attachment to the extracellular matrix, their spread, and migration. Shedding
light on how AQPs are able to regulate MSC physiological functions can increase our knowledge of
their biological behaviours and improve their application in regenerative and reparative medicine.

Keywords: aquaporins; water channel; mesenchymal stem cells; physiology; cell migration;
cell differentiation

1. Introduction

Aquaporins (AQPs) are a family of transmembrane proteins that form water channels and work
as regulators of intra- and inter-cellular water transport [1]. To date, thirteen AQPs that are widely
distributed in specific cell types of various tissues have been characterised [2]. The major roles of AQPs
have been investigated in both physiological and pathological conditions, and the results highlight
their involvement in the transfer of water, gases, and small solutes (urea and glycerol), to maintain cell
homeostasis [3–5]. These proteins regulate many biological processes through their intrinsic activity
including cell proliferation, migration, apoptosis, and mitochondrial metabolism.

In addition, several studies have focused on the involvement of AQPs in intriguing aspects of
cell biology and have demonstrated that they are involved in a variety of physiological processes and
pathophysiological conditions [4,6–8].

Here, we review the current understanding about the roles played by AQPs in mesenchymal
stem cell (MSC) functions and highlight their involvement in stem cell proliferation, migration,
and differentiation.

Specific features of MSCs rely on their self-renewal ability, low immunogenicity, and the ability to
migrate, proliferate, and differentiate in different cell types [9,10]. Notably, the biological activities
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associated with MSCs migration and proliferation are of particular importance because they are
involved in tissue regeneration. Following tissue damage, MSCs are able to mobilise from the tissue of
origin and migrate through the peripheral circulation to the injured site, where they proliferate and
differentiate, thus facilitating the healing process through the activation of various mechanisms [11].

Such processes require the orchestration of multiple signals induced by mechanical (hemodynamic
forces applied to the vessel walls through shear stress, vascular cyclic stretching, and extracellular
matrix stiffness) and chemical factors (chemokines, and growth factors), that can act simultaneously.
MSCs can migrate through 3D tissue and regulate forces that induce cell deformation and act on
physical tissue constraints from the mechano-microenvironment [12].

It has also been demonstrated that the tissue source, growth factors, ageing, the microenvironment,
and hormones can influence the MSC proliferation rate. In particular, in vitro and in vivo studies have
shown that the tissue source and aging affect the properties of MSCs, including their proliferative
capacity, lifespan, and ability to differentiate efficiently [13–15]. In addition, Zhu et al. observed
that a hypoxic microenvironment can increase the proliferation of placenta-derived MSCs via the
mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway [16].
These aspects, along with the various growth factors, cytokines, exosomes, and microvesicles secreted
by MSCs [17,18] should be taken into consideration when designing strategies to enable the efficient
use of MSCs for repairing dysfunctional organs.

2. AQPs

AQPs are a family of thirteen integral-membrane water channel proteins (AQP0 to AQP12) found
in humans, animals, and plants. They can be classified into three main functional subfamilies based on
their ability to facilitate transport: AQPs, aquaglyceroporins, and a third family that is comprised of
AQPs with uncharacterised functions [2,19] (Table 1).

Table 1. Classification and permeability characteristics of AQPs.

AQP Classification Isoform
Permeability

H2O Glycerol NO H2O2
NH3 and/or
Ammonia Urea Uncertain

AQPs

AQP0 + / / / + / /

AQP1 + / + + + / /

AQP2 + / / / / / /

AQP4 + / + / / / /

AQP5 + / / + / / /

AQP6 + + / / + + /

AQP8 + + / + + + /

Aquaglyceroporins

AQP3 + + / + + + /

AQP7 + + / / + + /

AQP9 + + / + + + /

AQP10 + + / / + + /

Unorthodox-AQPs AQP11 / / / / / / +

AQP12 / / / / / / +

Bold is refers to each subgroup of AQPs comprising a number of isoforms. The symbol + indicates that the specific
AQP isoform is permeable to the specific molecule indicated.

AQP0, AQP1, AQP2, AQP4, AQP5, AQP6, and AQP8 are considered as the classical water-specific
channel proteins. In contrast, AQP3, AQP7, AQP9, and AQP10, which belong to the aquaglyceroporins
sub-family, are characterised by their permeability to water, glycerol, urea, and a few small neutral
solutes [20]. AQP11 and AQP12 represent the most distantly related paralogs as they show low amino
acid sequence identity with the other AQP family members [21]. These AQPs show non-canonical
subcellular localisation and functions.
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To date, two functional motifs, namely, Asn-Pro-Ala (NPA) [22–25]) and the aromatic-arginine
regions have been identified in the AQP sequence. The NPA region, located in the middle of the
channel, is involved in proton exclusion and contributes to the localisation of AQPs to the plasma
membrane (Figure 1). The aromatic-arginine region acts as a selectivity filter on the extracellular side
of the AQP channel and blocks the entry of molecules larger than water.
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Figure 1. Schematic representation of the Asn-Pro-Ala (NPA) motif in the aquaporin (AQP) structure.

AQPs are structurally organised as homotetramers, where each monomer (ranging from 26
to 34 kDa) is primarily composed of six transmembrane domains such that both the amino- and
carboxy-termini of the protein lie inside the cell. The highly conserved NPA motifs are located in
cytoplasmic loop B and in extracellular loop E [26]. These NPA motifs contribute to a monomeric
pore structure that facilitates selective, bi-directional, and single-file transport of water in the classical
AQPs [23] and water and glycerol in aquaglyceroporins [27].

AQPs are mainly localised to the plasma membrane, and to a lesser extent in cytosolic
compartments, where they can be transported to the plasma membrane in response to hormones and
kinase activation [28]. This localisation allows AQPs to regulate distinct processes occurring in different
cellular compartments. Studies performed in humans and other animal species have shown that AQPs
participate in a wide range of physiological functions, including water/salt homeostasis, exocrine fluid
secretion, and epidermal hydration. Moreover, AQPs contribute to pathological conditions such as
glaucoma, cancer, epilepsy, obesity in which water and small solute transport may be involved [1,24].
Of note, AQPs seem to act as modulators of adipocyte biology in obesity by facilitating glycerol release
from adipose tissue. Mechanisms associated with cell regulation as well as cell migration and signalling
have been linked to AQPs in cancer biology and metastasis development.

Molecular evidence has highlighted the importance of AQPs in facilitating multiple cellular
processes such as (1) transepithelial fluid flow regulated by osmotic water transport across cell
membranes, (2) cell migration and neuroexcitation, (3) cell proliferation mediated by glycerol transport,
(4) adipocyte metabolism, and (5) epidermal water retention [1,6,29].

In response to environmental stimuli, AQPs regulate the flow of water and small molecules
including glycerol, ammonia and urea in a tissue-specific manner to maintain their homeostasis (Table 2).
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Table 2. Distribution and principal roles of AQPs in the main body tissues.

Tissue Localisation Aqp Isoform Main AQP Roles Main References

Brain AQP1, AQP3, AQP4,
AQP6

- regulation of water homeostasis
- control of osmotic pressure for

efficient axonal conductance
[30,31]

Eye AQP0, AQP1, AQP3,
AQP4, AQP5,

- water balance maintenance in ocular
tissues to ensure transparency in
cornea and lens, in corneal
wound healing

- regulation of tear film osmolarity to
produce aqueous humor, and to
maintain retinal homeostasis

[32,33]

Reproductive Tract

Female
AQP1, AQP3, AQP4,
AQP5, AQP7, AQP8,

AQP9, AQP10, AQP11

- secretive (vagina) and absorptive
processes (utero)

- maternal-fetal fluid exchange
[34,35]

Male
AQP1, AQP2, AQP3,
AQP6, AQP7, AQP9,

AQP11, AQP12

- fluid regulation for spermatogenesis,
spermatozoa maturation and storage [34,36,37]

Heart
AQP1, AQP3, AQP4,
AQP6, AQP7, AQP9,

AQP11

- contribution to the transcellular water
flux across the endothelial membranes

- involvement in the calcium signaling
machinery at level of the cardiac and
skeletal muscle

[38,39]

Kidney
AQP1, AQP2, AQP3,
AQP4, AQP5, AQP6,

AQP7, AQP11

- maintain normal urine concentration
function, tissue development and
substance metabolism

[40,41]

Intestine

Small
AQP1, AQP3, AQP4,
AQP5, AQP8, AQP9,

AQP10

- involvement in fluid absorption
and secretion [4,42]

Large
AQP1, AQP3, AQP4,
AQP5, AQP6, AQP7,
AQP8, AQP9, AQP11

- regulation of water absorption [4,42]

Liver AQP1, AQP3, AQP7,
AQP8, AQP9, AQP11

- canalicular and ductal bile formation [43–45]

Lung AQP1, AQP3, AQP4,
AQP5

- regulation via transcellular pathway
of water across the lung microvascular
endothelium and epithelia

[46]

Salivary glands AQP1, AQP3, AQP4,
AQP5, AQP8

- saliva secretion process [47,48]

Skin AQP1, AQP3, AQP5,
AQP9, AQP10

- hydration, wound healing, and skin
epidermis homeostasis [49]

Stomach AQP1, AQP3, AQP4,
AQP5, AQP7, AQP11

- contribution in secretion of
gastric fluid [42,50]

Bold indicates the tissue containing different Aqp isoforms.

Water and fluid transport across the cell membrane are an important prerequisite for maintaining
cell homeostasis and volume, which are factors that regulate several cell functions. Hoffmann and
co-workers showed the importance of AQPs in the biological processes associated with changes in cell
volume such as migration, inflammation, proliferation and cell death [51].
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In particular, it has been observed that several factors (osmolality, modifications in the
transmembrane ion gradients that generate an osmotic imbalance) that regulate cell volume through
AQPs also influence processes that affect cell proliferation [52–56].

Of note, many findings support the hypothesis that AQP expression correlates with the different
phases of the cell cycle [57–61]. The overexpression of AQP1 and AQP3 has been shown to affect the
expression of essential checkpoint proteins, such as cyclins, and modify the levels of transcription
factors and cytokines [62,63]. Delporte et al. [57] showed the involvement of AQP1 in the cell cycle
regulation of an epithelial cell line. High levels of AQP1 mRNA and protein expression were found
during the G0/G1 phase, whereas a significant decrease in mRNA and protein expression was observed
in the S and G2/M phases. Moreover, AQP2 expression has been shown to accelerate the proliferation
and cell cycle progression of the renal cortical collecting-duct cells by decreasing the transit time
through the S and G2/M phases, possibly by increasing the cell volume [60].

Additionally, the altered function of AQPs is often correlated with pathological conditions.
Nephrogenic diabetes insipidus and congenital cataracts are genetic diseases caused by loss-of-function
mutations in AQPs [64,65]. Pathogenic autoantibodies against astrocyte specific AQP4 contribute
to the development of the neuroinflammatory demyelinating disease, neuromyelitis optica [29,66].
Recent studies have shown an association between AQP polymorphisms and diseases such as
cognition-related disorders, Alzheimer’s [67], and mesothelioma [68]. While the functional link
between AQPs and these diseases needs to be investigated further, these data suggest that AQPs can
be used as potential biomarkers for severe and disabling diseases. Moreover, there is a great interest in
the development of therapeutic strategies using small-molecule modulators with the ability to target
AQP function.

3. MSCs

MSCs are an exclusive class of plastic-adherent, adult stem cells present in most body tissues that
are characterised by their ability to self-renew and differentiate into a variety of mesenchymal tissues,
including bone, cartilage, adipose tissue, neurons, and haematopoietic cells [69,70].

The primary sources of human MSCs include the bone marrow (BM) [71], adipose tissue [72,73],
umbilical cord [74] and placenta [75] (Figure 2).

In the last decade, MSC populations have been discovered in other tissues like skeletal muscle [76],
dermal tissue [77], olfactory bulb [78], and dental pulp [79]. Recently, they have also been found in
tumour microenvironments, thus supporting tumour progression [80–83] through the stimulation of
mitogen and stress signalling as well as potentiating resistance to treatments [84–86].

MSCs normally show a high rate of cell proliferation, which makes them extremely useful in
regenerative medicine and tissue engineering. Furthermore, the use of MSCs is associated with low
tumorigenicity and relatively few ethical restrictions. MSCs show pleiotropic activity on different body
tissues and can be easily isolated from different autologous or allogeneic sources [87]. These properties
make MSCs a potential and promising candidate in the field of regenerative medicine.

While the application of MSCs in musculoskeletal disorders [88,89] and other degenerative
diseases [90] is well-studied, the other more complex approaches require further analysis of the MSC
physiology. Furthermore, analysis of the abilities of MSCs in regenerative medicine using in vivo
approaches has shown that tissue regrowth is not exclusively linked to MSC (trans)differentiation,
but rather to autocrine and paracrine signalling factors secreted by MSCs in response to local stimuli [91],
growth factors [92] and inflammatory mediators [93]. Future studies aimed at designing functional
tissues or organs should focus on cell proliferation and the related regulatory mechanisms, and on the
identification of cell proliferation markers rather than cell cycle activity.
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Recently, it was reported that intracellular potassium (K+) is involved in human MSC proliferation
and cell cycle regulation. Marakhova et al. [94] showed that a decline in K+ levels is associated with
an accumulation of cells in the G1 phase and a delay in proliferation. Moreover, K+ levels have also
been found to be correlated with MSC age, which highlights the importance of this ion in stem cell
proliferation and its potential application as a biomarker.

Notably, K+ has been shown to act as a key player with an active role in cell cycle progression and
cell volume adjustment [53,95–98]. Using the K+ channel blocker tetraethylammonium (TEA), it was
found that a decrease in the inward Rb+(K+) leakage and a delay in the cell cycle were associated with
a decrease in cellular K+ content per milligram protein. These results suggest that cycling MSCs have a
higher water content per milligram protein than quiescent or differentiated cells.

However, it is important to bear in mind that the proliferative ability of MSCs depends on several
variables, including tissue donor age, passage number, and plating density [99–101]. Additionally,
the composition of the growth medium, including the presence of specific cytokines and growth factors,
can stimulate MSC proliferation and affect the physiological properties of these cells such as motility,
morphogenesis, and survival.

MSCs can differentiate into several cell types, including osteoblastic, chondrogenic, and adipogenic
lineages. Recent studies showed that MSCs can also differentiate into neuronal and cardiomyogenic
lineages. MSC differentiation is determined by a complex, multi-step process that is coordinated
by specific regulators [102]. For example, Runx2 and Osterix are master regulators for osteogenic
differentiation [103], while peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer
binding protein β are important factors promoting adipogenesis [104]. Moreover, specific stimuli
including bone morphogenetic proteins and wingless proteins (Wnts), magnetic field stimulation,
and dexamethasone and ascorbate supplementation of osteogenic media can facilitate MSC
differentiation into osteoblasts [105–111]. This selective ability to promote osteogenic differentiation
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has enormous clinical implications, thus supporting MSC application in the field of bone regenerative
medicine, tissue engineering, and preventive therapies for bone metabolism diseases, such as
osteoporosis and fracture healing.

MSCs can also be stimulated to differentiate into neurons expressing markers of nervous system
cells, such as nestin, β-III tubulin, microtubule associated protein 2 (MAP2), and neuron-specific
enolase 2 (ENO2) [112,113]. Using mouse adipose-derived MSCs, Pavlova et al. have shown that
brain-derived neurotrophic factor (BDNF) or retinoic acid is more efficient in increasing neuronal
marker expression compared to other routinely used protocols [114]; this highlights the importance of
these factors in promoting cell differentiation. Again, further in vivo studies have shown that induced
MSCs with BDNF or retinoic acid and transplanted into mouse brains have a higher migration rate
compared to controls [112].

In response to treatment with specific factors, MSCs can also differentiate into endodermal
lineages, including cardiomyocytes, hepatocytes, and ectodermal neuronal-lineage cells [73] through
the mesengenesis mechanism. By means of this process, MSCs also give rise to myoblasts, bone marrow
(BM) stromal cells, fibroblasts, and cells that comprise the connective tissue of the body including
ligaments and tendons [115].

Cell migration is a complex process, orchestrated by signal transduction, cytoskeleton
rearrangement, and morphogenesis and occurs through four distinct steps: cell polarisation, protrusion,
adhesion and rear retraction [116]. Multiple mechanical and chemical factors act as regulators of cell
migration, conveying signals from the extracellular matrix to the cellular adhesion complex, where the
focal adhesion kinase (FAK) plays a crucial role [117]. Previous studies have shown that cell migration
plays a pivotal role in regenerative medicine in guiding MSCs to the damaged sites and promoting
regeneration. However, the use of chemo-attractants, like chemokines secreted by injury sites can
further improve MSC recruitment to injured tissues, thus enhancing the natural healing process [118].

4. Physiological Roles of AQPs in Driving MSC Function

Research performed over the last decade has found that AQPs are expressed in several stem cell
types, which suggests their involvement in a variety of physiological processes [119,120]. However,
their exact functional role in MSCs remains to be completely clarified, albeit some aspects of AQPs
role in regulating MSC behaviour in certain disorders (acute lung injury, hepatocarcinoma) have been
studied using animal models of disease. These studies have facilitated a better understanding of the
molecular pathways underlying MSC involvement in these diseases [121–123].

The presence of AQPs in the apical membranes of different MSCs, their co-localisation with other
systems such as the Na+/K+ ATP pump, and the effect of AQP inhibitors including HgCl2 and TEA
suggest that AQPs may regulate the migration and differentiation of MSCs [119]. The involvement of
AQPs in various aspects of stem cell biology is related to their capacity to regulate the flux of fluids
between the outer and inner cellular compartments to maintain homeostasis. Interestingly, the control
of stem cell volume is an important prerequisite for the regulation of various stem cell properties,
including proliferation, migration and differentiation.

Experiments using human BM-MSCs demonstrated that the attachment, spread, and migration
of stem cells are accompanied by water efflux and cell volume reduction, which in turn, correlate
with the strength of the attachment [124]. The introduction of the AQP1 gene increases the migration
ability of MSCs. These results have been confirmed by in vivo experiments showing that the injection
of MSCs expressing AQP1 in a rat tibia fracture model enhances bone healing compared to the
injection of non-transfected MSCs. This study suggests that the AQP1-mediated improvement in
MSC migration likely occurs through the modulation of β-catenin and FAK expression [125] (Table 3).
In addition, our recent findings highlight the crucial role played by AQP1 along with C-X-C chemokine
receptor type 4 (CXCR4) in regulating ovine MSC (oMSC) migration through the activation of the
serine/threonine protein kinase (Akt) and extracellular signal-regulated kinase (Erk) intracellular signal
pathways [126] (Table 3).
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Table 3. Involvement of AQPs in different aspects of stem cell biology in health and diseases.

Stem Cell Type Aqp Isoform AQP Role Reference

MSCs
AQP1 - Migration [125–127]

AQP1, AQP3, AQP4, AQP7 - Differentiation [127,128]

progenitor MSC AQP3 - Differentiation [127,129]

glioblastoma
stem-cell AQP4, AQP9

- AQP9 involvement in the
tumorigenicity process [130]

NSCs
AQP4

- Proliferation, migration
and differentiation [131,132]

AQP8
- Mitochondrial volume

regulation during
NSC differentiation

[133]

AQP9 - Differentiation [131]

EPSCs AQP5
- Regulation of the balance

between proliferation
and differentiation

[120]

LCSCs
AQP3

- Proliferation and invasion
- Stemness, differentiation

and apoptosis
[134,135]

AQP9
- Possible role in inducing

CSCs death [136]

Lung CSCs AQP4 - Migration [137]

CSCs AQP4 - Migration [137]

Accumulating evidence has shown that AQPs are involved in the function of the brain and central
nervous system (CNS) by either maintaining water homeostasis or regulating cerebrospinal fluid
secretion and absorption, as well as fluid transport across neutrophils, cell volume regulation, and
central osmo-reception [31,138]. Among the AQPs, AQP1 [139], AQP4 [140–142], and AQP9 [143,144]
play a central role in CNS-related diseases including cerebral oedema, brain tumours and epilepsy.

More recently, further studies have demonstrated that alteration in AQPs expression is the main
cause of water balance dysregulation in the CNS at both the cellular and subcellular levels, and it is
responsible for the pathogenetic profile of different diseases such as focal oedemas, brain tumours,
brain ischaemia, and traumatic injuries [145–148]. The brain water content and swelling of the astrocyte
foot have been found to be significantly reduced in a brain oedema mouse model that lacks AQP4 [149].

AQPs seem to play a specific role during neurogenesis as neural stem cells (NSCs) are able to move
considerable amounts of water across the cell, thus rapidly changing the cell volume. La Porta et al. [133]
(Table 3) showed that AQP8 (localised in mitochondria) regulates water balance in adult NSCs
(ANSCs) by mediating the osmotic movement of water between the cytoplasm and the mitochondrial
compartment. Interestingly, in vivo studies carried out on rat models have reported similar localisation
of AQP8 in other cells of the brain, which suggests a possible role of this mitochondrial isoform in
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many physiological functions including metabolism and apoptosis, as well as in the pathogenesis of
neurological diseases such as Parkinson’s [150]. Cavazzin et al. [130] used molecular and phenotypical
characterisation to show that AQP4 and AQP9 expression is important in the differentiation of
murine ANSCs present in the subventricular zone (SVZ). In particular, immunohistochemistry analysis
demonstrated that ANSC-derived glial cells express low levels of AQP4 and display high levels of
glial fibrillary acidic protein (GFAP), when astrocytes express high levels of AQP4 and low levels of
GFAP. In contrast, while the occurrence of AQP9 is limited to a few cells, those cells that express AQP4
and AQP9 also co-express GFAP. These differences in the subcellular localisation of AQPs among
the various ANSC-derived glial cells have led to the hypothesis that the physiological activity of
AQPs is cell-specific (Table 3). Li et al. [151] showed that AQP4 is involved in NSC regulation and
co-localises with gamma-aminobutyric acid A receptors (GABAARs) in the subependymal zone (SEZ).
This result is intriguing considering that the activation of GABAARs induces hyperpolarisation and
osmotic swelling in precursor cells, and thus promotes surface expression of the epidermal growth
factor receptor and cell cycle entry. Other studies have investigated the role played by AQP4 in
the proliferation, migration, and differentiation of ANSCs in vitro using AQP4-knockout mice [132].
Evaluation of connexin 43 and Cav.1.2 expression during the proliferation or differentiation of ANSCs
showed that AQP4 in knockout mice causes significant downregulation of the expression of these
proteins, which highlights the involvement of AQP4 in the self-renewal, migration and proliferation
of ANSCs. In addition, the authors hypothesised that AQP4 regulates the migration of ANSCs
through a multi-step process involving: (1) Ca2+ influx; (2) actin depolymerisation; (3) an increase in
cytoplasmic osmolality; (4) cell membrane expansion with subsequent protrusion formation, and (5)
actin re-polymerisation to stabilise the emerging protrusion. Taken together, these findings suggest
that AQP4 can regulate the fundamental properties of ANSCs through the Ca2+-related signalling
pathway [130] (Table 3).

The characterisation of the neural differentiation process of (Ad)-MSCs demonstrated the
involvement of AQPs in this process and suggested their role in helping the cells to achieve rapid
regulation of the volume during differentiation [128]. In particular, immunohistochemistry, Western
blotting, and RT-PCR-based data showed that differentiated neuronal cells arising from sources
other than Ad-MSCs, which express AQP1, also express AQP4, and AQP7 based on the cell type,
thus suggesting a correlation between neural differentiation and the AQP expression profile during
adult neurogenesis [128] (Table 3). Ma and co-workers [152] underlined the importance of AQP5 in
modulation of the BM-MSCs differentiation using a mouse model of bone fracture. Accordingly, they
found that a lack of AQP5 significantly increases the levels of adipogenic, osteogenic, and chondrogenic
differentiation markers in mutant BM-MSCs [152]. Notably, BM-MSCs derived from knockout mice
treated with the apoptotic drug, paclitaxel displayed an improvement in the bone healing process
as well as a lower apoptosis rate, thus suggesting a modulatory role of AQP5 in slowing down
BM-MSC differentiation.

In a previous study, it was reported that AQP1 and AQP3 expression is modulated during human
MSC differentiation into chondrocytes [126]. These studies showed that during MSC differentiation,
AQP1 and AQP3 expression increases substantially and is associated with high concentrations of
collagen type II, aggrecan, and lubricin, thus demonstrating the relationship between these channel
proteins and chondrocyte- ECM adhesion and migration [126] (Table 3).

Recently, Chen et al. [153] showed that AQP1 is expressed in rat tendon stem/progenitor cells
(TSPCs) and that this expression is regulated during TSPC senescence through the JAK-STAT pathway.
Similarly, Zhou J. et al. [120] found that AQP5 expression in human epidermal stem cells (EPSCs)
decreases with skin ageing, suggesting that this channel protein has a critical role in regulating the
balance between proliferation and differentiation [120] (Table 3).

AQPs are also regarded as key modulators of cancer stem cells (CSCs). Recent studies have shown
that high levels of AQP expression in cancer cells and CSCs correlate with metastasis and resistance to
therapies [154]. It has been reported that AQP3 affects the Wnt/GSK-3β/β-catenin pathway in liver



Cells 2020, 9, 2678 10 of 17

CSCs (LCSCs), and modulates their stemness, differentiation, and apoptosis [135]. Other studies have
identified AQP4 as the most abundant AQP in nasopharyngeal and lung CSCs and have shown its
involvement in the regulation of large volumetric changes related to an increase in death rate [155].
Using a novel electro-osmotic microfluidic system that controls cell osmolarity gradients, AQP4
expression has been shown to be directly correlated with the speed of cell migration [137] (Table 3).
In addition, when the expression of AQP4 is suppressed via siRNA, the CSC migration capability
as well as the expression of stemness biomarkers such as Sox-2 or Oct-4 are significantly reduced.
Other studies have shown that AQP0–AQP12 are highly expressed in human glioblastoma stem-like
cell lines [130] and primary tumours [156,157]. Fossdal et al. [130] have described the involvement
of AQP1, AQP4, and AQP9 in CSC function in glioblastoma and observed an upregulation of AQP9
levels and a downregulation of AQP1 and AQP4 levels (Table 3). These data indicate the specific role
of AQP9 in facilitating CSC migration towards the surrounding normal tissues.

5. Conclusions

Recently, several studies have described the involvement of AQPs in regulating the functions of
MSCs derived from different tissues. The classical role of AQPs in fluid transport has been postulated as
a mechanism underlying the migration, proliferation, and differentiation of stem cells. Further studies
elucidating how these water channels might participate in the control of stem cell functions in both
physiological and pathological conditions could facilitate the use of MSCs in regenerative medicine.
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