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Abstract: During the last two decades, the constitutive androstane receptor (CAR; NR1I3) has 

emerged as a master activator of drug- and xenobiotic-metabolizing enzymes and transporters that 

govern the clearance of both exogenous and endogenous small molecules. Recent studies indicate 

that CAR participates, together with other nuclear receptors (NRs) and transcription factors, in 

regulation of hepatic glucose and lipid metabolism, hepatocyte communication, proliferation and 

toxicity, and liver tumor development in rodents. Endocrine-disrupting chemicals (EDCs) constitute 

a wide range of persistent organic compounds that have been associated with aberrations of 

hormone-dependent physiological processes. Their adverse health effects include metabolic 

alterations such as diabetes, obesity, and fatty liver disease in animal models and humans exposed 

to EDCs. As numerous xenobiotics can activate CAR, its role in EDC-elicited adverse metabolic 

effects has gained much interest. Here, we review the key features and mechanisms of CAR as a 

xenobiotic-sensing receptor, species differences and selectivity of CAR ligands, contribution of CAR 

to regulation hepatic metabolism, and evidence for CAR-dependent EDC action therein. 

Keywords: endocrine disruption; metabolic disruptors; constitutive androstane receptor; NR1I3; 

glucose metabolism; lipid metabolism 

 

1. Introduction 

Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds that alter functions 

of the endocrine system and as a consequence, cause adverse health effects in an intact organism or 

its progeny or subpopulations, e.g., via interactions with nuclear receptors (NRs) and other targets of 

endogenous hormones and other signaling molecules [1,2]. The synthetic EDCs are structurally 

diverse, often lipophilic substances capable of bioaccumulation (persistent organic pollutants). 

Examples include plasticizers, pesticides, fungicides, and various polyhalogenated organic 

compounds present in consumer products, environment, or exposures from industrial sources [1]. 

EDCs may interfere with regulation of body homeostasis by mimicking, suppressing, or altering the 

normal physiological responses. These adverse actions can be mediated by e.g., direct 

agonism/antagonism of these receptors, indirect effects via modulation of synthesis or clearance of 

endogenous receptor ligands, interference of the downstream signaling pathways or the endocrine 

feedback systems between tissues or through epigenetic changes that dysregulate the hormonal 

signaling pathways and may be transmitted to the next progeny [3]. Due to the high degree of 

sequence similarity and conservation of signaling pathways for many receptors across species, EDCs 
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can exert their effects in both wildlife and humans. As the same receptors are often critical for the 

growth, maturation, and maintenance of endocrine tissues, the effects of EDCs are thought to be 

especially problematic for developing individuals. The adverse effects on birth outcomes, sexually 

determined physiological characteristics, reproductive health, and neuroendocrine functions in 

humans have been well documented in epidemiological studies [1,4]. 

Recently, EDCs have been linked to disturbances in metabolic processes such as type 2 diabetes 

(T2D), metabolic syndrome, obesity, and non-alcoholic fatty liver disease (NAFLD) that are 

increasingly prevalent in Western societies and among the younger populations. Several mechanisms 

proposed to underlie these aberrations include dysregulation of food and energy intake at the gut–

brain axis, interference of normal energy consumption, abnormal storage of energy in adipose tissue 

(obesity) and the liver (steatosis), and unbalances in handling of energy sources between tissues [5,6]. 

Several NRs expressed in the liver coordinate the hepatic glucose, lipid bile acid and energy 

metabolism and their functions can be modulated by EDCs (Table 1.) [7,8]. Among these NRs, the 

peroxisome proliferator-activated receptors (PPARs), pregnane X receptor (PXR), and constitutive 

androstane receptor (CAR) seem to play central roles in glucose and fatty acid metabolism.  

Here, we review the characteristics of CAR, mechanisms by which CAR is involved in metabolic 

processes, and finally, the effects of metabolism-disrupting chemicals on CAR activity and signaling. 

To this end, we selected the currently known EDC classes from existing literature since the year 2000 

with an emphasis on compounds that have been associated with metabolic disruption. We then 

extended our literature searches on each EDC class and their prototypical compounds to identify 

articles showing interaction with CAR in a variety of in vitro, cellular, and animal models. Targeted 

searches based on reference lists, available Toxcast data, and other relevant NRs were also conducted. 

Thus, EDCs that interfere only with e.g., reproductive system and do not interact with CAR are not 

included here. 
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Table 1. Modulation of nuclear receptor activities by CAR-relevant EDCs. 

EDC Group 

Nuclear Receptors Relevant for Energy Metabolism [9,10] 

CAR PXR PPARs LXRs TR ERRs FXR RXR RAR VDR GR MR 

h r h r h r h r h r h r h h h h h h 

Alkylphenols  ↑ [11]  ↑ [12]  ↑ [13] ↑ [14]          ↓ [15]     

Bisphenols ↑↓ 
[11,16] 

 ↑ 
[16,17] 

 ↑ 
[18,19] 

↑ [18]  ↑ 
[20] 

↓ [21] ↓ 
[22] 

↑ 
[17] 

     ↓ 
[16,17] 

↓ [17] 

Phthalates ↑ 
[11,23–

25] 

↑ 
[11,23–

25] 

↑ 
[11,23–

25] 

↑ 
[11,23–

25] 

↑ [23] ↑ [23] ↑ 
[26] 

  ↓ 
[27] 

        

PFAS ↑ [28] ↑ [28]   ↑ [29] ↑ [30]             

Flame 

retardants 

↑ 
[31–33] 

↑ 
[31–33] 

↑ [31] ↑ [31] ↑ 
[34,35] 

 ↑ 
[26] 

 ↓ 
[36,37] 

 ↓ 
[38] 

  ↑ [39]  ↑ [39] ↑ [39]  

PCBs ↑ 
[40] 

↑ 
[41] 

↑ 
[40] 

↑ 
[41] 

    ↓ [42]        ↓ [43]  

Pesticides ↑ 
[44,45] 

↑ [44] ↑ 
[44–46] 

↑ [44] ↑ [47] ↑ [48]   ↓ [49]  ↓ 
[50] 

↓ 
[50]  

↓ 
[51]  

 ↑ [52]  ↓ 
[43,53] 

↓ 
[43,54] 

Fungicides ↑↓ 
[55–57] 

↑↓ 
[55–57] 

↑ 
[55,56] 

↑ 
[55,56] 

            ↓ [58] ↓ [59] 

Parabens  ↑↓ [60] ↑ [60] ↓ [60] ↑ [61] ↑ [60]           ↑ [61]  

                   

Triclosan ↑↓ [62] ↓ [62] ↑ [62]  ↓ [63] ↑ 
[63,64] 

            

THMs, natural  

compounds,  

 

↑ 
[65–67] 

↑ [67] ↑ 
[67,68] 

↑ [67] ↑↓ 
[51,69] 

 ↑↓ 
[70] 

   ↑ 
[71] 

       

CAR, constitutive androstane receptor; PXR, pregnane X receptor; VDR, vitamin D receptor; PPAR, peroxisome proliferator-activated receptor; FXR, farnesoid X receptor; LXR, liver X receptor; 

ERR, estrogen receptor-related receptor; RAR, retinoic acid receptor; RXR, retinoid X receptor; TR, thyroid hormone receptor; GR, glucocorticoid receptor; MR, mineralocorticoid receptor; PFAS, 

per- and polyfluoroalkyl substances; PCB, polychlorinated biphenyls; THM, traditional herbal medicines; ↑ = activation/agonism, ↓ = inactivation/antagonism; h = human (in vitro), r = rodent 

(in vitro, in vivo). 
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2. Key Characteristics of CAR and Its Activation Process 

The constitutive androstane receptor (CAR, NR1I3) is a member of nuclear receptor subfamily 

1I, together with its sisters vitamin D receptor (VDR, NR1I1) and pregnane X receptor (PXR, NR1I2), 

and a subject of intense research for the past 20 years. The many earlier review articles on CAR 

properties, target genes, evolution, and other aspects have been listed previously [72] and later 

progress in the field is also well-documented (e.g., [73–78]). Therefore, we provide below only an 

overview on key characteristics of CAR. 

CAR was initially identified as a constitutively active modulator of retinoic acid receptor 

signaling [79]. Subsequent discoveries established CAR as a liver-predominant, ligand-activated 

regulator of xenobiotic-metabolizing enzymes such as cytochrome P450s (CYPs), conjugating 

enzymes and transporters, and identified the main molecular mechanisms underlying this induction 

pathway. First, CAR activates the Cyp2b10 gene transcription after exposure of liver cells to 

phenobarbital (PB) and other PB-like inducing drugs by binding as a heterodimer with retinoid X 

receptor (RXR) to a distal enhancer sequence termed PBREM [80,81]. During this activation, CAR is 

translocated from cytoplasm into the nucleus [82] after dissociation of CAR-interacting cytoplasmic 

partners such as heat shock protein and CCRP [83]. The translocation in turn involves inducer-

dependent dephosphorylation of the receptor, which is mediated by protein phosphatase 2A that 

counteracts the action of protein kinase ERK1/2 [84,85]. 

Consistently with these molecular studies, CAR null mice do not display induction of drug 

metabolism, proliferation of endoplasmic reticulum, or liver growth in response to PB or many other 

rodent tumor promoters [86,87]. Differences in CAR protein sequences cause significantly distinct 

ligand profiles between species [72,88]. In addition, humans but not rodents have splicing isoforms 

that are differentially activated by ligands [89]. The robust hypertrophy of rodent liver to PB exposure 

seems to be missing in humans, perhaps due to differences in CAR target genes in these species [90]. 

Development of various in vitro assays, coupled with mutagenesis and structural models, have 

clearly established that diverse chemicals act either as direct agonists or inverse agonists of CAR [91–

94]. However, some compounds including PB are called indirect activators due to their inability to 

elicit binding to CAR, as measured by e.g., recruitment of NR coactivators, despite the fact that these 

compounds can induce CAR target genes [95]. It should be also noted that many CAR-activating 

chemicals can bind to other NRs, especially to PXR and PPARs [96,97], and several NRs and CAR 

may crosstalk, notably via sharing of DNA binding sites by CAR and PXR [72], PPARα [98], and 

hepatocyte nuclear factor-4 (HNF4; [99]). 

CAR-mediated induction is, at least for PB, associated by the attenuation of epidermal growth 

factor (EGF) signaling [84,100]. Additionally, insulin and CAR pathways have been reported to 

intersect [101]. Finally, there is evidence that other NRs [72], genetic background [102], fasting [103], 

and aberration of the circadian clock [104] may enhance CAR expression levels. These interactions 

provide additional mechanisms to integrate glucose metabolism, energy utilization, liver 

proliferation, and xenobiotic metabolism. 

3. Metabolic Effects Modulated by CAR 

The many CAR-responsive genes code for proteins involved in disposition of drugs and 

xenobiotics, cell cycle control, and in endogenous metabolic processes [75,105]. Evidence from in vivo 

animal and in vitro human studies indicates that CAR is actively controlling key energy metabolism 

processes, such as hepatic glucose and lipid metabolism and is involved in the pathogenesis of 

metabolic disorders [72,73,106] (Figure 1). CAR has been reported as a key mediator in protecting 

against steatosis via suppressing lipogenesis and gluconeogenesis, and further, activation of CAR 

protects against fatty liver [106]. CAR has also been shown to participate in thyroid hormone 

metabolism [107–109]. 
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Figure 1. Schematic overview of key regulatory processes affected by CAR. CAR activation modulates 

key metabolic processes, such as glucose and lipid metabolism and bile acid synthesis via several 

mechanisms and pathways (as detailed in the main text). These effects depend in part on sex, 

nutritional status, or metabolic challenge used in animal studies. CAR-mediated induction of genes 

involved in glucose uptake and utilization (e.g., hexokinase, PGD) generates NADPH, which in turn 

supports xenobiotic metabolism. Through regulation of thyroid hormone levels, CAR can contribute 

to energy expenditure and weight loss. CAR alters the expression of genes associated with cell 

proliferation and oncogenic signaling in rodents. Positive outcomes are depicted with green, 

ambivalent outcomes with yellow, and adverse outcomes with orange color. 

The effects of CAR on metabolic homeostasis are mediated e.g., by reduced expression of several 

factors associated with energy expenditure, fatty acid synthesis, β-oxidation, bile acid synthesis, and 

gluconeogenesis [110,111] (Figure 1). CAR has been connected to metabolic stress during long-term 

fasting in mice by downregulation of triiodothyronine (T3) and tetraiodothyronine (T4) through the 

induction of Sult1a1, Sult2a1, and Ugt1a1 genes, thus reducing the basal metabolic rate [112]. 

Additionally, CAR is required for the PB-induced decrease in T3 and T4 levels [113]. CAR further 

competes with the thyroid hormone receptor (TR) for binding to the mutual heterodimerization 

partner retinoid X receptor (RXR)α and NR coregulators [98] and may thus reduce the effects of 

thyroid hormones by decreasing the ability of TR to regulate its target gene expression. 

Activation of CAR has been shown to repress gluconeogenesis [114,115] and to reduce serum 

glucose levels [115] in mice, and to lower lactate production and glucose consumption [116,117] in 

HepaRG cells. After a meal, insulin prevents hepatic glucose output by repressing 

phosphoenolpyruvate carboxykinase-1 (PEPCK1) and glucose 6-phosphatase (G6Pase) transcription. 

Upon fasting, G6Pase and PEPCK1 genes are reactivated by the transcription factor forkhead box O1 

(FoxO1) to initiate gluconeogenesis in the absence of insulin. Mechanistically, CAR can bind and 

repress FoxO1 [118], preventing it from interacting with the insulin response elements in insulin-like 

growth factor-binding protein (IGF-BP) 1, pyruvate carboxylase (PCX), fructose bisphosphatase 1 

(FBP1), PEPCK1 and G6Pase upstream regions, and thus, suppressing the expression of these 

gluconeogenic genes [119]. CAR can compete with HNF4α for binding to the PEPCK promoter [99] 

or for metabolic coregulators, such as peroxisome proliferator-activated receptor γ coactivator-1 

(PGC1)α or glucocorticoid receptor-interacting protein 1 (GRIP1) [110,120]. Further, CAR can 

suppress hepatic gluconeogenic gene expression through posttranslational regulation of degradation 

and subcellular localization of PGC1α, representing a possible cellular adaptive mechanism in 

energy-restricted conditions [121]. Activation of CAR by TCPOBOP has been shown to decrease 

glucose transporter (GLUT) 2 expression in wild-type but not in CAR null mice [110], indicating a 
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reduction of hepatic glucose uptake, which may lead to inhibition of glycogenesis and stimulation of 

glycogenolysis. 

CAR activation also enhances mitochondrial metabolism and increases bile acid production, 

lactate elimination, and glucose production [116,117,122], resulting in improved glucose tolerance 

and insulin sensitivity [115,121]. Agonist-activated CAR has been shown to improve insulin 

sensitivity in high fat diet (HFD)-fed and genetically obese ob/ob mice, while CAR null and antagonist-

treated mice are resistant to insulin [57,123]. In early human studies, PB appeared to lower fasting 

plasma glucose and insulin levels, improve glucose tolerance and insulin response to glucose loading 

without affecting the body weight in diabetic patients [124,125]. Similar effects are seen in mice, 

where TCPOBOP-activated CAR prevents or ameliorates obesity and improves T2D symptoms 

induced by HFD in wild-type mice [115,126]. PB has later been shown to act as an insulin receptor 

antagonist and to elicit both CAR-independent increases and CAR-dependent decreases of blood 

glucose levels in wild-type and CAR null mice [101]. Long-term CAR activation in mice increases 

glucose uptake and utilization in the liver [115], by upregulating glucose transporters, glycolytic and 

mitochondrial pyruvate-metabolizing genes, and glycolytic intermediates in the liver [127]. Fasting 

and caloric restriction increases the activity of certain metabolic pathways, which may be regulated 

by CAR without exposure to exogenous agonists or activators [103,128]. The fasting-induced 

expression and activation of CAR has been shown to be controlled by the interplay of at least PPARα, 

HNF4α and PGC1α [129,130], implying a feedback regulation of glucose levels. Recently, the growth 

arrest and DNA damage-inducible gene 45b (Gadd45b), associated with liver growth (Figure 1), is 

required for anti-diabetic and obesity effects of CAR in vivo [131] but deciphering the exact molecular 

mechanisms requires further studies. 

The effects of CAR to lipid metabolism are more controversial. Overall, several studies have 

shown that modulation of CAR may lead to changes hepatic triglyceride levels and thus, constitutes 

an important adverse outcome pathway (AOP) in metabolic effects of xenobiotic compounds 

[129,132]. In rodents, several studies have reported CAR as a key mediator in protecting against 

steatosis via suppressing lipogenesis and gluconeogenesis and further, activation of CAR protects 

against fatty liver [133]. Activation of CAR has been shown to alleviate hepatic steatosis and fatty 

liver by inhibiting hepatic lipogenesis and inducing β-oxidation in HFD-fed and TCPOBOP-treated 

mice [115,126]. Treatment of hyperlipidemic mice with CAR agonists decreases hepatic content of 

cholesterol by enhancing its metabolism to bile acids [134]. Activation of CAR reduces serum bile 

acid concentrations through induction of expression of genes, such as CYPs, UGTs, and SULTs, 

involved in bile acid metabolism and excretion [135,136]. In mice, CAR is involved in the regulation 

of enzymes producing bile acids [137] and its activation protects against cholestatic livery injury. 

Conversely, CAR activation contributes to increased lipogenesis, increased circulating fatty acid and 

ketone bodies, and represses β-oxidation [111,114,115,133]. Further, in primary hepatocytes, CAR 

activation did not affect the expression of lipogenic genes [138]. This discrepancy may be in part due 

to differences in the metabolic challenge and regulation of multiple pathways in diverse experimental 

settings. It should be noted that e.g., HFD feeding influences the expression/activation of NRs and 

their target genes [139]. Mechanistically, CAR has been shown to affect the insulin-induced gene-1 

(INSIG1) and suppress lipogenic gene expression [115,129,140]. Further, activation of CAR in wild-

type mice, but not in CAR/PXR null animals, leads to downregulation of PPARα and its target genes, 

such as carnitine palmitoyltransferase-1 (CPT1) that is involved in fatty acid oxidation [141]. This 

may be caused by CAR-dependent repression of FoxA2 and HNF4α transcription factors. CAR 

modulates the expression of fatty acid synthase (FASN), acetyl-CoA carboxylase 1 (ACC1), and 

stearoyl-CoA desaturase 1 (SCD1) that control de novo fatty acid biosynthesis [119]. While the 

expression of FASN and ACC1 increased after CAR activation in wild-type mice, the expression of 

SCD1 and the sterol regulatory element-binding protein-1c (SREBP-1c) was significantly decreased, 

suggesting complexities in regulatory networks. Interestingly, SREBP-1 seems to prevent interaction 

of coregulators with CAR, thereby inhibiting transcriptional activity of CAR and the expression of its 

target genes [142]. 
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According to recent studies, at least some of the CAR-mediated metabolic effects are sex-

dependent [143–145]. While CAR null male mice develop a range of metabolic disorders (obesity, 

insulin insensitivity, glucose intolerance, dyslipidemia, and liver steatosis), these symptoms were 

either mild or not observed in CAR null females [143]. However, female CAR null mice developed 

more severe symptoms after ovariectomy. Similar dimorphic effects have been observed in rats, with 

males manifesting with increased liver weight, reduced serum T4, and decreased serum total 

cholesterol, while females were unaffected [145]. Maternal CAR activation has been shown to 

improve glucose tolerance and to ameliorate gestational hyperglycemia and increase fetal weight in 

HFD-fed mice [146]. 

Even though the role of CAR in regulation of energy homeostasis and adverse metabolic effects 

has been established in rodents, many issues are still unclear. In contrast to classical hormone 

receptors, wide species differences in the ability of chemicals to modulate CAR activity cause 

significant challenges in predicting or understanding the metabolic consequences of CAR modulation 

by EDCs in humans [138,147,148]. As an example, CAR activation in mouse primary hepatocytes 

repressed the expression of genes involved in gluconeogenesis, lipogenesis, and fatty acid synthesis, 

activation of CAR in human primary hepatocytes inhibited gluconeogenesis without suppressing 

fatty acid synthesis. 

Considerable crosstalk between CAR and other NRs and transcription factors that regulate lipid 

metabolism (PXR, FXR, PPARs, and LXR) [114] and glucose metabolism (PXR, HNF4, CREB, and 

FOX proteins) [149] lead to complex regulatory networks. Additionally, the metabolic enzymes and 

transporters activated by CAR are involved in clearance of metabolically relevant endogenous 

substances that include ligands of other NRs (bile acids, bilirubin, vitamin D, and thyroid hormones) 

(e.g., [113,114,150,151]). The lack of human CAR-selective tools adds to the challenge of deciphering 

the detailed role of CAR in metabolic processes. The 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-

5-carbaldehyde-O-(3,4-di-chlorobenzyl)oxime (CITCO) is routinely used as a positive control 

substance selective to human CAR. Recently, it was shown to bind and activate human PXR in hepatic 

cell models [152]. Further, as humans are continuously exposed to a large variety of EDCs, which 

may act in additive or synergistic ways, deciphering the net effects and connecting a specific EDC to 

specific regulator and metabolic alteration is a challenging task. 

4. Metabolic Effects of EDC Classes Potentially Mediated by CAR 

Below, we present evidence of main EDC classes as CAR activators and their potential metabolic 

effects (Table 2). It should be noted that a direct role of CAR in metabolic disruption, especially for 

humans, cannot be easily determined due to lack of highly selective CAR agonists, promiscuity of 

many EDCs for many NRs and other targets (Table 1), the complex interplay between NRs in 

controlling the hepatic metabolism, and species differences among animal species and with humans. 
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Table 2. Examples of CAR related chemicals and their proposed metabolic effects via CAR. 

Chemical Group 

Example Compound 

(CAS) 

Reported CAR 

Response 

Toxcast 

AC50 

(µM) 

Metabolic Effect with Probable CAR Participation References 

Bisphenols Bisphenol A, BPA 

(80-05-7) 

Agonist 

 

46.4 RG, a) 

20.3 RG, b) 

0.00892 

BA, c) 

 

Human: childhood and adulthood obesity ↑, diabetes ↑ 

Mouse: glucose tolerance ↓ 

 

[4,153,154] 

Tetrabromobis-phenol A, TBBPA 

(79-94-7) 

Antagonist 29.3 RG, b)  Rat: thyroid hormone level ↓, reactive oxygen species ↑, 

bodyweight↑ at high dose levels 

[155]  

Phthalates Dibutyl phthalate, DBP 

(84-74-2) 

Antagonist 16.1 RG, b) 

16.2 BA, c) 

Human: diabetes ↑, insulin resistance ↑  

Rat fetus: steroid metabolism ↑ 

[4,24,156,157]  

Di-(2-ethylhexyl)-phthalate, DEHP 

(117-81-7) 

Agonist (hCAR2) 

 

inactive  

RG, a), b), 

BA, c),  

RG, d)  

Human: birth weight ↓ childhood and adult obesity ↑, diabetes↑, 

insulin resistance↑, glucose tolerance↓ 

Rat: fatty acid metabolism↑, tryptophan metabolism ↑ 

[4,156,158,159]  

Perfluoro-alkylated 

substances 

Perfluorooctanoic acid, PFOA 

(335-67-1) 

Activator 

 

18.7 BA, c) Human: glucose tolerance ↓ adult obesity ↑, child adiposity ↑, 

diabetes↑ 

Mouse: hepatic steatosis ↓  

Rat: mitochondrial respiration↓  

Rat hepatocytes: mitochondrial respiration↓, energy metabolism ↓, 

fatty acid oxidation↑, hepatic triglycerides ↑  

[4,28,106,159–162]  

Perfluorooctane sulfonate, PFOS 

(1763-23-1) 

Antagonist 17.6 BA, c) 

 

Human: adult obesity ↑ 

Rat: mitochondrial respiration ↓  

Rat hepatocytes: mitochondrial respiration ↓, energy metabolism ↓, 

fatty acid oxidation ↑, hepatic triglycerides 

[4,106,159,160,162,163]  

Brominated ND 

organo-phosphate 

flame retardants 

Polybrominated diphenyl ether 47, 

BDE-47  

(5436-43-1) 

Activator 

(mCAR, hCAR) 

39.1 RG, a) 

 

Human: obesity ↑ 

Mouse: thyroid hormone ↓, fasting glucose↑ (males), glucose 

clearance ↑ (females) 

 

[31,32,154,164,165]  

Triphenyl phosphate, TPP 

(115-86-6) 

Agonist 

 

18.2 RG, a) Mouse: bodyweight↓, energy intake ↓, ghrelin↑, leptin ↓, insulin ↓, 

fasting glucose ↑ (males) 

[32]  
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Tris(1,3-dichloro-2-propyl) 

phosphate, TDCPP  

(13674-87-8) 

Antagonist 

 

34.7 RG, d) 

0.586 RG, 

b) 

1.78 RG, e) 

Mouse: bodyweight↓, energy intake ↓, ghrelin↑, leptin ↓, insulin ↓, 

fasting glucose ↑ (males) 

 

[32] 

 

PCBs PCB153  

(35065-27-1) 

Activator inactive  

RG, a), d) 

HepG2: EGFR signaling ↓ 

Mouse: blood glucose↑ (males), glucagon ↑ (females), diet-induced 

obesity ↑, non-alcoholic steatohepatitis ↑ (males), visceral adiposity 

↑*, hepatic steatosis ↑*, β-oxidation ↓*, lipid biosynthesis ↑*, glucose 

tolerance 

[40,100,166,167]  

Arochlor 1260 

(11096-82-5) 

Activator  inactive 

RG, a), d) 

 

Mouse: EGFR signaling↓, energy metabolism ↓, metabolic 

syndrome↑, insulin sensitivity ↑*  

[168,169] 

Pesticides, insecticides Dichlorodiphenyltrichloroethane, 

o,p’-DDT  

(789-02-6) 

Agonist 

 

4.05 RG, a) Human: childhood obesity ↑ (prenatal exposure), adult diabetes ↑ 

(prenatal exposure),  

Mouse: glucose tolerance ↓ (perinatal and adult exposure), insulin 

secretion ↓ 

[4,153] 

Fungicides Cyproconazole (94361-06-5) Agonist 

 

30.2 BA, c) Mouse: lipid accumulation ↑, altered fatty acid and phospholipid 

metabolism,  

[170–173]  

Propiconazole (60207-90-1) Agonist 

 

48.2 RG,a)  

16.4 BA, c) 

65.8 RG, b) 

Mouse: liver weight ↑, fatty acid synthesis ↑, hepatic triglyceride 

accumulation↑, steatosis ↑, phospholipid degradation ↑, tryptophan 

metabolism ↑ 

Rat: fatty acid synthesis ↑, hepatic triglyceride accumulation↑, 

steatosis ↑ 

[55,57,174,175]  

Triclosan Triclosan  

(3380-34-5) 

Agonist (hCAR3) 

Inverse agonist 

(hCAR, mCAR, 

rCAR)  

 

4.71 RG, b) 

85 RG, 

d) 

Human: birth weight ↓ 

Mice: body weight ↓ (during exposure) 

Rat: hepatic catabolism of thyroid hormones ↑, thyroid hormone ↓ 

 

[4,62,176]  

Natural compounds, 

phyto/myco- 

estrogens 

 

5,7-OH flavone, chrysin  

(480-40-0) 

Agonist (mCAR) 

Activator 

(hCAR) 

39.1 RG, 

a) 

Mice: detoxification ↑, energy metabolism↑, fatty acid accumulation↓ 

in mouse livers with alcohol-induced stress.  

A431 cells: inhibit EGFR autophosphorylation at Tyr1068  

[177,178] 

 

Alkylphenols and 

derivatives 

Nonylphenol  

(104-40-5) 

Agonist 68.7 RG, a) 

 

Daphnia magna: testosterone elimination ↓, reduced/dehydrogenated 

testosterone metabolites ↑, androgen accumulation ↑ 

[13,14,179] 
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Parabens Butylparaben  

(94-26-8) 

Agonist 

 

36.5 RG, a) 

60.2 RG, b) 

Human: adverse cardiometabolic effects, blood glucose ↑ (pregnant 

women), diabetes ↑, obesity ↑ 

[180] 

 

 

      

hCAR = human CAR, mCAR = mouse CAR, rCAR = rat CAR. AC50 = chemical concentration where 50% of the maximum response is achieved. RG = reporter gene assay, BA = binding assay, a) 

TOX21_CAR_Agonist = increase in CAR-dependent luciferase reporter activity, b) ATG_PBREM_CIS_up = RT-PCR-based measurement of PBREM-driven reporter gene mRNA induction, c) 

NVS_NR_hCAR_Antagonist = loss of FRET signal from cell-free coactivator/CAR interaction, d) TOX21_CAR_Antagonist = decrease in CITCO-activated CAR-dependent luciferase reporter activity, 

e) ATG_CAR_TRANS_dn = RT-PCR-based measurement of GAL4-CAR-mediated reporter gene mRNA induction. 
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4.1. Bisphenols 

These precursors to polycarbonate and vinyl ester plastics are of concern due to high affinity of 

some bisphenols to estrogen receptors [181] and their association with childhood and adult obesity 

[4,154] (Table 2). In vitro studies have suggested that exposure to bisphenol A (BPA) can cause 

metabolic dysfunction in adipocytes [182], while early exposure has been shown to cause weight 

increase particularly in female rats [183]. In epidemiological studies, BPA has been shown to affect 

insulin synthesis and release as well as insulin signaling [184]. In vitro NR binding assays indicated 

a very high affinity (<20 nM) of several bisphenols such as bisphenol A, AF, B, and C for human CAR 

[185], which was similar to their affinity for estrogen receptors (Table 2.). In contrast, human PXR 

bound these bisphenols only at micromolar concentrations. In agreement with this study, bisphenols 

A, B, and AF were among the most effective CAR activators in the yeast two-hybrid assay [186], and 

bisphenol A was a strong activator of human CAR1 and CAR3 isoforms while human CAR2 and PXR 

were refractory [11]. In addition, tetrabromobisphenol A is a flame retardant that appears to weakly 

activate CAR and reduce thyroid hormone levels in subacute toxicity studies rats [155], although 

similar dosages in other studies have not resulted in CYP2B induction [187] (Table 2). The higher 

propensity of CAR activation as compared to other hepatic NRs suggest a connection with the 

metabolic disorders associated with bisphenols. 

4.2. Phthalates 

They are a widely used group of plasticizers present in containers, coatings, tubes, and in myriad 

of other household appliances. Di(2-ethylhexyl)-, diisononyl-, and dibutyl-phthalates (DEHP, DINP, 

DBP) are among the most commonly used, and as esters, phthalates are easily hydrolyzed to their 

monoester derivatives MEHP, MINP, and MBP. Epidemiological studies have associated exposure 

to phthalates not only to maturation but also to increased risk of childhood obesity, diabetes, and 

impaired glucose tolerance [4,157] (Table 2). Mechanistically, the adverse effects on lipid metabolism 

and obesity could be caused by activation of PPAR isoforms in several tissues [188,189]. However, 

di- and monoester phthalates activate human and mouse CAR and PXR in reporter gene assays 

[11,23–25] (Table 2). Rodent models [156,158,190] also show evidence of CAR- and PXR-dependent 

activation. In addition, activation of CAR seems to downregulate and suppress PPAR-mediated 

signaling [141,191] (Table 2). These findings may contribute to phthalate-associated disturbances in 

glucose homeostasis. 

4.3. Perfluoroalkylated Substances (PFAS) 

These compounds, typified by perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate 

(PFOS), have numerous uses in consumer and industrial products as e.g., surfactants and water-

repelling coatings. They accumulate in organisms due to their very slow metabolism, raising 

therefore concerns about toxicity [192]. More recently, a strong association with childhood adiposity, 

adult obesity and impaired glucose tolerance in human cohort studies was reported [4]. The risk of 

thyroid disruption is estimated low [193] and linkage between sex hormone-dependent effects weak 

or non-consistent (e.g., [194,195]). 

Early rodent studies found that PFOA and PFOS exposure leads to activation of PPARα-

controlled target genes but also to a strong induction of CYP2B and CYP3A mRNAs in a CAR-

dependent fashion [162,163], similarly to some phthalates (Table 2). Shorter-chain fluorinated 

carboxylic and sulfonic acids [57,145] also induced CAR target genes although negative findings have 

also been published [196]. The mode of CAR activation is not clear as some reports suggest either a 

direct [197] or an indirect mechanism [28], or no effect in reporter assays [198]. It is of interest that 

CAR and PPAR signaling pathways are mutually suppressive [105,199]. 

One of possible metabolic effects mediated by PFOA/PFOS-activated CAR is the decrease in 

serum glucose [163] (Table 2). The increases in fatty acid oxidation is more likely governed by PPARα 

while accumulation of triglycerides [160,200] could in part be due to inhibition of PPARα signaling 
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by activated CAR [75]. However, PFOA seems to decrease the severity of preexisting fatty liver 

disease [161], a process that is modulated by CAR. More research in PFOA/PFOS-mediated metabolic 

effects and involvement of CAR, especially in human systems, are needed. 

4.4. Flame Retardants 

Flame retardants are widely used in textiles, furniture, electronics, and other plastic-based 

industrial or consumer products. The main classes are brominated diphenyl ethers (BDEs) and 

organophosphates, both of which are of concern for their endocrine-disruptive effects [4,201]. With 

respect to potential CAR-mediated effects, both BDE-47 and BDE-209 are mouse and human CAR 

activators, and they increase serum glucose levels [31–33] and T4 clearance [164] in animal models 

(Table 2). For organophosphates, human CAR is prone to activation of triphenyl, tricresyl, and 

isopropylated phenyl phosphates [202] (Table 2). Human PXR is also modestly activated while the 

responses of mouse CAR and PXR are weaker. A mixture of tris(1,3-dichloro-2-propyl)phosphate, 

triphenyl phosphate, and tricresyl phosphate activated CAR in the mouse model, concomitant with 

changes in leptin and insulin levels and energy intake [32]. The species differences in CAR activation 

potential of various BDE and organophosphate congeners [31,202,203], overlap with PXR activation, 

and scarce information on congener-specific metabolic effects complicate the interpretation of these 

studies. 

4.5. Polychlorinated Biphenyls (PCBs) 

This group of persistent organic pollutants has been associated with type 2 diabetes and obesity 

[204,205]. Earlier studies have showed that both human and rodent CAR and PXR are activated by 

non-planar PCBs [40,41,203] with a tendency of human CAR being activated efficiently and with a 

preference of CAR over PXR (Table 2). No clear structure–activity relationship with respect to CAR 

activation among PCB congeners has been identified [41,206]. Both planar (dioxin-like) and non-

planar PCBs have been reported to attenuate EGF signaling in analogy to PB [100,168]. However, the 

lack of CYP2B induction by planar PCBs implies some divergence in signal transduction at the EGF 

receptor level. Finally, several PCBs seem to increase expression of CAR in a human hepatic cell line 

[207], suggesting that CAR expression is controlled by both exogenous and endogenous signaling 

[72] which raises the possibility of synergistic PCB action by both activation and induction of CAR. 

With regard to metabolic effects, PCB153 is a CAR-activating compound that augments the 

hepatic steatosis and inflammation observed in HFD-fed mice [167] (Table 2.). Increases in blood 

glucose levels in male mice have also been noted [166] although PCB153-elicited induction seems 

stronger in females [57]. In a cross-generational study, F1 mice exposed to PCB153 in utero and 

during lactation showed decreased serum lipid levels and better glucose tolerance during a HFD 

challenge [208]. In addition, exposure to the PCB mixture (Aroclor 1260) has been associated with 

obesity and fatty liver disease (Table 2.). This PCB mixture seems to affect several metabolism-linked 

NRs by activating PXR and CAR isoforms, antagonizing PPARα [209], and influencing aspects of 

energy metabolism, including lipid oxidation, food intake, insulin sensitivity, and gluconeogenic 

gene expression in CAR- or PXR-dependent fashion in mice [169]. 

4.6. Pesticides 

Several groups of pesticides have been linked to deleterious effects on neuroendocrine, 

reproductive, and immunological functions and dysregulation of energy metabolism [3]. The use of 

organochlorinated compounds such as dieldrin or endosulfan have largely been abandoned but both 

activate CAR and PXR in vitro, and increase expression of their CYP target genes in animals or in 

human HepaRG cells [45,46,210,211]. The now banned but environmentally persistent DDT, 

methoxychlor and their metabolites are also direct activators of both rodent and human CAR and 

PXR [186,210,212,213]. 

More recently, numerous pesticides have been screened for NR activation. Activation of human 

CAR and induction of CYP2B6 mRNA in HepaRG cells seems more pronounced than that of mouse 
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CAR by many pesticides of the organophosphate, pyrethroid, and carbamate classes [44] (Table 2). 

Most pyrethroids tested activate mouse, human, and rat PXR in vitro, and activation was decreased 

by microsomal metabolism of these compounds [47,214]. A large number of organophosphates are 

also PXR activators albeit often in a species-dependent manner [214]. A prototypical triazine 

compound, atrazine, strongly induced CYP2B6 expression without any apparent human CAR 

activation [44] or EGF receptor binding [100], a finding that may be explained by increased expression 

of CAR [215] and contribution to CYP2B6 induction by atrazine-activated PXR. 

Despite the strong evidence for CAR and/or PXR activation in cellular systems, these compound 

classes have mostly been investigated in animal studies for their hepatotoxic or tumor-promoting 

properties related to CAR (e.g., [87]) without a major focus on metabolic changes. Notably, recent 

reviews on endocrine disruptor-related metabolic processes [4,153,216] only mention the most 

persistent organochlorine compounds but not the more labile organophosphate pesticides. 

There is limited concern on the reproductive adverse effects of azole fungicides in animal studies 

(e.g., [217,218]) while they often cause hepatocyte hypertrophy, liver toxicity, and even neoplasm 

formation in rodents (e.g., [219,220]). The activation of rodent and human AhR, CAR, and PXR by 20 

different azole fungicides has recently been reviewed in detail [55] and we provide here only some 

examples (Table 2). Reporter gene assays and mRNA induction studies show that propiconazole is a 

moderate activator of human and rodent CAR. This is supported by mouse and rat studies in vivo 

[56,174]. At the same time, propiconazole activates PXR in all three species [55]. In contrast, 

tebuconazole appears to antagonize human CAR [56] while activating the rodent receptors. 

Coincidentally, tebuconazole-induced liver hypertrophy is not as highly dependent on CAR as with 

cyproconazole or fluconazole [172]. Vinclozolin is an anti-androgenic fungicide [221] that has been 

tested in Toxcast high-throughput analyses for NR activation; however, it does not show consistent 

activation of CAR or PXR [222]. A common metabolic outcome by azole fungicides in rodents is the 

frequent steatosis which is caused by activation of fatty acid synthesis, mostly via PXR and less 

frequently by CAR-mediated action [55,223] 

4.7. Triclosan 

Triclosan is an antimicrobial chlorinated phenoxyphenol used until recently in multiple personal 

care products, detergents, and technical equipment. Despite its weak affinity for steroid hormone 

receptors, there is little evidence for its adverse reproductive effects [224,225]. The response of CAR 

to triclosan seems highly species-specific: mouse CAR and human CAR3, a splice isoform with low 

basal activity, are activated by triclosan, while it is an inverse agonist for rat CAR and the main 

human isoform CAR1 [62,176,226] (Table 2). In a similar fashion, triclosan activated human PXR but 

not rat PXR [62], and mouse PPARα but not human PPARα [63]. These complex patterns may explain 

in part the inconsistent link between childhood obesity and triclosan exposure [225]. However, 

triclosan-induced decreases in T4 levels in the rat may be understood by CAR/PXR-mediated 

induction of T4-metabolzing enzymes [112,227]. 

4.8. Other CAR-Modulating EDC Classes with Limited Evidence for Metabolic Disruption 

Alkylphenols are widely used as additives to lubricants and as precursors in chemical synthesis 

of e.g., polymers, surfactants, and detergents, such as alkylphenol ethoxylates which are degraded 

back to relatively persistent alkylphenols in the environment. Due to their mimicry of estrogenic 

substances, alkylphenols are thought to disrupt endocrine functions [228] (Table 2). Studies on their 

ability to modulate CAR are quite sparse. Nonylphenol activated mouse CAR in reporter gene assays 

and in mouse model albeit only in the females [13] which may be explained by the female-

predominant expression of CAR and responsiveness of its target genes [229,230]. Surprisingly, 

nonylphenol did not activate CYP expression in PXR null mice where CAR is present, suggesting 

interplay between the two NRs [14]. Nonylphenol appeared to induce CYP2B genes in human 

primary hepatocytes and in humanized CAR mice [231] and later studies using the yeast two-hybrid 

assay demonstrated that many linear or branched chain alkylphenols, including nonylphenol, can 
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activate human CAR at low to sub-micromolar concentrations [186]. Studies on alkylphenol-induced 

and CAR-mediated changes in metabolic processes have not been performed yet. 

Parabens are p-hydroxybenzoic acid esters used as antibacterial preservatives in many types of 

consumer products. Although widespread, they are regarded as non-persistent due to their relatively 

rapid hydrolysis [232]. There is limited evidence for their endocrine effects although metabolic [180] 

(Table 2), and reproductive [233] outcomes have been reported. A recent study [60] tested 17 different 

parabens in NR activation assays at low micromolar concentrations. They found that rat CAR was 

weakly activated (2-fold) by butyl- and isobutylparabens, inverse agonism was seen with longer 

pentyl- and hexylparabens, and butylparaben-mediated activation was abrogated upon metabolism. 

Rat PXR, human PXR, and rat PPARα were also modestly responsive to various paraben derivatives. 

Unfortunately, mouse and human CAR were not tested. Human CAR was activated weakly by linear 

parabens in a yeast two-hybrid assay [186]. The high concentrations used, the narrow range of 

activating ligands, and their metabolic lability suggest that parabens are not likely potent CAR-

dependent metabolic modulators, although definitive studies are lacking at the moment. 

4.9. Other CAR-Modulating Compounds 

A large repertoire of pharmaceuticals are CAR activators [72,94], while information on their 

effects on energy metabolism is largely unknown, and not further analyzed in this work. As one 

example, exposure to statins is a known risk factor for type 2 diabetes (e.g., [234]). Although statins 

can activate CAR modestly [235], they affect PXR more strongly [236]. Other mechanisms underlying 

the statin-elicited increase in blood glucose levels likely exist [237]. Similarly, traditional herbal 

medicines are often CAR/PXR activators [238] and there is some evidence for their efficacy in 

alleviation of some aspects in liver diseases [239,240]. Many flavonoids and natural estrogenic 

compounds are either direct or indirect CAR activators [177,241,242]. Some of them have been 

reported to improve glucose balance in diabetic mice [243] or reduce fatty acid accumulation in a 

CAR-dependent fashion [178], although downregulation of CAR target genes has also been noted 

[244]. Aryl hydrocarbon receptor (AhR) mediates the main effects of 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD) and other dioxin-like compounds (e.g., [245]) which can impair glucose metabolism 

[246,247] and cause fat accumulation [248]. In addition, AhR activation may also lead to upregulation 

of CAR expression [249], perhaps as a secondary counteracting effect of the metabolic disruption. It 

is unclear if this is a direct transcriptional effect or due to AhR-mediated disruption of circadian 

regulation [250]. 

5. Future Directions 

Metabolic processes in the liver are highly interconnected and subject to regulation by diverse 

signals that include e.g., neuronal control of food intake and satiety, circadian rhythms, production, 

use, and storage of glucose and lipids in the liver and inputs from other tissues such as intestine and 

muscle [5,6]. Nuclear receptors are only one part of this complex network. As evident from the 

previous sections, suspected metabolism-disrupting compounds are seldom specific for any one NR: 

for example, CAR activators are often ligands for PXR and PPARα, which also coregulate 

overlapping target genes [7]. There is a lack of sufficiently selective tool compounds that are both 

non-toxic and have favorable pharmacokinetics for teasing out CAR-dependent functions in normal 

human hepatocytes [8,152]. The interpretation of animals studies are fraught with complications due 

to large species differences between CAR and PXR ligand profiles and their target genes—this may 

not be easily alleviated even by the use of humanized mice [90] without careful and wide-ranging 

analysis of affected target genes. Further development of long-term human hepatocyte cultures, in 

connection of modern gene knockdown techniques, is likely to provide better and disease-relevant 

models for utilization in studies of CAR and PXR [251,252]. The effects of metabolic disruptors are 

affected not only by genetic and epigenetic variation among NRs and their target genes [253], but 

also by the type of diet that potentially predisposes or protects individuals from adverse effects 

[169,254]. Finally, studies on human-relevant mixtures of metabolic disruptors is largely missing [7]. 
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