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Abstract: Heteromorphic sex chromosomes, particularly the ZZ/ZW sex chromosome system of 
birds and some reptiles, undergo evolutionary dynamics distinct from those of autosomes. The W 
sex chromosome is a unique karyological member of this heteromorphic pair, which has been 
extensively studied in snakes to explore the origin, evolution, and genetic diversity of amniote sex 
chromosomes. The snake W sex chromosome offers a fascinating model system to elucidate 
ancestral trajectories that have resulted in genetic divergence of amniote sex chromosomes. 
Although the principal mechanism driving evolution of the amniote sex chromosome remains 
obscure, an emerging hypothesis, supported by studies of W sex chromosomes of squamate reptiles 
and snakes, suggests that sex chromosomes share varied genomic blocks across several amniote 
lineages. This implies the possible split of an ancestral super-sex chromosome via chromosomal 
rearrangements. We review the major findings pertaining to sex chromosomal profiles in amniotes 
and discuss the evolution of an ancestral super-sex chromosome by collating recent evidence 
sourced mainly from the snake W sex chromosome analysis. We highlight the role of repeat-
mediated sex chromosome conformation and present a genomic landscape of snake Z and W 
chromosomes, which reveals the relative abundance of major repeats, and identifies the expansion 
of certain transposable elements. The latest revolution in chromosomics, i.e., complete telomere-to-
telomere assembly, offers mechanistic insights into the evolutionary origin of sex chromosomes. 
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1. Introduction 

A fundamental aspect of the life history of sexually reproducing organisms is the fusion of 
haploid gametes produced by meiosis through the mechanisms of independent assortment and 
genetic recombination of chromosomes from two parental genomes to form a zygote. This contributes 
to the phenotypic diversity at population and species levels arising from natural selection during the 
course of evolution. Sex determination is the process by which organisms develop as either male or 
female, and it exhibits remarkable mechanistic diversity and turnover among species. The 
mechanisms range from environmental sex determination (ESD), where sexes do not differ in 
genotype, to genotypic sex determination (GSD) resulting from homomorphic to highly 
differentiated heteromorphic sex chromosomes as either male heterogametic (XX/XY) or female 
heterogametic (ZZ/ZW) [1–3].  

Amniotes diverged into two major lineages comprising Synapsida, including all living 
mammals, and Sauropsida, including all extant non-avian reptilian and avian species, with 
substantial variation in sex determination mode [4,5]. Sex chromosomes classically evolve from a pair 
of autosomes (proto sex chromosomes) after one autosome acquires a sex-determining locus [6]. This 
locus is located on the Y or W sex chromosome and is restricted to a single sex, which affects 
subsequent processes in the adjacent region as sexually antagonistic genes. To produce a novel allele 
or gene, a genetic variant must gain control over the sex determination cascade, which is subject to a 
master sex-determining gene [6,7]. This might have occurred through a point mutation causing gene 
knockout and loss-of-function, or creating a novel function and regulatory change [8–13]. The master 
sex-determining gene can act in a dominant fashion on the Y or W sex chromosomes, where one copy 
is needed to determine maleness (on a Y sex chromosome) or femaleness (on a W sex chromosome), 
such as SRY in mammals or in a dose-dependent manner on the X or Z sex chromosomes, where two 
functional copies are needed for femaleness (on the X sex chromosome) or maleness (on the Z sex 
chromosome) [6,7]. Regions around this master sex-determining locus progressively stop 
recombination with their respective homologous regions on the X/Z counterparts [6,7]. This 
suppression of recombination might be involved with the selective advantage and preservation of 
linkage disequilibrium between sex-determining and sexually antagonistic genes, leading to multiple 
formations of evolutionary strata in sex chromosome evolution and differentiation [6,14–19].  

Cessation of recombination triggers structural changes, predominantly on the Y or W sex 
chromosomes, including accumulation of deleterious mutations, degradation of gene content, 
accumulation of repeats, heterochromatinization, and changes in gene expression [20–32]. 
Deleterious mutations might accumulate in the nonrecombining region through Muller’s ratchet or 
genetic drift, causing Y or W genes to lose their function or disappear altogether [33]. Simultaneously, 
strong selection acting on the sex-determining region can induce background selection, genetic 
hitchhiking, and selective sweeps that reduce genetic variability in the adjacent regions [34]. 
Chromosomal inversions surrounding the master sex-determining region probably occurred on the 
Y or W chromosomes, thereby preventing chromosome pairing and crossing over with the 
homologous X- or Z-linked inverted regions, as observed in chicken and Japanese quail [35–38]. The 
degree of divergence between X and Y or Z and W sex chromosomes is independently observed 
across amniote lineages with remarkable variation [39]. Synonymous substitution rates of XY (or ZW) 
gametologous genes, which are homologous genes located in the nonrecombining region of 
differentiated sex chromosomes, can be used to trace the evolutionary history of sex chromosomes 
[14,16,32,40–48].  

Despite considerable research efforts and recent advances in omic technologies, prediction of the 
ancestral and transition states between particular sex determination modes and sex chromosomes in 
amniotes remains uncertain [18,49–51]. The ancestral state might be ESD or polygenic sex 
determination, changing to GSD later on [18,52–55]. By contrast, it might include the presence of 
multiple transitions from GSD to ESD. Sex chromosomes evolved independently multiple times 
within amniotes and remained notably stable after their emergence in mammals, birds, and many 
lineages of reptiles [16–18,56,57]. This scenario is supported by evidence of the same linkage 
homology blocks that perform the role of sex chromosomes in several amniote lineages, or by 
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unrelated sex chromosomes sharing partial linkage homologies across distantly related groups 
[18,25,27,28,30–32,58]. This was probably caused by multiple random selections from a limited 
number of linkage homologies, or a stronger tendency for a linkage homology to be co-opted owing 
to its gene content, particularly as a result of enrichment of the genes involved in gonad 
differentiation, and the possibility of homologous sex-determining systems [7]. The molecular 
machinery of the sex determination pathway is observed across ESD amniote lineages, which concurs 
with independent co-option of the same epigenetic process [59]. Interestingly, recent comparative 
genomic analyses indicate that the majority of the squamate reptile chromosome 2 (SR2) and the 
snake W sex chromosomes share partial sex chromosomal linkage homologies with sex-related 
elements of other amniotes, despite their apparent diversity of sex-determining mechanisms 
[18,25,27,28,30–32,58]. Hypothetically, the SR2 and snake W sex chromosomes may have been part of 
a larger ancestral amniote super-sex chromosome with a GSD system that subsequently split into 
many sex chromosomes across several amniote lineages by multiple chromosomal rearrangements 
such as fission [27,28,30]. This hypothesis suggests an incredible diversity of sex-determining 
systems, raising questions for many models, including: (i) whether several lineages co-opted the same 
chromosome pair, or at least parts of them, to function as sex chromosomes?; (ii) whether these co-
options resulted from the lack of alternatives, with only a limited number of chromosomes in the 
ancestral karyotype to form sex chromosomes, or certain unique characteristics of these chromosomes 
found in SR2 and snake W sex chromosomes, and particularly if the content of genes involved in 
gonad differentiation predisposed certain chromosomes to become sex chromosomes?; and (iii) what 
drives some sex chromosomes to be maintained over millions of years and differentiate fully, while 
others are replaced by new sex-determining chromosomes before differentiation has occurred? 

Here, we review evidence pertaining to different sex chromosomal profiles in amniotes obtained 
from chromosomics and show that correlation with snake W sex chromosomes is a relict of an 
ancestral super-sex chromosome. Using data sourced from a recent near-complete chromosome-level 
assembly of the Indian cobra (Naja naja) genome [60], we also report the comparative repeatomic 
landscape of Z and W chromosomes and highlight the genomic abundance of major repeated 
elements on sex chromosomes. Evolutionary dynamics of repeat-mediated sex chromosome 
formation are also discussed. 

2. Turnover of Sex Chromosomes in Amniotes 

Sex chromosomes carry important sex-determining genes and/or genes that specifically 
influence male or female fitness, and may have facilitated their recruitment for sex determination 
[6,7]. Sex chromosome turnover occurs when the existing master sex-determining gene physically 
moves onto an autosome and retains its control over sex determination [61]. Sex determination 
systems and/or sex chromosomes have evolved independently numerous times, with frequent 
turnover from one system to another, exhibiting both inter- and intra-specific variation across many 
species of amniotes, whereas the X and Y (or Z and W) chromosomes of mammals and birds are 
conserved [2,40,51,56,58,62–68]. There are two possible explanations for the emergence of new sex-
determining genes and sex chromosomes across amniote species [2,69]. First, when a new sex-
determining locus arises on an autosome, it converts the autosome into a ‘proto-sex-chromosome’, 
and the ancestral sex chromosome reverts to an autosome (Figure 1) [70,71]. Turnover can occur when 
a new master sex-determining gene arises de novo on an autosome (termed ‘non-homologous 
turnover’) [61,72,73]. The emergence of a new master sex-determining locus can have very different 
consequences depending on how it interacts with the previous sex determination system [61,73]. If 
the new sex-determining locus was associated with a gain in fitness, turnover is more likely to result 
in different sex chromosomal linkages between species. By contrast, when a new sex-determining 
gene arises on the existing sex chromosome (termed ‘homologous turnover’) [61,73], turnover 
between XY and ZW determination systems on the same chromosome arises in the course of 
evolution. Caenophidian snakes share the same ancestral ZW chromosomes, with varying degrees of 
W degeneration; however, pythons have an XY system, leading to the emergence of a new sex-
determining locus, although only a few specimens have been examined [41,47]. The question of how 
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and why these turnovers arise remains unclear but is assumed to result from sexual conflict, genetic 
drift, and mutation accumulation [73–80]. Second, autosomes can translocate (by simple 
translocation, centric fusion, or insertion) to sex chromosomes and create ‘neo-sex-chromosomes’ as 
observed in stickleback and black muntjac [6,81,82]. In the fusion process between sex chromosomes 
and autosomes, chromosomes harboring such genes may often be involved in the formation and 
turnover of sex chromosomes, forming neo-sex-chromosomes [6,83]. It is likely that sex-specific 
selection pressures (including sexual antagonism) are the primary evolutionary contributors to sex 
determination pathways, evolutionary turnover in sex chromosomes, and the fixation of neo-sex-
chromosomes [18,75,76,84–89]. 



Cells 2020, 9, 2386 5 of 29 

 

 



Cells 2020, 9, 2386 6 of 29 

 

Figure 1. Schematic diagram of different phases in ZW sex chromosome evolution. We propose a 
hypothetical evolutionary model to illustrate the origin and evolution of ZW sex chromosomes. First, 
owing to strong selection of an evolutionary hotspot region, an ancestral autosomal pair undergoes 
mutation to become a sex determination region, and transformation into homomorphic proto-sex 
chromosomes. This is followed by heteromorphic differentiation resulting in formation of a proto-W 
chromosome with cessation of recombination and gain of female beneficial sequences for fitness and 
adaptation. The proto-W chromosome subsequently undergoes structural changes, such as 
rearrangements, gene degradation, repeat accumulations, and heterochromatinization, to form a neo-
ZW chromosome system with limited differentiation. In some cases, during this stage turnover cycles 
might convert the partially differentiated heteromorphic sex chromosomes into homomorphic sex 
chromosomes, as in certain snake species, such as Ptyas species. To achieve full heteromorphy the 
neo-ZW chromosomes escape this evolutionary trap, and the young W chromosome undergoes 
severe degeneration with lineage-specific sequence variation and evolves into a mature and stable sex 
chromosome. 

Key questions include ‘why do some lineages maintain and conserve sex chromosome/sex 
determination?’ and ‘why do other lineages show frequent recurrent turnover?’ The answers might 
be informed by the mechanism of the ‘evolutionary trap’ hypothesis [54]. Sex chromosomes may 
undergo cycles of turnover by default unless a tipping point of differentiation is crossed. Sex 
chromosomes then are stably maintained and fully differentiate, which prevents frequent transition 
from GSD to TSD or turnover to different GSD systems [40,54]. The transition between GSD and TSD 
requires traversing a group of fitness-related genes, where individuals are produced carrying 
suboptimal or lethal WW or YY genotypes. Sex chromosome turnover involves the fixation of a new 
sex-determining locus in the population, varying the effective population size of the species 
[73,79,90,91]. By contrast, reptiles possess homomorphic sex chromosomes that appear to be 
evolutionarily young, owing to frequent turnover [3,92]. The transition from GSD to ESD, as well as 
turnover of sex chromosomes within GSD, requires an intermediate step of sex reversal, producing 
individuals with a mismatch between phenotypic and ancestral genotypic sex [51]. Sex-reversed 
individuals should lack a specialized sex-specific combination of sex chromosomes in lineages with 
differentiated sex chromosomes and thus show lower fitness. Such sex-reversed amniotes with 
differentiated sex chromosomes are infertile or possess atypical sex-specific phenotypes [93–95]. 
Homomorphic sex chromosomes are maintained by occasional XY or ZW recombination in sex-
reversed XY females or ZW males, known as the ‘fountain of youth’ hypothesis. This is possible if 
recombination suppression is independent of phenotypic sex assignment [96–98]. This might enable 
escape from the trap and independent evolution in the lineage. Pleurodonts and the sister group 
corytophanids, a family of iguanian lizards, harbor different partial sex chromosomal linkage groups 
within each lineage [99–101]. However, the tendency for recurrence of sex chromosomal groups 
might result in homoplasy. New data emerging from non-model sex chromosome systems may 
provide interesting exceptions to the hypothesis on how sex chromosomes originate and evolve, and 
suggest diversity in the process not previously acknowledged. Systematic differences between 
amniote lineages and their frequency of acquisition of stable sex chromosome/sex determination 
require further investigation to obtain more conclusive evidence. 

3. Sex Chromosomal Linkage Homology in Relation to SR2 and Snake W sex Chromosome 

Comparison of genome assemblies and chromosome maps among amniotes have revealed a 
high degree of linkage homology and elucidated the process of chromosomal rearrangement over 
millions of years [20,21,25,27,28,30,102–114]. In a few cases, sex chromosomes share homology among 
some amniote lineages; however, genome sequence analyses and cross-species chromosome 
mapping have revealed that unrelated sex chromosomes share linkage homologies across distantly 
related taxa, and might involve genomic regions orthologous to SR2 and the snake W sex 
chromosome [18,25,27,28,30,58,60]. These overlaps of partial sex chromosomal linkage homology 
may be part of a hypothetical ancestral super-sex chromosome (Box 1). Portions of an ancestral super-
sex chromosome probably exist in amniotes, with multiple chromosomal rearrangements, such as 
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fissions or insertions, as evolutionary sources of various sex chromosomal linkages [18,25,27,28,30–
32,58,115]. Under this concept of a super-sex chromosome, sex-specific nonrecombining regions of Y 
or W sex chromosomes are likely to be ‘super-segments’, enabling adaptation to sex-specific functions 
or sex-biased expression [33,116]. Co-localization of these genes/regions might reflect the co-option 
of particularly favorable genes/segments. The same sex-determining genes, as orthologous or 
paralogous states, have been used repeatedly in distantly related amniotes, such as DMRT1, SOX3, 
or AMH in a sex-determining function [16,117]. Particular linkage homology is often associated with 
sexual development in distantly related amniote lineages because of genetic hitchhiking [118]. 

Alternatively, the occurrence of a super-sex chromosome might reflect group sex-determining 
gene interactions. The majority of sex-determining genes in one species are part of the conserved sex-
determining network in all amniote lineages. Several genes have been independently recruited to the 
first step of the sex-determining pathway in different species, where each is probably necessary and 
sufficient for sex determination [2,119]. Their physical proximity may facilitate biochemical 
interaction of the products of these genes to bring about sex determination. In some cases, such as 
Drosophila, sex is determined according to the ratio of X chromosomes to autosome sets. Key genes 
involved in the sex-determining pathway include Sxl, tra, and dsx, and expression of these genes is 
regulated by several transcription factors encoded on the X chromosome [120–122]. Another plausible 
hypothesis concerns chromosome territory, which could make their physical translocation more 
likely, as in the case of translocations between chromosomes bearing nucleolus organizing regions 
(NORs) [123]. Chromosomes occupy highly conserved territories in somatic cells of mammals, birds 
[124–126], and mammalian germ cells [127]. The positions of these territories are associated with the 
gene content of chromosomes; sex chromosomes with a low gene density are more frequently located 
at the periphery [128,129]. In addition to several models for the origin of a super-sex chromosome, an 
underlying principle of sex determination in amniote lineages is the sharing of linkage homology. 
Sequences such as repeats were once linked in a super-sex chromosome that was broken up by 
different means. Many changes to genomic content occur once an autosomal pair becomes a sex 
chromosome pair. As well as deletion, selection of sex-specific traits on the sex-specific chromosome 
(Y or W) and changes in the genomic content of the partner sex chromosome (X or Z) reflect the 
hemizygous state in one sex [6,130,131]. Particular sequences, such as 18S–28S ribosomal RNA genes, 
may play roles in sex chromosome regulation or create novel sex chromosomes [18,58,132]. Opossum 
and kangaroo sex chromosome pairs have independently fused with a segment carrying the NOR, 
whereas platypus sex chromosomes are frequently arrayed around the nucleolus during meiosis, 
which brings them into close proximity to the NOR-bearing chromosome 6 that shows homology 
with the human X-conserved region [133,134]. Proximity to the site of RNA synthesis might facilitate 
epigenetic processes involving long noncoding RNAs [135]. Minimally differentiated XY 
chromosomes are observed in three cryptodiran turtles (Staurotypus crassicollis, S. triporcatus, and S. 
salvinii), in which the Y chromosomes are smaller than the X chromosomes owing to a difference in 
copy number of 18S–28S rRNA genes [136,137]. SR2 is highly conserved among squamate reptiles 
[58,102,103,132,138], and NORs are generally located on a pair of microchromosomes or chromosome 
2 in iguanas and some snakes [139,140]. The NORs are located on the ZW microchromosomes in the 
bearded dragon (Pogona vitticeps), which share a common ancestry with SR2 [3,58,109,115,132,141]. 

From a different perspective, recent studies of many amniotes have revealed a striking difference 
of the gene and repeat content of their Y/W sex chromosomes, with substantial disparity even 
between closely related species [16,17,47,51,142–150]. This is despite the prolonged stability of sex 
determination systems in these lineages and the extensive between-species homology of their X/Z-
specific gene contents [17,42,151]. However, genomic regions of snake W sex chromosomes show 
substantial homology with sex chromosomal linkage homologies and repeat content in amniotes 
[25,27,28]. Singchat et al. [25,27,28] asserted that 16 bacterial artificial chromosomes (BACs) showing 
partial homology with sex chromosomes of several amniotes were mapped on the heterochromatic 
W sex chromosomes of different species, including Siamese cobra (Naja kaouthia), Russell’s viper 
(Daboia russelii), and the common tiger snake (Telescopus semiannulatus), based on hybridization 
signals such as repeats. In comparison, two chicken BACs located on Gallus gallus chromosome Z 
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(GGAZ) that showed a high abundance of the long interspersed nuclear element (LINE) and long 
terminal repeat (LTR) transposable elements (TEs) were mapped on SR2 and the snake W sex 
chromosome [25,27,28]. This suggests that repeats on the snake W sex chromosome also share sex 
chromosomal linkage homology to SR2 and GGAZ, and the snake W sex chromosome might include 
a genomic region involving sex chromosome conformation in amniotes. The Y or W sex chromosomes 
showing accumulation of satellites and amplification of telomeric or microsatellite repeats [(GATA)n, 
(AAGG)n, (AATC)n, and (ACAG)n] are commonly observed in snake W chromosomes and in other 
amniotes [20,22–25,29,115,152–155]. One microsatellite amplified on the W sex chromosome in 
several caenophidian snakes is the banded krait minor satellite (Bkm), which consists of a 
microsatellite repeat motif (AGAT)n or (GACA)n sequence, and is associated with the degree of ZW 
differentiation [156]. This might result from rapid and independent amplification of repeats on W sex 
chromosomes, and suggests that frequent amplification of the repeats has a structural role in 
heterochromatinization and promotes further sex chromosome differentiation [25,27–30]. 
Amplification of repeats has occurred independently in each lineage and might represent convergent 
sex chromosomal differentiation among amniotes [18,25,30]. Interestingly, bird and snake W sex 
chromosomes share blocks of three repeats (Bkm repeats, 18S–28S rRNA-related repeats, and DMRT-
related repeats) [23]. This suggests that repeats are shared partially between the sex chromosomes of 
chicken and snakes, and supports the hypothesis that SR2 and the snake W sex chromosome were 
associated with a larger ancestral amniote super-sex chromosome [18,25,27,28,30,58]. Many studies 
have identified convergent genomic patterns in independently formed sex chromosomes [34,157], 
and causes of the repeated origins of these unique regions of the genome have been suggested [6]. 
Amplified repeats were possibly retained in the sex chromosomes of an amniote common ancestor, 
and subsequent reshuffling led to the appearance of sex chromosomes in each lineage. Convergent 
evolution of sex chromosomes across distantly related taxa might lead to genomic elements, such as 
repeats, which are particularly adept in a sex-determining role. However, the majority of repeats or 
genomic regions are more likely to be associated with snake W sex chromosomes [25,27,28]. Most of 
these explored orthologous regions have been cytogenetically mapped to better understand 
candidate sequences such as BACs or other repeats; however, further chromosomic level studies will 
elucidate the possible occurrence of linked genes in shared chromosomal regions [30–32,49]. 

4. Repeats: A Driver for Sex Chromosome Conformation after the Split of an Ancestral Amniote 
Super-Sex Chromosome 

During the process of sex chromosome differentiation, heterochromatin is enriched at repeats 
(TEs and satellites), and its loss can result in de-repression and mobilization of silenced TEs. The 
number of repeats can differ substantially between sexes owing to the presence of a highly repeated 
(and normally poorly assembled) Y or W sex chromosome in the heterogametic sex individual 
[29,92,155,158]. Transposable elements are located at the boundaries of recombining and 
nonrecombining regions, which suggests their causal role [159,160]. Insertion of TEs near the sex-
determining locus can act to suppress recombination by creating a divergence between sex 
chromosomes, and TEs are often assumed to accumulate following suppression of recombination. 
This would invoke host mechanisms to silence TEs, resulting in suppressed recombination at 
hotspots adjacent to TE insertions [161]. Weaker selection against the insertion of additional TEs leads 
to their accumulation under a lack of recombination. Moreover, TEs can promote ectopic 
recombination, facilitating genomic rearrangement to further suppress recombination [162]. The 
heterochromatic regions in amniotes are also predominantly accumulated by satellite DNA, in a class 
of repeats characterized by a tandem arrangement with highly repeated monomeric units longer than 
100 bp, or simple repeats, such as mini- (> 10 and < 100 bp) and microsatellites (usually < 10 bp) 
[163,164]. These satellites are often abundant on sex chromosomes in amniotes [25,27–30,115,165–
168]. Lacertid lizards have highly differentiated ZZ/ZW sex chromosomes, and the W sex 
chromosome is indicated to be enriched in satellite motifs in Acanthodactylus lineomaculatus, Eremias 
velox, and several species from the genera Lacerta and Timon [169–174]. The primary function of the 
satellites is unknown; however, they may contribute to the suppression of recombination, 
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heterochromatinization, and changes in gene expression. Different types of these repeats are 
randomly accumulated on sex chromosomes and largely reflect historical contingency [175–178]. The 
important functional role of such sequences implies that the pattern of the distribution of their 
accumulation should be relatively well conserved across species of the same lineage. In snake, PBI-
DdeI (196 bp) satellite DNA is located in the centromeric region of the Burmese python [168]. 
Interestingly, PBI-DdeI satellites are frequently localized to the W sex chromosome of Siamese cobra. 
Localization of high copy numbers in female rather than male individuals suggests that PBI-DdeI 
might act as an evolutionary driver with several repeats, facilitating W sex chromosome 
differentiation and heterochromatinization [29]. Transposable elements and satellites may play a 
critical role in the early stages of recombination suppression, with the ability to shuffle genes and 
alter expression patterns. Repeats may simultaneously promote the turnover of sex chromosomes 
and sex-determining genes, initiating suppression of recombination, chromosomal rearrangements, 
and eventual recruitment of sex chromosomes [38]. 

A well-known example is the genome of the Indian cobra, which is closely related to the Siamese 
cobra [179]. This genome encompasses a total size of 1.79 Gb with W and Z chromosomes spanning 
52.1 Mb and 154.6 Mb, respectively [60]. This shows that the Z sex chromosome is almost three times 
larger than the W sex chromosome in genomic content. Ideally, the genes occurring on the W sex 
chromosome might play a different role in determining female-associated phenotypes, while 
changing female-biased selective forces might strongly affect the evolution of the W sex chromosome 
[180]. Although several predictions have been proposed, the W sex chromosome's functional role is 
unknown, except for a few W-linked genes that have been studied mostly in birds [180]. Here, we 
present a functional view of the W sex chromosome of Indian cobra to corroborate the hypothesis 
that the W sex chromosome might be involved in multiple functions of cellular processes in addition 
to sex determination. The W sex chromosome harbors a diverse set of genes and, based on a gene 
ontology enrichment analysis (Supplementary note 1), the W sex chromosome is enriched with genes 
coding for brain development, microtubule organization, histone deacetylation, DNA repair, 
signaling, and transport (Figure 2 and Supplementary dataset 1). In addition, the repeat contents of 
Indian cobra sex chromosomes are presented (see Supplementary note 1). The comparative 
repeatomic landscape of the highly repeated Indian cobra Z and W assembled chromosomes showed 
remarkable differences between TE abundance and the overall higher enrichment of repeats; with 
total repeats of 22.57% on Z chromosomes compared with 15.39% on W chromosomes. A similar 
pattern might be observed in other snakes with a smaller W sex chromosome [181]. The majority of 
TEs such as retroelements (LINEs and short interspersed nuclear elements) and DNA transposons 
are highly abundant on the Z sex chromosome. The most abundant elements are L2/CR1/Rex, which 
constitute 9.99% and 7.44% of Z and W sex chromosomes, respectively, with certain elements 
(CRE/SLACS, PiggyBac, Mirage, and P-elements) completely absent on the W sex chromosome 
(Figure 3 and Table 1). Did the Z sex chromosome become larger as the result of insertions of specific 
repeat elements, or did the W sex chromosome experience depletion of these elements? Chromosome 
mapping has indicated a high accumulation of repeats as telomeric repeats, microsatellites, satellites, 
and TEs on the snake W sex chromosome, with none or fewer on the Z sex chromosome [25,27–29]. 
Chicken BAC sequences mapped on the snake W sex chromosome show nonhomology to the Indian 
cobra W sex chromosome-level genome assembly [25,27,28,60]. Comparative repeatomic analysis 
supports our hypothesis that the Z sex chromosome of Indian cobra might have experienced a recent 
explosion of TEs that could have contributed to further gain in genetic contents. The Kimura 
substitution landscape TE model also indicated that the W sex chromosome contained many 
ancient/degenerated copies of LINEs, whereas the Z sex chromosome accumulated many recent or 
less divergent copies of these elements with two peaks/rounds of TE insertions (Figure 3). 
Collectively, these results suggest that repeats on the snake W sex chromosome might be inherited 
from an ancestral amniote sex chromosome with high differentiation via nonhomologous 
recombination, which has resulted in the evolution of heteromorphic Z and W sex chromosomes in 
advanced snakes [30,32]. This finding agrees with the results of BAC fluorescent in situ hybridization 
(FISH) mapping on the Siamese cobra, Russell’s viper, and common tiger snake [25,27,28]. These TEs 
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may have undergone molecular degeneration, rending their identities senescent in the Indian cobra 
genome. A time estimation model and molecular evolutionary analyses of TE insertions could further 
advance our understanding and solve the complex issue of whether a recent new explosion of TEs 
occurred in the Indian cobra genome. Comparison of Siamese cobra and Indian cobra genomes would 
provide further insights into the possible occurrence of repeated elements in closely related species, 
and allow in-depth comparisons of repeat element density and distribution of autosomes versus sex 
chromosomes. 

 
Figure 2. Gene ontology (GO) enrichment of annotated genes on the W chromosome of Indian cobra. 
Clustering heatmap plot with log10 (p-value) from functional enrichment tests and information 
content (IC). A higher log10 (p-value) represents a more enriched function. The results show that W 
chromosomes carry an enriched set of genes associated with development, histone deacetylation, 
signaling, and transport. 
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Figure 3. Comparative genomic characterization of repeated DNA contents between the W and Z sex 
chromosomes. Repeat landscape of (a) W and (b) Z sex chromosomes. Histogram plots show the 
degree of sequence divergence of each transposable element (TE) derived from its consensus (X-axis) 
in relation to the percentage of its copies in the total genetic contents of the chromosome (Y-axis). 
Peaks represent waves of insertion (black arrows) of elements into the sex chromosome. Older 
insertions of TEs are shown as a peak wave on the right side (K-value > 25) of the plot, whereas 
younger elements are depicted on the left side (K-value < 25). Different colors show distinct element 
types, as described on the right. A higher abundance of LTRs (green) of the Z sex chromosome 
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landscape as indicated by a green arrow, is evident. The Y-axis percentage difference and a recent 
wave of expansion on the Z chromosome are evident. (c) Comparative analysis of Z and W localized 
repeat contents. Each column represents the copy number percentage stacked for the repeated 
element. Different proportions for Z and W sex chromosomes are indicated in blue and red, 
respectively. Elements with higher proportions (in blue) show expansion; those TEs present 
exclusively on Z chromosomes, and absent on W chromosomes are highlighted in blue text on the X-
axis. 

Table 1. Comparative list of repeat contents localized on the Indian cobra Z and W sex chromosomes 
and the relative abundance of each identified element. Note: For certain TEs (PiggyBac and Mirage, 
P-element), the percentage was considered negligible and rounded to 0 (less than 0.01%). 

Repeat Type. 
Number of 
Copies on Z 

Number of 
Copies on 

W 

Size of 
Repeats on 

Z 

Size of 
Repeats on 

W 

Percentage of 
Repeats on Z 

Percentage of 
Repeats on W 

SINEs 12,030 1914 29,685,560 232,635 0.74 0.45% 
Penelope 3544 2 1,145,026 313 0.32 0.00% 

LINEs 50,308 8362 501,803 4,470,348 14.52 8.57% 
CRE/SLACS 1 0 22,445,088 0 0.015 0 
L2/CR1/Rex 35,523 7545 73 3,881,653 9.99 7.44% 

R1/LOA/Jockey 545 7 15,451,390 2287 0.04 0.00% 
R2/R4/NeSL 1168 27 67,375 14,578 0.35 0.03% 
RTE/Bov-B 2715 435 544,043 216,332 0.61 0.41% 

L1/CIN4 6313 318 936,854 351,501 3.07 0.67% 
LTR elements 9461 784 4,741,345 1,335,868 3.94 2.56% 

BEL/Pao 491 10 132,589 9918 0.09 0.02% 
Ty1/Copia 688 40 352,463 44,578 0.23 0.09% 

Gypsy/DIRS1 5955 691 5,156,575 1,248,483 3.34 2.39% 
Retroviral 1563 40 335,396 31,056 0.22 0.06% 

hobo-Activator 10,245 333 865,452 48,804 0.56 0.09% 
Tc1-IS630-Pogo 4840 400 1,335,823 327,229 0.86 0.63% 

PiggyBac 41 0 1673 0 0 0 
Tourist/Harbinger 306 4 26,218 715 0.02 0.00% 
Other (Mirage, P-
elements, Transib) 

93 0 4670 0 0 0 

Unknown 888 27 95,802 6798 0.06 0.01 
Small RNA 205 75 13,811 9259 0.01 0.02 

Satellites 482 5 54,431 916 0.04 0 
Simple repeats 44,168 25,179 2,068,877 1,322,998 1.34 2.54 

Low complexity 7442 3280 469,011 234,151 0.3 0.45 

5. Diversity and Stability of Snake Sex Chromosomes 

Snakes represent about one-third of all reptilian species, with almost 3800 extant species 
classified into three major lineages: the Caenophidia, the likely paraphyletic Scolecophidia, and 
Henophidia [182–185]. Caenophidia is the most species-rich and diverse group, including more than 
3100 species [186]. Scolecophidia contains approximately 400 species of blind snakes with a worm-
like body shape and fossorial lifestyle, and Henophidian snakes comprise about 200 species [186]. 
The largest family is Colubridae, commonly termed colubrids [187,188], and is the most extensively 
studied for cytogenetic investigation. We observe that colubrids exhibit higher variability in 
chromosome number and genome size compared with those of other snake families, such as Boidae 
and Viperidae. (Figure 4). This high degree of variation might have contributed to the remarkable 
diversity and speciation of colubrids. The diploid chromosome number across all snakes is 2n = 24–
56 [189,190]. Variation involving macro- and microchromosome numbers have been reported in 
different families across snake lineages [189,190]. However, phylogenetic reconstruction reveals that 
the ancestral snake karyotype consisted of 2n = 36 chromosomes with 16 macro- and 20 
microchromosomes. This is the karyotype commonly observed in the majority of snake species [190]. 
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Female heterogamety (ZZ/ZW system) occurs in caenophidian snakes [20,23–25,27,28,41,44–46], 
whereas for noncaenophidian snakes (i) facultative parthenogenesis in pythons and boas leads to 
exclusively female progeny [191–194], (ii) inheritance of a color mutation in the ball python (Python 
regius) indicates a XX/XY sex determination [195], and (iii) a recent study suggests that a transition 
from ZW to XY may have occurred for Boa imperator and Python bivittatus based on male-specific 
genetic markers as well as transcriptomic and genomic data [41]. A report of heteromorphic ZZ/ZW 
sex chromosomes in the Madagascar boa based on conventional cytogenetics was recently confirmed 
by molecular cytogenetic methods in Acrantophis sp. cf. dumerili [47,196]; however, the sex 
chromosomes of many snake species remain undifferentiated, with no large morphological changes 
(such as Boidae and Phytonidae), and a low degree of differentiation between Z and W or X and Y 
sex chromosomes [41,47,197,198]. In comparison to the long-term stability of the Z chromosome 
across all snakes, the sex determination systems in noncaenophidian snakes are likely far less stable 
and more dynamic [47,197,198]. A recent study showed that the scolecophidian long-nosed worm 
snake (Myriopholis macrorhyncha) may have heteromorphic ZZ/ZW sex chromosomes, which are 
likely nonhomologous to sex chromosomes of caenophidian snakes [199]. The Z sex chromosome is 
indicated to share the same gene content across caenophidian snakes [20,153,200], without large 
morphological modifications [201]. By contrast, several repeats are known to be the primary source 
of differentiation of W sex chromosomes in caenophidian snakes [24,25,27–29], with highly 
degenerated and heterochromatic accumulations of repeats, and variable topology and degree of 
accumulation among species [181,202]. Notwithstanding conventional and molecular cytogenetic 
approaches, the snake W sex chromosome can remain undetectable for genomic content based on 
recent omic technology, except for the Indian cobra for which partial information on sex 
chromosomes is detectable [60]. The study of the Indian cobra genome provides an overall view of 
evolution by focusing on comparative genomics, thereby unlocking the diversity of toxin genes that 
lack in-depth sex chromosome investigation. 
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Figure 4. (a) Phylogeny of 108 snake species, with available data for karyotypes and genome size, 
belonging to the families Boidae, Viperidae, Elapidae, and Colubridae. (b) Boxplots show the 
distribution of chromosome number and genome size (C-value) for the four families. Each dot 
represents the species as given in the phylogeny. The phylogenetic tree was sourced from TimeTree 
databases (http://www.timetree.org) [203] and shows each species with information on chromosome 
number (2n) and genome size variation. Data were sourced from the Animal Genome Size Database 
(http://www.genomesize.com) [204]. 

6. Chromosomics of Snake W Sex Chromosomes: Bridging the Gap between Genomes and 
Chromosomes 

Snakes have unique genomic features that make them particularly interesting to study. The 
sequencing of snake genomes is increasing our understanding of their molecular evolution and 
genetic diversity. Evolutionary studies of venomous organisms provide sources of medical 
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information to catalog venom proteins for drug and antivenom development. A decade ago, it was a 
major feat to sequence the first snake genome [205]. Subsequent advances in sequencing technology 
have made the sequencing of many more snake genomes attainable [60]. Technologies based on 
genome sequencing have the potential to resolve profiles of genetic differences between sexes at the 
nucleotide level, making it possible to reveal sex-specific loci or sex-specific genes in species where 
these had not previously been identified [40,44–46,206,207]. Recent advances in genome sequencing 
technology have assisted in the assembly of heterochromatic and/or low-complexity genomic 
regions, such as centromeres and differentiated W sex chromosomes. Current high-throughput 
sequencing methodologies and bioinformatic tools have replaced conventional molecular biological 
investigation techniques [29,60]. We currently have limited knowledge of whether the between-
species variability of the snake W genomic content and repeat content is exceptional [25,27–30], as 
research to date among amniotes have been restricted predominantly to a small number of studied 
lineages, or whether it is common during sex chromosome differentiation. 

Physical anchoring of chromosome sequences is required to validate a chromosome-level 
assembly. Once chromosome-level assemblies have been achieved for a greater number of snake 
species, investigation of changes in the packaging and interactions between chromosomes will 
contribute to an understanding of the role genome architecture has played during snake and amniote 
sex chromosome evolution. Technological advances in genomic sequencing, particularly long-read 
(PacBio; [208,209] and ultra-long-read (Oxford NanoPore Technologies; [210]) sequencing platforms, 
have provided exceptional improvement in scaffold sizes of genome assemblies. A combination of 
short- and long-read sequencing can provide chromosome-scale descriptions of repeat landscapes of 
sex chromosomes using all available genome sequence data from snakes [60,211], but currently 
available data for snakes is taxonomically limited and elucidation of the basic molecular machinery 
across snake lineages is required. Despite the improvement in long-read sequencing over short reads 
in genome assembly, new genome sequences often fail to produce ‘chromosome-level’ assemblies, 
where contigs represent a complete chromosome. In this regard, advances in cytogenetics and 
innovations in sequencing technology are useful for providing higher-resolution genome assemblies, 
and will be important for implementation in snake research moving forward. Without chromosome-
level assemblies, the ability critically to examine evolutionary questions, including basic questions 
surrounding genome evolution and function, as well as adaptation and speciation, is limited 
[30,49,212,213]. Cytogenetic approaches, such as FISH, will help to generate physical maps to confirm 
experimentally the correct orientation of scaffolded genome sequences scaled into chromosomes. 
Such techniques will also enable the analysis of breakpoints and gene order, positioning of 
centromeric and telomeric sequences, and structural variation. A novel approach was developed in 
birds, where a set of chicken BAC clones was bioinformatically identified and empirically validated 
as a set of universal avian probes to anchor sequence scaffolds rapidly to chromosomes of sequenced 
species [110,214]. In this manner, it would be possible to anchor the increasing number of snake or 
other amniote genomes being sequenced. Appropriate samples can be obtained for the preparation 
of chromosomes [25,27,28], and these probe sets will provide high-resolution sequence arrangements 
on chromosomes. Some of the technical difficulties of FISH mapping include low-throughput data, 
limited microscopic resolution, and probe specificity for each analysis; in addition, examination of 
multiple loci simultaneously is technically challenging. Development of high-throughput, next-
generation chromosome conformation capture technologies, such as the Hi-C approach [215], will 
provide more information on interactions and chromosomal conformations in three-dimensional 
genomic structures. Integration with cytogenetics mapping will allow orientation of the assembled 
contigs into chromosomes [216]. Bionano optical-mapping technology can also be used to acquire 
long-range data throughout the genome, which are highly suited to filling gaps and improving 
fragmented genomes in ways that are not possible using classical cytogenetics [217]. Despite 
substantial advances in the aforementioned technologies, no single genome has been completed with 
end-to-end chromosome assembly. Assembling the X chromosome telomere-to-telomere will resolve 
many gaps and long arrays of complex repetitive regions in the human genome using high-coverage 
ultra-long (Oxford nanopore) reads complemented with optical mapping [218]. This achievement 
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will revolutionize the field of chromosomics, and high-resolution data produced from combinations 
of these approaches will elucidate further novelties regarding evolution of sex chromosomes 
[219,220]. 

7. Concluding Remarks 

Sex chromosomes were discovered by Nettie Stevens in 1905. She observed that in mealworms, 
male cells carried chromosomes that were smaller than the rest, whereas female cells carried equally 
sized chromosomes [221]. The availability of genomic data for many nonmodel species, and the 
development of methods to detect sex-linked sequences in species with both differentiated and 
undifferentiated sex chromosomes, have provided a global overview of the diversity of sex-
determining systems in amniotes. Recent progress on the evolution of sex chromosomes in several 
amniotes has supported long-standing hypotheses and, for many other amniotes, has revealed that 
there is no single narrative for how these regions form and evolve. Sex chromosomes show 
convergent genomic signatures, suggesting broader trends in their formation. The hypothesized 
scenario of a super-sex chromosome in the ancestral state of amniotes is followed by multiple fission 
to form products in the evolutionary lineages. Unpredictably, the snake W sex chromosome shows 
the remnants of sex chromosomal linkage homology shared among amniotes, as well as large 
abundances of satellites and TEs. The snake W sex chromosome may retain the most ancestral state 
from an ancestral super-sex chromosome in amniotes. Homologous sex chromosome turnover might 
occur in small clades under pressure of selection. However, the diversity of sex chromosomes reveals 
a remarkable number of exceptions and, therefore, a parallel diversity of underlying mechanisms. 
The evolutionary trap is another potential hypothesis, followed by turnover of homologous sex 
chromosomes in species with homomorphic sex chromosomes. Nonhomologous turnover could 
alternatively maintain ancestral heterogamety (that is, XY to XY transitions, or ZW to ZW), or induce 
a shift in heterogamety (XY to ZW, or vice versa). Although the incredible diversity of sex 
chromosomes and sex-determining systems has been revealed, much less progress has been achieved 
in understanding the evolutionary forces that have shaped this diversity. Studying ongoing or 
extremely recent turnovers and the possibility of a super-sex chromosome is therefore required to 
elucidate the causal turnover mechanisms further. A deeper characterization of sex determination in 
clades, where both homomorphic and heteromorphic sex chromosomes are present, will help to 
determine the differentiation and conservation of sex chromosomes. Studies of snake sex 
chromosomes of recent origin may also provide data on the formative processes, although such 
studies are extremely difficult given that divergence between sex chromosomes is slight. Snakes are 
an excellent model with which to examine hypotheses of sex chromosome evolution, which can occur 
rapidly; thus, population-based approaches are useful for understanding the mechanisms and 
patterns involved. Cytogenetic studies have presented the first glimpses of ancestral amniote super-
sex evolution; however, integration of multiple NGS platforms is required to attain an in-depth 
understanding. The novel procedure of telomere-to-telomere assembly will further enable the 
mechanisms involved in reshaping sex chromosome evolution to be deciphered. 
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Box. 1 What is the super-sex chromosome hypothesis? What can we learn from snake sex 
chromosomes? 
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The term “super-sex chromosome” was first proposed by Ezaz et al. [18] to express an 
ancestral donor source of sequences contributing to the evolutionary diversification of amniote 
sex chromosomes. The hypothesis of the existence of an ancient super-sex chromosome emerged 
from the results of extensive cytogenetic studies carried out in several amniote species, as a means 
of understanding the organization of candidate BACs and repeated element sequences mapped 
on sex chromosomes [25,28,30,58]. This hypothesis has also been postulated in genome-wide SNP 
studies to identify sex-specific regions [31,32] to suggest that the sex chromosomes of diverse 
amniote lineages exhibit sequence homology, and that a homologous super-sex portion might 
exist on an ancient super-sex chromosome that experienced several rearrangements including 
multiple fissions and repeat element insertions [28,30]. Snake sex chromosomes offer an excellent 
model, exhibiting a ZZ/ZW sex chromosome system, with different phases of evolutionary 
degeneration or amplification of the W chromosome [20–25,28–30,32]. To test this hypothesis, we 
mapped different BAC sequences on the snake W sex chromosome found to be partially 
homologous to other amniotes [25,28]. Recently, comparative cytogenetic analysis has identified 
homologies of sex chromosomes across ancestral (Henophidia) and more recent (Caenophidia) 
snakes [202]. The principal concept of a super-sex chromosome hypothesis is based on 
cytogenetics mapping; however, whether the evidence of partial homology may be exclusively 
linked to a super-sex segment remains unclear, with the possibility of random repeated element 
distribution throughout the genome. The mapped sequences, which form the basis of the original 
hypothesis, also represent a set of candidate loci that span a very small portion, as a few bp to 
several kb of the genome, compared to the total genome content of sex chromosomes that spans 
several megabases in amniotes. Therefore, considering this limitation, we propose to further 
explore the super-sex chromosome hypothesis using modern tools including genome-wide 
mapping of whole-sex chromosomes among diverse amniote lineages. 
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