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Abstract: The “tubulin code” combines different α/β-tubulin isotypes with several post-translational
modifications (PTMs) to generate microtubule diversity in cells. During cell division, specific
microtubule populations in the mitotic spindle are differentially modified, but only recently,
the functional significance of the tubulin code, with particular emphasis on the role specified by tubulin
PTMs, started to be elucidated. This is the case of α-tubulin detyrosination, which was shown to guide
chromosomes during congression to the metaphase plate and allow the discrimination of mitotic
errors, whose correction is required to prevent chromosomal instability—a hallmark of human cancers
implicated in tumor evolution and metastasis. Although alterations in the expression of certain
tubulin isotypes and associated PTMs have been reported in human cancers, it remains unclear
whether and how the tubulin code has any functional implications for cancer cell properties. Here,
we review the role of the tubulin code in chromosome segregation during mitosis and how it impacts
cancer cell properties. In this context, we discuss the existence of an emerging “cancer tubulin code”
and the respective implications for diagnostic, prognostic and therapeutic purposes.
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post-translational modifications

1. The Tubulin Code

Microtubules are dynamic, hollow cylindrical structures typically formed by thirteen laterally
associated protofilaments of α/β-tubulin heterodimers that interact head-to-tail [1]. α- and β-tubulin
proteins are encoded by several different genes (also known as tubulin isotypes) that diverge in their
C-terminal tail regarding length and amino acid composition [2,3]. In eukaryotes, the expression and
distribution of different tubulin isotypes is cell- and tissue-specific [2]. In addition, α- and β-tubulin
isotypes may undergo multiple post-translational modifications (PTMs). As α/β-tubulin heterodimers
polymerize into microtubules, the combination of isotype expression with PTMs generate microtubule
diversity or a “tubulin code” (Figure 1), which has been implicated in the regulation of microtubule
properties and functions underlying fundamental cellular processes [4,5].

Acetylation, detyrosination, polyglutamylation and polyglycylation are amongst the best
characterized tubulin PTMs (Figure 1). Acetylation occurs in both α- and β-tubulins, more specifically
at the luminal-side Lysine-40 (K40) of α-tubulin [6,7] and Lysine 252 (K252) of β-tubulin [8].
While K252 is modified by the acetyltransferase San [8], K40 is acetylated by the acetyltransferase
MEC-17/αTAT1 [9,10] and deacetylated by histone deacetylase 6 (HDAC6) and sirtuin2 (SIRT2) [11,12].
When incorporated into microtubules, α-tubulin can also be detyrosinated, which consists
on the catalytic removal of the last tyrosine present at the C-terminal tail of most isoforms
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by tubulin carboxypeptidases (TCPs), including the recently identified Vasohibin 1 (VASH1) and
Vasohibin 2 (VASH2) complexes with their associated Small Vasohibin-Binding Protein (SVBP) [13–19].
As microtubules depolymerize, soluble detyrosinated α-tubulin can be retyrosinated by a highly
specific tubulin tyrosine ligase (TTL) that closes the cycle [20,21]. Noteworthy, additional TCPs
remain to be identified, as substantial α-tubulin detyrosination still occurs in human cells in which
both Vasohibin-encoding genes were knocked out by CRISPR-Cas9 [14]. After detyrosination,
α-tubulin C-terminal tails may also be subject to the removal of the penultimate and antepenultimate
glutamates by cytosolic carboxypeptidases (CCPs) [22,23], leading to formation of the non-tyrosinatable
∆2- and ∆3-tubulin, respectively [24,25]. Additionally, C-terminal tails of both α- and β-tubulins
undergo side-chain polyglutamylation and polyglycylation [26,27]. The single or consecutive addition
of glutamate residues to theγ-carboxyl group of C-terminal tails is performed by several TTL-like (TTLL)
(poly)glutamylases [5,28,29] and is/are removed by a set of CCPs known as deglutamylases [5,22,23,30].
Similarly, the addition of glycine residues relies on the (poly)glycylases TTLL3, TTLL8 and
TTLL10 [31,32], but the identity of tubulin deglycylases remains unknown. Lastly, several other
tubulin PTMs, such as methylation, polyamination, phosphorylation, ubiquitinylation, sumoylation,
palmitoylation (reviewed in [5]) and O-GlcNAcylation [33] occur in the tubulin core structure adjacent
to the C-terminal tails. These PTMs remain poorly characterized at the functional level but are likely to
be implicated in microtubule assembly and dynamics [5,34,35].
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2. The Tubulin Code in Mitosis

Mitosis relies on the critical contribution of microtubules, as well as several microtubule-associated
proteins (MAPs) and motors, to regulate several key mechanisms underlying the faithful segregation
of the genetic material during cell division. It involves the assembly of a specialized microtubule-based
structure known as the mitotic spindle. Due to their intrinsic dynamic nature, mitotic spindle
microtubules are vastly tyrosinated, i.e., remain essentially nonmodified (note that most gene-encoded
α-tubulin isoforms carry a last Tyrosine residue at their C-terminal tails; see Figure 1). As some
spindle microtubules become gradually stabilized due to the establishment of chromosome attachments
at the kinetochore, as well as possible interactions between some interpolar microtubules, they become
increasingly detyrosinated [19,36–40] (Figure 2). Likewise, kinetochore microtubules are highly
acetylated on the K40 of α-tubulin [36,41] and polyglutamylated [42] and accumulated ∆2-tubulin [43].
The actions of spindle microtubules during mitosis is regulated by several MAPs [44] and assisted
by several motor proteins [45]. For instance, the initial capture and transport of peripheral chromosomes
by microtubules is mediated by dynein/dynactin [46–49], a minus-end-directed motor localized
at unattached kinetochores [50,51], whereas the subsequent congression to the spindle equator
is mediated by another kinetochore-associated motor, Centromere Protein E (CENP-E)/kinesin-7,
with microtubule plus-end-directed activity [52,53]. Other mitotic motors include kinesin-5, which
slides antiparallel microtubules to ensure proper centrosome separation, spindle bipolarity and
spindle elongation during anaphase, as well as kinesin-13s, which lack motor activity but promote
microtubule depolymerization to control spindle length and mediate mitotic error correction [54–59].
Thus, the mitotic spindle is an anisotropic and highly heterogeneous structure, with dynamic astral
microtubules essentially tyrosinated, in contrast with more stable microtubule subpopulations, such
as kinetochore and a fraction of interpolar microtubules, which accumulate detyrosinated, ∆2, acetylated
and polyglutamylated tubulin. How these modifications impact the action of the different mitotic
motors that assist chromosome segregation remains poorly understood.

2.1. A Navigation System Guides Chromosomes to the Spindle Equator

Although tubulin diversity in the mitotic spindle has been recognized for several decades,
the respective functional relevance for mitosis remained unclear until recently. One crucial implication
of the tubulin code hypothesis is the regulation of MAPs and motors by specific tubulin isotypes and
PTMs [4]. Original work in neurons revealed that classic kinesin motors, such as Kinesin-1, are able to
recognize and have a preference for microtubules with particular tubulin PTMs, namely detyrosination
and acetylation [60,61]. Subsequently, α-tubulin detyrosination was shown to regulate mitotic
chromosome congression to the metaphase plate by guiding the microtubule plus-end-directed motor
CENP-E/kinesin-7 at kinetochores in human cells [36]. In contrast, the microtubule minus-end-directed
motor dynein/dynactin that is also localized at unattached kinetochores [50,51] preferentially associates
with tyrosinated microtubules [40,62–64], which favor the initiation of motion but are dispensable
for subsequent dynein/dynactin processivity [63,64]. Thus, detyrosinated/tyrosinated α-tubulin
regulates the activity of opposing kinetochore motors, establishing a navigation system for chromosomes
that assists their congression to the spindle equator [65] (Figure 2). Accordingly, during the initial
capture of chromosomes, dynein/dynactin counteracts the action of chromokinesins on chromosome
arms to move peripheral chromosomes along tyrosinated astral microtubules towards the vicinity
of the poles [66]. By transporting peripheral chromosomes to the poles where the microtubule
destabilizing activity of Aurora A kinase is higher [67,68], dynein/dynactin prevents the formation
of stable end-on kinetochore–microtubule attachments that would otherwise cause the random
ejection of polar chromosomes by chromokinesins [65,66]. Once at the poles, Aurora A-mediated
phosphorylation activates CENP-E at kinetochores of polar chromosomes [69], thus allowing their
transport specifically along detyrosinated spindle microtubules towards the equator. In agreement,
recent super-resolution coherent-hybrid stimulated emission depletion microscopy [70] of CENP-E-GFP
revealed its exclusive association with stable kinetochore and interpolar microtubule bundles but
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not with tyrosinated astral microtubules [71]. Curiously, α-tubulin acetylation on K40, which is also
enriched on stable spindle microtubules [41], does not interfere with polar chromosome congression [36].
While the potential contribution of other tubulin PTMs to chromosome congression remains unknown,
these findings support a robust working model in which tyrosinated/detyrosinated microtubules guide
peripheral chromosomes towards the spindle equator.
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Figure 2. Summary of the established roles of the tubulin code in mitosis. The initial capture of peripheral
chromosomes is mediated by dynein/dynactin at kinetochores, upon which, the chromosome is brought
to the vicinity of the centrosome by lateral transport along tyrosinated astral microtubules. This prevents
the random ejection of the chromosome by the action of Chromokinesins on chromosome arms.
Once at the pole, high Aurora A activity prevents the stabilization of end-on kinetochore-microtubule
attachments, which otherwise would favor the action of Chromokinesins on chromosome arms.
In parallel, Aurora A-mediated phosphorylation activates CENP-E at kinetochores. This initiates
transport towards the spindle equator (congression) along stable detyrosinated microtubules. Mitotic
centromere-associated kinesin (MCAK) and Kif2b (not depicted) at centromeres and kinetochores
are also inhibited by tubulin detyrosination on kinetochore microtubules, allowing the correction
of syntelic and merotelic attachments, while preserving correct amphitelic attachments on bi-oriented
chromosomes. MCAK at the microtubule plus ends also regulates astral microtubule length to allow
interaction with dynein/dynactin at the cortex or cytoplasmic organelles (not depicted), which exerts
pulling forces necessary for spindle orientation and positioning. See main text for details.
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2.2. A Mitotic Error Code

The regulation of kinetochore microtubule dynamics is essential for error correction and
the maintenance of genome stability, since it allows the establishment of amphitelic kinetochore-MT
attachments that lead to chromosome biorientation relative to the spindle poles. Kinesin-13s,
such as Kinesin superfamily 2b (Kif2b) and mitotic centromere-associated kinesin (MCAK), promote
kinetochore microtubule dynamics, thus playing a key role in the correction of mal-oriented
chromosomes with erroneous kinetochore-microtubule attachments (e.g., syntelic, in which both
sister kinetochores are oriented towards a single spindle pole, and merotelic, where a single
kinetochore is attached with microtubules oriented to both poles) and, ultimately, in the prevention
of chromosome mis-segregation [55,72] (Figure 2). In agreement, stimulation of kinetochore microtubule
dynamics in otherwise chromosomally unstable cancer cells by increasing kinesin-13 depolymerase
activity reestablished chromosomal stability [55,73]. Building on the previous finding that MCAK’s
microtubule depolymerizing activity is reduced four-fold in the presence of detyrosinated microtubules
in vitro [74,75], it was recently shown that the mitotic error correction activity of MCAK and
Kif2b is regulated by α-tubulin detyrosination [37]. Accordingly, the experimental depletion
of TTL or overexpression of VASH1-SVBP, which caused a constitutive increase of α-tubulin
detyrosination in the vicinity of the kinetochores, compromised error correction, leading to chromosome
segregation errors. Importantly, α-tubulin detyrosination specifically impaired the MCAK-based error
correction machinery located on centromeres/kinetochores, and it did so without affecting global
kinetochore microtubule dynamics, suggesting that mitotic error correction is exquisitely sensitive
to the detyrosinated state of α-tubulin that likely occurs at the individual microtubule level. These
data support the existence of a “mitotic error code” in which α-tubulin detyrosination/tyrosination
signals and regulates MCAK activity at centromeres/kinetochores to discriminate between correct and
incorrect kinetochore-MT attachments during mitosis (Figure 2).

Complete centrosome separation before nuclear envelope breakdown prevents subsequent
segregation errors and ensures mitotic fidelity [76]. This relies on several elements, including
the microtubule motors kinesin-5, required for centrosome separation, and dynein/dynactin, which
promote both centrosome separation and positioning [77,78]. Similar to dynein/dynactin, kinesin-5
appears to have increased affinity to tyrosinated dendritic microtubules in neurons [79], but direct
evidence from in vitro reconstitution assays is still lacking. Nonetheless, recent work in which
centrosome positioning in human mitotic cells was tracked in 3D indicated that centrosome separation
at nuclear envelope breakdown is insensitive to the tyrosinated state of α-tubulin [37]. This reinforces
the idea that the observed increase in mitotic errors associated with excessive α-tubulin detyrosination
is due to the incapacity to correct, rather than an increased propensity to make errors.

2.3. Role in Mitotic Spindle Orientation and Positioning

Mitotic spindle orientation and positioning in the cell center is essential for accurate cell division
and relies on the action of pulling forces on astral microtubules [80]. In particular, dynein/dynactin
anchored to cortical proteins or cytoplasmic organelles was shown to play a significant role
in spindle orientation/positioning [81–83], possibly through its increased affinity to tyrosinated
astral microtubules (Figure 1). Indeed, modulation of the α-tubulin tyrosination state, either through
TTL knockout [40] or CRISPR/Cas9-mediated editing of the C-terminal tyrosine [83], caused spindle
orientation defects. In contrast, an experimental decrease of α-tubulin detyrosination after VASH1/2
silencing increased the depolymerase activity of MCAK, resulting in disoriented spindles, with shorter
astral microtubules [19]. Taken together, these observations indicate that the mechanisms behind
spindle orientation/positioning rely on the intrinsic nature (i.e., nonmodified) of tyrosinated α-tubulin
to allow astral microtubules to establish a correct cell division plane (Figure 2).
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2.4. Roles in Centrosome Structure and Cytokinesis

Tubulin polyglutamylation is highly enriched on centriole microtubules [42,84] and has
been proposed to contribute to normal mitosis by maintaining centrosome structure [84,85].
Indeed, recent super-resolution imaging of the centriole structure revealed the specific distribution
of polyglutamylation on centriole MTs and suggested a key role for this PTM in ultrastructural
organization of specific centriolar proteins [86]. Furthermore, tubulin polyglutamylation promotes
the activity of the microtubule-severing enzymes spastin and katanin [87–90], which are also implicated
in cell division. Indeed, their activities regulate several cellular processes that likely impact chromosome
segregation fidelity, such as microtubule poleward flux, spindle orientation and length [91–93].
Spastin and katanin are also required for the abscission step and completion of cytokinesis [94–96].
Like spastin [94] and katanin [96], polyglutamylated tubulin is enriched at the midbody [87],
and a tubulin mutation that compromises polyglutamylation (and, possibly, also polyglycylation)
in cilia was shown to cause cytokinesis defects [97]. These results suggest that the completion
of cytokinesis relies on the regulation of spastin and katanin activities by tubulin polyglutamylation.

3. The Cancer Tubulin Code

3.1. (De)Regulation of Tubulin Isotypes and PTMs in Cancer

Several works have reported an emerging link between alterations of tubulin isotypes and
PTMs and/or associated modifying enzymes with certain cancers; most noticeable, those occurring
in the breast, colon, prostate, liver, brain, bile duct and pancreas (Table 1). These alterations often
correlate with specific cancer properties, including poor outcome/prognosis [98–100] and metastatic
ability [98], supporting the potential use of cancer tubulin isotypes and/or PTM signatures as useful
biomarkers, as well as for therapeutic purposes. However, a comprehensive and definitive view
on the real potential is still lacking, especially concerning causality, since the available data is still
limited and often contradictory.

3.2. Functional Implications of the Cancer Tubulin Code

The differential regulation of specific tubulin isotypes and/or PTMs in cancer might reflect their
role in key mechanisms underlying cell transformation (Figure 3). β3-tubulin (TUBB3) is the most
frequent tubulin isotype associated with specific cancer features. Its expression was proposed to be
important for tumor development [101,102] and metastatic ability [102,103], correlating with poor
outcomes [103,104]. The expression of other isotypes such as β2-tubulin, and its altered cellular
localization in colorectal cancer, also correlate with poor outcomes [105]. The differential expression
of tubulin isotypes have been extensively associated with response to microtubule-targeting drugs,
such as taxanes, commonly used in chemotherapy (reviewed in [106]). The origin of this link may be
on the known regulation of microtubule dynamics by specific tubulin isotypes, with microtubules
containing β3-tubulin being more dynamic compared to other β-tubulin isotypes [107–109].

In addition, the regulation of cell proliferation, which is essential for cancer development,
was proposed to be mediated by certain tubulin PTMs. In this regard, the tubulin glycylase TTLL3
was proposed to restrict cell proliferation in the colon and is downregulated in colon cancer [110],
whereas the tubulin glutamylase TTLL4 was suggested to promote cell proliferation in pancreatic
cancer cells [111]. However, whether this was specifically due to a role of TTLL4 in tubulin
glutamylation remains controversial, since an additional activity towards non-tubulin substrates
has been reported [112,113]. The tubulin acetyltransferase αTat1 was also shown to be required for
contact inhibition of cell proliferation in vitro [114]. In agreement, the tubulin deacetylase HDAC6
seems to promote cell proliferation in several cancer cell lines [115–119], consistent with its upregulation
in some cancers (Table 1). Nevertheless, specificity remains to be demonstrated, since HDAC6 is also
known to modulate the acetylation of other substrates besides tubulin [120]. Interestingly, the activity
of TTLL3 and HDAC6 was also proposed to impact tumorigenesis. Accordingly, the experimental loss
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of TTLL3 in a mouse model of tumorigenesis resulted in the development of cancer, thus validating its
downregulation in colon cancer and suggesting a cancer-suppressing role for tubulin glycylation [110].
In contrast, the expression of HDAC6 promoted colony and spheroid formation of cancer cells, as well
as tumor growth in mice [115,116,118,119]. The activity of other tubulin-modifying enzymes, such
as TTL, is also decreased during tumorigenesis in mouse models, resulting in increased detyrosinated-
and ∆2-tubulin levels [121]. This is consistent with the association between α-tubulin detyrosination
and tumor aggressiveness [99], as well as with the frequent downregulation of TTL and consequent
upregulation of α-tubulin detyrosination in several cancers (Table 1).
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Figure 3. Implications of the tubulin code for tumor progression and metastasis. While the downregulation
of TTLL3 (glycylation), together with the expression of VASH2 (detyrosination), HDAC6 (acetylation)
and β3-tubulin, promotes tumor growth, this is inhibited by VASH1 (detyrosination). Tumor formation
and chromosomal instability is also associated with the downregulation of TTL. Tubulin acetylation,
detyrosination and β3-tubulin isotypes might promote several steps of metastasis associated with
the epithelial-to-mesenchymal transition, such as cell migration and invasion. See main text for details.

The recent discovery of Vasohibins (VASH1 and VASH2) as TCPs [13,14] revitalized the discussion
about the role of tubulin detyrosination in cancer. Vasohibins and their associated SVBP were
originally identified as secreted proteins implicated in angiogenesis [127]. While VASH2 promotes
vascularity by accumulating at the sprouting zone, VASH1 expression is increased in endothelial
cells of the termination zone, where it inhibits vascularity [128]. During tumor development in mice
xenograft models, experiments involving the administration of ectopic VASH1 indicated that it inhibits
tumor lymphangiogenesis [129], angiogenesis and growth [130]. On the other hand, VASH2, which
appears to play an important role in cancer cell proliferation [124], promotes tumor angiogenesis
and growth [124,131–133]. Noteworthy, none of these studies demonstrate that the observed impact
in cancer was due to defective tubulin detyrosination. However, human patients suffering from
a broad range of carcinomas had mutations in VASH1 and VASH2 that compromised their tubulin
detyrosination activity [17] and, more recently, it was suggested that the MT detyrosinating activity
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of VASH1 inhibited angiogenesis by interfering with endocytosis and trafficking of proangiogenic
factor receptors [134]. Taken together, these findings suggest that, in addition to the downregulation
of TTL [121], the link between tubulin detyrosination and tumorigenesis may be attributed to the role
of Vasohibins in angiogenesis. The availability of VASH1/2-SVBP knockout mice [128,135] will be
instrumental in clarifying the apparently opposite roles of VASH1 and VASH2 in cancer and whether
this is due to their secreted and/or tubulin detyrosinating activities.

Table 1. Tubulin isotypes, post-translational modifications and modifying enzymes in cancer.

Tubulin PTM (and/or
Enzymes)/Isotype Cancer Regulation References

Detyrosination

Prostate Cancer Cells Upregulated [122]

Poor Prognosis
Breast Tumors Upregulated [99]

Invasive Ductal
Carcinoma (Breast) Upregulated [123]

TTL

Prostate Cancer Cells Downregulated [122]

Poor Prognosis
Neuroblastomas Downregulated [100]

VASH2
Hepatocellular

carcinoma Tissues and
Cell Lines

Upregulated [124]

∆2-Tubulin Prostate Cancer Cells Downregulated [122]

Acetylation Metastatic Breast Tumors
and Cell Lines Upregulated [98]

HDAC6

Pancreatic Tumors Upregulated [125]

Glioblastoma Tissues
and Cell Lines Upregulated [118]

Cholangiocarcinoma
Cell Lines Upregulated [115]

Glutamylation/
Polyglutamylation Prostate Cancer Cells Upregulated [122]

TTLL4 Pancreatic Ductal
Adenocarcinoma Cells Upregulated [111]

Glycylation
TTLL3

Colon Tumors and
Cell Lines Downregulated [110]

β3-tubulin

Pancreatic Tumors and
Cell Lines Upregulated [102]

Pancreatic Ductal
Adenocarcinoma Tissues Upregulated [126]

Breast Cancer
Brain Metastases Upregulated [103]

3.3. The Cancer Tubulin Code in Cell Migration and Invasion

Tubulin PTMs have also been implicated in epithelial-to-mesenchymal transition (EMT), a key
process behind metastasis initiation. For instance, experimental increase of the tubulin deacetylase
HDAC6 promoted EMT, whereas TGF-β induction of EMT downregulated tubulin acetylation [136].
Likewise, the induction of EMT also correlated with the downregulation of TTL and the consequent
increase of tubulin detyrosination [123], as shown before during tumor development [121], thus pointing
to the possible involvement of these tubulin PTMs and associated enzymes in cell transformation.

Interestingly, tubulin acetylation is also frequently associated with the regulation of cell migration,
although this remains controversial. While HDAC6 expression and activity was proposed to promote
cell migration [12,120,136–138], the opposite effect was observed after the loss of αTat1 or mutation
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of the α-tubulin lysine 40 (K40R) [98,137,139,140]. The establishment of cell adhesion to the substrate
also has implications for cell motility, and the loss of either HDAC6 or αTat1 leads to an increased
focal adhesion area and number, respectively, as well as decreased dynamics [137,141]. However,
other works reported that a loss of αTat1 leads to a decrease in the focal adhesion number [114].
The basis for this discrepancy remains unclear, but it is likely associated with different experimental
setups; one study investigated the role of αTat1 in wound-induced migrating cells [137], while the other
used normally growing cells [114], raising the possibility that αTat1 promotes focal adhesion dynamics
specifically during cell migration.

The upregulation of tubulin acetylation in metastatic breast tumors and cell lines [98] is consistent
with its association with cancer cell invasiveness. RNAi-mediated depletion of either αTat1 or HDAC6
indicated that their expression induced breast cancer cell invasion [139,140,142]. Additionally,
the increased tubulin acetylation of these metastatic breast cancer cells promoted micro-tentacle
generation and cell reattachment ability, essential for metastasis [98]. Likewise, a high frequency
of micro-tentacles and cell reattachment were also associated with tubulin detyrosination [123,143].
Collectively, these data favor a potential role of tubulin acetylation in metastasis progression. While
HDAC6 indiscriminately acts upon multiple protein targets, the direct modulation of tubulin
acetylation by K40R mutation experiments suggest that the upregulation of tubulin acetylation
is a metastasis-promoting factor, supporting the αTat1-related findings. This would explain the link
between the upregulation of tubulin acetylation and poor prognosis in breast cancer patients [98],
but unspecific effects due to the overexpression of GFP-tagged K40R mutant α-tubulin cannot
be excluded.

4. How Alterations of the Tubulin Code in Mitosis Might Be Implicated in Cancer

Chromosomal instability, a hallmark of cancers, has been shown to promote the metastatic
process [73]. Indeed, the overexpression of Kif2b or MCAK, in addition to reestablishing
the stability of chromosomally unstable cancer cells [55,73], inhibits metastasis in vitro and in vivo,
with a consequent increase in survival [73]. Given that excessive tubulin detyrosination might lead
to chromosomal instability by suppressing the error correction activity of MCAK and Kif2b [37],
together with the observed upregulation of tubulin detyrosination in invasive cancer and with poor
prognosis (Table 1), it raises the exciting possibility that an increase in tubulin detyrosination might
promote cancer progression through inhibition of the mitotic error correction machinery. However,
an extensive analysis of tubulin detyrosination in chromosomal instability-prone cancers, together with
the elucidation of its implications for cancer metastasis, is necessary for its establishment as potential
diagnostic and prognostic biomarkers. In addition, tubulin detyrosination represents a promising
therapeutic target for cancer suppression—for example, by using TCP inhibitors, such as epoY [13]
or parthenolide [144].

The deregulation of tubulin detyrosination in cancers might also be involved in other mitotic-related
cancer features. Firstly, the cell cycle delay observed upon VASH1/2 [19] and VASH2 [124]
deletion might unveil the importance of VASH2 for proper cancer cell proliferation and tumor
development [124,131–133]. Furthermore, both experimental upregulation and downregulation
of tubulin detyrosination led to congression defects, causing alterations in the CENP-E-mediated
transport of chromosomes to the spindle equator [36]. Additionally, the decrease of CENP-E expression
is well-established to promote mild chromosomal instability and aneuploidy, as well as tumorigenesis
in mice [145–148]. Therefore, the deregulation of tubulin detyrosination in cancers (Table 1) may also
account for cancer promotion under conditions of moderate chromosomal instability, such as those
associated with mild problems in chromosome congression. Further investigation is required to fully
understand the potential implications of tubulin detyrosination and other PTMs for tumorigenesis and
the respective link with chromosomal instability.
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5. Conclusions and Outlook

Since the initial observations implicating tubulin PTMs in cell division, recent works have
allowed a deeper understanding of their involvement—in particular, detyrosination/tyrosination—in
the coordination of several mechanisms underlying faithful chromosome segregation during mitosis.
However, considerable knowledge is still lacking in order to establish a complete picture of the roles
played by the tubulin code in mitosis. The scenario is no different regarding the emerging cancer tubulin
code, in which a considerable amount of disconnected data dominates. Nevertheless, there are already
some promising links between the deregulation of certain tubulin isotypes and PTMs (notoriously,
acetylation, detyrosination and glycylation) and several cancers. A more systematic investigation
of these links will be of high priority to the field and might prove important for diagnostic and prognostic
purposes. This is likely to have a major impact in understanding and mitigating the acquired resistance
to microtubule-targeting drugs, the biggest threat in current cancer chemotherapy. Future work is
also necessary to establish clear functional links beyond correlations by taking advantage of emerging
molecular tools and model systems for the modulation and analysis of tubulin isotypes and PTMs (both
in vitro and in vivo) that will strengthen and clarify their potential therapeutic value for the treatment
of human cancers.
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