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Abstract: Cytokinins (CKs) and ethylene (ET) are among the most ancient organic chemicals on Earth.
A wide range of organisms including plants, algae, fungi, amoebae, and bacteria use these substances
as signaling molecules to regulate cellular processes. Because of their ancestral origin and ubiquitous
occurrence, CKs and ET are also considered to be ideal molecules for inter-kingdom communication.
Their signal transduction pathways were first historically deciphered in plants and are related to the
two-component systems, using histidine kinases as primary sensors. Paradoxically, although CKs
and ET serve as signaling molecules in different kingdoms, it has been supposed for a long time that
the canonical CK and ET signaling pathways are restricted to terrestrial plants. These considerations
have now been called into question following the identification over recent years of genes encoding
CK and ET receptor homologs in many other lineages within the tree of life. These advances shed
new light on the dissemination and evolution of these hormones as both intra- and inter-specific
communication molecules in prokaryotic and eukaryotic organisms.
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1. CK and ET Signaling in Plants: Beyond the Arabidopsis Paradigm

Historically, cytokinins (CKs) and ethylene (ET) were primarily known as two prominent
types of plant hormone (i.e., phytohormones) that regulate many aspects of plant development and
physiology [1,2]. CKs share a common structure of N6-substituted adenine, with biological activities
defined by the N6-substituent of isoprenoid or aromatic origin. They have pleiotropic functions.
For instance, they were originally described as the major hormones regulating cell division but are
also implicated in the control of morphogenesis and embryogenesis and inhibition of senescence.
Conversely, ET is a simple gas, often referred to as the senescence hormone in plants, acting to stimulate
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senescence of leaves and petals as well as the ripening of fruits. Both CK and ET are also well known
to orchestrate plant responses to many types of biotic and abiotic stresses [1,2].

Because of their primary importance in plants, many investigations initiated in the 1980s aimed at
identifying the sensing and transduction pathways of CK and ET in the model plant Arabidopsis. During
the 2000s, these studies led to increasingly complex models with details about the mechanistic events
governing CK and ET signaling (Figure 1A,B) [3,4]. Both phytohormone sensing circuitries in plants
are related to the two-component systems typically described in prokaryotes [5,6]. More specifically,
it is now well established that CKs and ET are perceived by two types of membrane-bound histidine
kinase receptors, CRE1 and ETR1, respectively (Figure 1C) [7,8]. Importantly, CKs are perceived
by the cyclase/histidine kinase-associated sensing extracellular (CHASE) domain of CRE1 (in pink,
Figure 1A), whereas ET interacts with the ethylene-binding domain (ETBD) of ETR1, which consists
of three transmembrane helices (in sky blue, Figure 1B) [9–11]. Mechanistically, the two pathways
use fundamentally different families of downstream modules [5]. Based on a recent increase in
Archaeplastida genomic resources, ranging from unicellular algae to land plants, there are now firm
data showing that CK and ET sensing emerged in the green lineage, together with the corresponding
biosynthetic pathways, during the terrestrialization process [12–16].

Figure 1. Perception and transduction of cytokinin (CK) and ethylene (ET) signals in the model plant
Arabidopsis. (A) The cytokinin signaling pathway. The perception of CKs in Arabidopsis primarily involves the
perception of these hormones by dimerized receptors such as the CRE1 receptor via the cyclase/histidine
kinase-associated sensing extracellular (CHASE) domain. CRE1 then auto-phosphorylates (histidine
kinase (HK) activity) and immediately transfers its phosphate group to the conserved histidine of a
protein belonging to the histidine-containing phosphotransfer (HPt) family. This small protein then
acts as a cytoplasm-to-nucleus shuttle and in turn phosphorylates a type B response regulator, which,
when activated, positively regulates the transcription of response genes to the CK signal. (B) The ET
signaling pathway. Ethylene molecules are detected by ethylene receptors (epitomized here by ETR1) with
ethylene binding to the three transmembrane helices (in sky blue). Binding of ET to the dimerized ETR1
receptor downregulates its activity. In the absence of ET, ETR1 activates the serine/threonine kinase CTR1.
The CTR1 protein then phosphorylates the EIN2 protein located in the ER membrane, leading to the
proteolysis of EIN2. In the presence of ET, ETR1 activity is reduced, leading to less CTR1 activity; this leads
to lower phosphorylation and accumulation of EIN2 protein and subsequent activation of the EIN3 and
related transcription factors. EIN3 then positively regulates the transcription of ET signal response genes.
(C) The domain structure of the Arabidopsis ET (ETR1) and CK (CRE1) receptors.
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Although it has been known for many years that a wide array of non-plant organisms are able
to synthesize and perceive both hormones, it has been supposed that canonical CK and ET signaling
pathways are restricted to terrestrial plants [17,18]. In this viewpoint article, we first provide a summary
of recent advances that have overturned this idea by showing that these signaling pathways are
probably present in highly diversified prokaryotic and eukaryotic lineages. We then discuss the main
evolutionary lines that have probably led to the currently observed distribution of CK and ET receptors
within the tree of life.

2. CK and ET Signaling in Bacteria

Various prokaryotes are capable of producing both CK and ET [19,20]. Although the biosynthesis
of both hormones as cell-to-cell communication molecules in prokaryotes is not a new observation,
the discovery of sensing circuitries for these molecules in prokaryotes is more recent. For instance,
it was shown a few years ago that the Gram-negative bacterium Xanthomonas campestris, which causes
black rot disease in crucifers, is capable of perceiving the cytokinin N6-isopentenyladenine (iP) from
the host plant using the PcrK histidine kinase receptor (Figure 2A). Sensing of plant-derived CKs
by the bacterium leads to the expression of many genes, including those involved in resistance to
oxidative stress, thus enhancing bacterial resistance to the host’s defenses [21,22]. Another study
recently provided evidence that the cyanobacterium Nostoc encodes a CK receptor homolog (Figure 2B),
although it has yet to be demonstrated to be a functional receptor [23]. Most of the advances
concerning ET signaling in prokaryotes were gained from studies of the cyanobacterium Synechocystis
(Figure 2C) [20,24,25]. Although the occurrence of putative ET receptors in cyanobacteria has been
known for over 20 years [26], it was only recently that data emerged suggesting that the slr1212 gene
encodes a bona fide ET receptor governing various processes underlying cell motility [20].

Figure 2. Current knowledge concerning CKs and ET signaling in bacteria. (A) In the phytopathogenic
bacterium Xanthomonas campestris, PcrK is a CHASE-domain-containing HK receptor that binds the
plant-produced CK N6-isopentenyladenine (iP). iP perception decreases PcrK HK activity and concomitantly
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the phosphorylation level of PcrR, the cognate RR of PcrK, to promote the phosphodiesterase
activity of PcrR in degrading the second messenger (3′,5′-cyclic di-guanylic acid). This four-step
phosphorelay signaling chain improves bacterial tolerance to oxidative stress by orchestrating the
expression of a series of virulence-associated genes. (B) In the cyanobacterium Nostoc sp., all2875 is a
CHASE-domain-containing HK receptor that moderately binds iP and, with lower affinity, trans-zeatin.
(C) ET signaling in the cyanobacterium Synechocystis sp. ET negatively regulates the ETR-like protein
slr1212, which putatively signals to a downstream response regulator protein, slr1213. The GAF domain
binds a chromophore and functions as a light receptor, making this a bifunctional receptor. (D) Some
other examples of domain arrangement for CK and ET receptor homologs found in various bacteria.

An increasing amount of genomic data suggests that CK and ET receptors have evolved and
diversified throughout the prokaryotic domain. For instance, potential CK receptor homologs with
CHASE domains are found in various plant pathogenic and symbiotic bacteria (Figure 2D) [27].
Similarly, many species of proteobacteria and cyanobacteria possess genes that are predicted to encode
proteins with an ETBD [28]. These proteins show a wide range of putative output domains, from simple
to complex, and even domains not found in plant receptors (Figure 2D). Altogether, this shows us that
these prokaryotic CK and ET receptor homologs are likely to have diverse biochemical outputs and
may also integrate multiple input signals in addition to CKs and ET.

3. CK and ET Signaling in Opisthokonta

The Opisthokonta lineage includes animals (Metazoa), fungi, choanoflagellates, and Mesomycetozoa,
and therefore represents a supergroup of morphologically highly diversified species [28]. A recent
phylogenomic analysis identified a putative ET receptor in Capsaspora owczarzaki, a representative in
the closest known unicellular clade relative of animals, i.e., the Mesomycetozoa (Figure 3A) [29]. Thus,
an ET signaling pathway was possibly present in the ancestors of animals where it would have
regulated unknown cellular processes. However, if true, this feature was lost early during the evolution
of the multicellular animal lineage.

Figure 3. CK and ET signaling pathways potentially present in Opisthokonta. (A) The Mesomycetozoa
Capsaspora owczarzaki is a representative of the closest known unicellular clade to animals. A recent
phylogenomic analysis identified an ET receptor homolog in this species, CowczHK2. (B) A putative
CK receptor was recently identified in the clade of Glomeromycotina. (C) Glomeromycota genomes
also encode homologs of plant ET receptors, but their functions remain undefined. For a domain key,
please refer to Figure 2.
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Whereas typical histidine kinase proteins are lacking in Metazoa, it has been known for more
than two decades that this family of prominent sensing proteins expanded in the fungal kingdom
with a distribution related to their different lifestyles [30,31]. However, although it was previously
established that both fungal- and plant-produced CKs and ET play crucial roles in orchestrating some
features of the various modes of fungi–plant interaction (symbiosis or pathogenicity), how fungi
sense CKs and ET has remained elusive [32–38]. Recent genomic resources from early-diverging fungi
(EDF) revealed that plant-like CK and ET receptors appeared early in the evolution of fungi [39].
This trait is particularly noticeable in the EDF that closely interact with roots or decaying plant
material. Supporting this idea, CK and ET receptor homologs were recently identified in the clade
Glomeromycotina, which includes obligate symbionts that colonize more than half of the plant
population on earth (Figure 3B,C) [40]. The presence of these receptor homologs, coupled with prior
data showing a pivotal role of plant-derived CKs and ET in various Glomeromycota–plant interactions,
as well as recent descriptions of CK and ET biosynthesis in EDF, [41] strongly suggest the hypothesis
that early in evolution, even before the terrestrialization process, plants and fungi developed and
retained closely related CK and ET receptors that are likely to be important for cross-kingdom signaling.
Therefore, CK- and ET-mediated communications have probably played an essential role in land
colonization by plants and fungi.

4. CKs and ET Signaling in Amoebozoa

Although they sometimes develop as social organisms, most Amoebozoa are unicellular and
are described as behaving either as free-living cells in water and soils or as parasites of humans and
other eukaryotes [28]. This may explain why the histidine kinase sensor family has expanded in these
protists to dynamically sense environmental cues [29].

Little information is available concerning the occurrence of CKs and ET signaling pathways in
Amoebozoa. Six different CKs were recently identified in the slime mold Dictyostelium discoideum
(Figure 4A) [42]. CKs were previously shown to coordinately orchestrate the different developmental
stages of this social amoeba, especially spore formation [43–45]. In this regard, the D. discoideum DhkA
histidine kinase sensor contains a CHASE domain and was also shown to play a role in sporulation
(Figure 4B) [46]. To date, there is no evidence that DhkA has a role in transmitting the CK signal.

Figure 4. CKs produced in slime molds and CK and ET signaling modules in Amoebozoa. (A) Six different
CKs were identified recently in the slime mold D. discoideum. CKs were previously shown to coordinately
orchestrate the different developmental stages of this social amoeba, especially spore formation.
(B) The D. discoideum DhkA histidine kinase sensor contains a CHASE domain and was also shown to
play a role in the CK-controlled sporulation process. To date, genetic evidence for a role for DhkA in
transmitting the CK signal is still lacking. (C) Recent phylogenomic analysis revealed the presence
of ET receptor homologs in free-living amoebae (Acanthamoeba and Balamuthia sp.), but not in other
Amoebozoa clades.
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More recent phylogenomic analysis revealed the presence of putative ET receptors in free-living
amoebae (notably Acanthamoeba and Balamuthia sp.) (Figure 4C) but not in other Amoebozoa clades [29].
As hypothesized above for Mesomycetozoa, it is likely that ancestral amoebae developed ET receptors
and sensing circuitries for cell-to-cell communication, but lost this transduction system during the
evolutionary paths to extant Amoebozoa [17].

The Stramenopiles, Alveolates, and Rhizaria (SAR) supergroup includes highly diversified
unicellular and multicellular organisms ranging from algal and planktonic species to ciliates and
oomycetes [28]. Analysis of growing SAR genomic resources indicates that CK and ET receptors
homologs are not widespread in this lineage. However, some CK and ET receptor homologs were
recently identified in several SAR clades including zooxanthellae, chromerids, free-living pseudofungus,
filamentous marine protists, diatoms, and brown algae (Figure 5) [17,29]. Analysis of domain
arrangements from these putative CK and ET sensing proteins suggests that these receptors may
have a broad range of biochemical outputs. To date, no functional studies have been performed on
these candidate proteins to determine if they are involved in the perception of CKs or ET. However,
it cannot be ruled out that future research on these particular organisms will show a major role for these
hormones and their signaling pathways in the physiological processes closely linked to their specific
lifestyles in various aquatic environments. Based on genome analysis, evidence indicates possible
exchanges of histidine kinase genes between brown algae and giant DNA viruses [47]. Such exchanges
suggest a possible role for viruses as mediators of horizontal transfers of CK and ET receptors between
eukaryotic lineages. This may be an important factor in understanding phylogenetic relationships
between genes and their distribution across the different branches of the tree of life.

Figure 5. Examples of domain arrangements for CK and ET receptor homologs found in various
members of the Stramenopiles, Alveolates, and Rhizaria (SAR) supergroup.

5. Viewpoint: An Evolutionary Perspective of CKs and ET Perception within the Tree of Life

Given the diversity of organisms that contain putative CK and ET receptors, it is time to update
the viewpoint that CKs and ET are solely hormones that affect plants. At present, only a small
community of specialists on these hormones considers a much broader role for CKs and ET in the
physiology of non-plant organisms and their research shows that these molecules are among the oldest
and most widespread intra- and interspecific communication molecules [17,18]. It is likely that both
classes of molecule arose during Earth’s early history, since CKs could have appeared first as modified
nucleic acid byproducts and since ET is produced by many microbes and is abiotically generated
from interactions of light with dissolved organics [19,48,49]. Biosynthesis of CKs and ET occurs in
diverse prokaryotic and eukaryotic lineages [11,20,41,42,50–54]. In addition, ever-expanding genomic
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resources indicate that homologs of plant CK and ET receptors occur widely in basal lineages of the tree
of life [17,29,39]. Taken together, all these elements support the idea that CKs and ET were probably
broadly present on the ancient Earth and that these simple compounds were co-opted as signaling
molecules by early organisms.

Given this, future research needs to explore the roles of these receptors and delineate signaling
pathways in more non-plant species. These analyses should include tests of whether the putative
receptors bind CKs or ET. If they do, it will be important to investigate the physiological roles of binding
in the organism [55,56]. In many cases, it will also be relevant to determine the biochemical outputs
and subcellular locations of the receptors to fully understand their functions in the cell [57,58]. Finally,
it will be necessary to continue to refine the phylogenetic analyses of these receptors to understand
how they arose and evolved in prokaryotes and non-plant eukaryotes.

Another important perspective in the field thus concerns the search for mechanisms of
phytohormone perception in organisms that use these signals in their interactions with plants, in both
symbiotic and pathogenic contexts. For instance, although it has been known for many years that
insects are able to manipulate plant CKs, it has only very recently been proposed that arthropods also
synthesize CKs [52,59,60]. Similarly, there is increasing evidence of roles for fungal CKs in promoting
the virulence of plant pathogenic molds (filamentous Ascomycota) [34,37]. A final and important
example in this respect is the ability of plant-parasitic nematodes to synthesize CK derivatives to
manipulate the host system and establish long-term parasitic interactions [61,62]. These recent studies
strongly justify the search for molecular perception mechanisms in these models. Finally, the studies
highlighted above show the importance of conducting similar investigations on other phytohormones,
such as brassinosteroids, auxins, strigolactones, jasmonates, salicylic acid, abscisic acid, and gibberellins,
given their roles in various types of plant biotic interactions [63,64].

The next decade of active research in this field will shed new light on the dissemination and
evolution of phytohormones as both intra- and inter-specific communication molecules in prokaryotic
and eukaryotic organisms.
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