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Abstract: Background: The increase in the incidence of obesity and obesity-related cardiovascular 
risk factors (CVRFs) over the last decades has brought attention on adipose tissue (AT) 
pathobiology. The expansion of AT is associated with the development of new vasculature needed 
to perfuse the tissue; however, not all fat depots have the same ability to induce angiogenesis that 
requires recruitment of their own endothelial cells. In this study we have investigated the effect of 
different CVRFs, on the angiogenic capacity of the subcutaneous (SAT) and visceral (VAT) adipose 
tissue and on the function of their mesenchymal cell reservoir. Methods: A transcriptomic approach 
was used to compare the different angiogenic and inflammatory profiles of the subcutaneous and 
visceral fat depots from individuals with obesity, as well as their resident stem cells (ASCs). 
Influence of other risk factors on fat composition was also measured. Finally, the microvesicles 
(MVs) released by ASCs were isolated and their regenerative potential analyzed by molecular and 
cellular methodologies. Results: Obesity decreases the angiogenic capacity of AT. There are 
differences between SAT and VAT; from the 21 angiogenic-related genes analyzed, only three were 
decreased in SAT compared with those decreased in VAT. ASCs isolated from both fat depots 
showed significant differences; there was a significant up-regulation of the VEGF-pathway on 
visceral derived ASCs. ASCs release MVs that stimulate endothelial cell migration and angiogenic 
capacity. Conclusions: In patients with obesity, SAT expresses a greater number of angiogenic 
molecules than VAT, independent of the presence of other CVRFs. 

Keywords: adipose stem cells; endothelial cells; microvesicles; obesity; cardiovascular risk factors; 
and angiogenesis 

 

1. Introduction 

Adipose tissue (AT) is widely distributed all around the organism, and constitutes between 15% 
and 25% of the total body mass; however, due to its plasticity, it can reach up to 40% of the body mass 
in individuals with obesity [1,2]. AT is a tissue of mesenchymal origin, and it can be subdivided into 
white AT (WAT), brown and beige AT. AT is heterogeneous not only due to the existence of different 
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AT types, but also because of its multi-depot distribution. Changes in the distribution of AT occur 
for a number of reasons, including declines in testosterone in men, and estrogen in women following 
menopause [3]. The ability of adipocytes to buffer dietary lipids declines with age, promoting the 
redistribution of lipids from subcutaneous to the abdominal visceral compartment [4]. These changes 
contribute to a low-grade state of inflammation, insulin resistance, and metabolic syndrome, 
contributing to an increased risk of type 2 diabetes, cardiovascular disease, and many other diseases 
associated with obesity. AT function and distribution during aging affects the synthesis of adipose 
tissue-derived mediators, or adipokines, and consequently regulates many physiologic processes, 
such as inflammation. Although WAT is distributed throughout the body, its principal deposits are 
in peripheral subcutaneous tissue (SAT) that is present on the hips and thighs, where it functions as 
an energy storage system, and the visceral or intra-abdominal region (VAT), where it protects against 
possible trauma. There is substantial evidence that accumulation of VAT shows higher angiogenesis 
[5,6] and a higher inflammatory profile than SAT, conferring a much higher cardiovascular risk to VAT 
than to SAT, which has shown a certain protective role against cardiometabolic disease [7–9]. Moreover, 
not all the VAT depots exhibit the same behavior in relation to obesity-associated inflammation and 
metabolic disturbances; three different VAT depots (mesenteric, omental, and periaortic), from patients 
with cardiovascular disease (CVD), have shown important differences in their inflammatory profile 
[10]. VAT and SAT show different adipokine expression profiles, distinct functions, morphologies, 
distributions, vascular density, and innervations [11,12], but both are composed by mature adipocytes 
and several other cells including preadipocytes, endothelial cells, and inflammatory cells, being 
considered as a large and accessible reservoir of mesenchymal stem cells, denoted as adipose-derived 
stem cells (ASCs) [13,14], which all together compose the stromal vascular fraction (SVF). 

Similar to AT, ASCs from the two separate depots exhibit different characteristics [15], 
subcutaneous ASCs (SAT-ASCs) have a higher capacity to proliferate and to differentiate into an 
adipogenic lineage than visceral ASCs (VAT-ASCs) [16] and SAT-ASCs have highly expressed genes 
involved in transcription, contributing to proliferation, whereas VAT-ASCs have upregulated 
clusters of genes related to lipid biosynthesis and metabolism [17]. 

ASCs are currently the focus of interest in the field of inducible spontaneous regeneration and 
cell therapy [18,19]. Many groups have focused on ASCs-derived angiogenesis, and it is believed that 
their most relevant mechanism proceeds via paracrine actions, rather than endothelial differentiation 
of ASCs [20–23]. Apart from soluble growth factors, cell-released microvesicles (MVs)/exosomes have 
been recognized recently as a new mechanism of intercellular communication [24]. One of the 
mechanisms by which MVs from ASCs promote angiogenesis seems to be by delivery of miR-31 [25]. 

Even though there are some studies reporting on the different behavior of VAT and SAT and 
their role in angiogenesis [5,6] there is little agreement on the depot’s functional specificities. Recently 
we have demonstrated that resident ASCs in human epicardial AT display a depot-specific 
angiogenic function depending whether they are from ventricular myocardium AT or from the area 
covering the epicardial arterial sulcus of the left anterior descending artery [26]. Moreover, we have 
described that ASCs, in both humans and in rats, are functionally affected by cardiovascular risk 
factors (CVRFs) [22,27,28]. Particularly epicardial ASCs in animals with CVRFs lose their original 
angiogenic potential [29] or SAT-ASCs are committed to the adipogenic lineage, while their 
proliferation rate and proangiogenic potential are impaired in patients with obesity [22,30]. 

Here, our objective has been to investigate the angiogenic potency of human SAT and VAT in 
obese and lean patients. SAT and VAT were obtained from the same obese patients, and we studied 
not only the total fat tissues, but also their resident SAT-ASCs and VAT-ASCs. In addition, we 
investigated whether comorbidities (CVRFs), in addition to obesity, affected angiogenesis. 
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2. Materials and Methods 

2.1. Patient Recruitment and Adipose Tissue Sampling 

SAT and VAT were obtained via surgical resection from young individuals with morbid obesity 
(BMI  > 40 kg/m2; n  = 22) who underwent bypass gastric surgery. In these obese patients, AT was 
obtained simultaneously from subcutaneous and visceral depots during surgery. Additionally we 
collected adipose tissue from young individuals with normal weight (BMI < 25 kg/m2; n  = 15) who 
underwent abdominal lipectomy. 

Informed consent was obtained from all donors and the study protocol was approved by the 
Centro Medico Teknon Ethical Committee that is consistent with the principles of the Declaration of 
Helsinki. Patients used regular medication as recommended in the guidelines, if it was necessary 
(Table 1). 

Table 1. Clinical characteristics of the study patients. 

Variables nOB OB 
N 15 22 

Age (Years) 40 ± 4 39 ± 2 
Sex (M/W) 2/13 3/19 

BMI (Kg/m2) 23.9 ± 1.1 43.0 ± 1.1 
CVRF (N) 0 3 

Smoking (%) 0 55 
HT (%) 0 32 
DM (%) 7 23 
DLP (%) 0 50 

RBC (×106/mm3) 3.8 ± 0.4 3.9 ± 0.7 
MCB (µm3) 81.7 ± 4.6 80.3 ± 5.03 

RDV (%) 14.8 ± 1 15.7 ± 1.8 
HCT (%) 30.8 ± 2.7 31.05 ± 5.6 

PLT × 103/mm3) 211 ± 47.4 182.7 ± 56.8 
MPV (µm3) 9.1 ± 0.8 8.9 ± 1.1 

WBC (×103/mm3) 4.5 ± 0.4 4.9 ± 0.9 
HGB (g/dl) 10.7 ± 1 11.06 ± 2.2 
MCH (pg) 28.5 ± 1.4 29.03 ± 2.3 

MCHC (g/dl) 34.9 ± 1.2 36.15 ± 2.2 
LYMF (×103/mm3) 1.3 ± 0.3 1.23 ± 0.5 
GRAN (×103/mm3) 2.6 ± 0.4 3.2 ± 0.3 
MID (×103/mm3) 0.5 ± 0.05 0.6 ± 0.08 

nOB, normal weight. OB, Obese. CVRF, cardiovascular risk factors. HTA, hypertension. DM, Diabetes 
Mellitus. DLP, Dyslipidemia. Values are expressed as mean ± SD or as percentages, when indicated. 

2.2. RNA and cDNA Isolation from Adipose Tissue 

Flash frozen adipose tissue was crushed using a mortar and pestle, and then RNA extraction 
was performed using a combination of organic extraction with Qiazol Reagent (Qiagen, Barcelona, 
Spain) and silica-membrane columns with the Qiagen RNeasy Mini Kit (Qiagen, Barcelona, Spain). 
RNA quantity was determined with a Nanodrop ND-1000 spectophotometer (Nanodrop 
Technologies, Wilmington, United States). RNA quality was measured using 2100 Bioanalyzer 
technology (Agilent Technologies, Barcelona, Spain) with the Agilent RNA 6000 Nano Kit (Agilent 
Technologies, Barcelona, Spain) and assessed by the RNA integrity number (RIN). Only RNA 
samples with RIN values over 6 were chosen for real time PCR experiments. 
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First strand cDNA synthesis was performed using the high capacity cDNA reverse transcription 
kit (Applied Biosystems, Life Technologies, Madrid, Spain) from 500 ng of tissue extracted RNA 
according to manufacturer’s instructions. 

2.3. Transcriptomic Analysis and RT-PCR 

A custom gene expression low density array designed by Applied Biosystems (Life 
Technologies, Madrid, Spain) to characterize inflammation and angiogenesis was performed by 
quantitative PCR using TaqMan® Gene Expression assays (Supplemental Table S1) using 200 ng of 
every sample following manufacturer’s instructions. TaqMan™ fluorescent real-time PCR primer 
used for tissue factor (TF) (Hs00175225_m1), VEGFA (Hs00900055_m1), miR126-3p (477887_miR), 
miR145-5p (477916_miR) and GAPDH (Hs99999905_m1), GUSB (Hs99999908_m1) and miR186-5p 
(477940_miR) (Applied Biosystems, Madrid, Spain) which were used as endogenous control. PCR 
data were analyzed with RQ Manager 1.2.1 and DataAssist 2.0 softwares (Applied Biosystems, Life 
Technologies, Madrid, Spain) against the endogens controls to obtain expression values for every 
gene (2-ΔCt). 

2.4. Bioinformatic Analysis 

The statistically significant neural network and the canonical pathway in which the studied 
genes were involved, were generated with IPA software (Ingenuity System, www.ingenuity.com). 
The functional analysis of a network was used to identify new target genes involved in the predicted 
pathways analyzed. The network molecules associated with biological functions and/or diseases in 
the Ingenuity Knowledge Base were considered for the analysis. 

2.5. ASCs Isolation and Characterization 

SAT and VAT were washed with sterile phosphate buffered saline (PBS) supplemented with 100 
U/mL of penicillin and 100 µg/mL of streptomycin. Tissue was digested into a type I collagenase 
solution (1 mg/mL; Sigma-Aldrich, St. Louis, MO, USA) and incubated for 1 h in a 37 °C pre-warmed 
orbital shaker. Collagenase activity was neutralized with the same amount of fetal bovine serum (FBS; 
Biological Industries, Kibbutz Beit-Haemek, Israel) and the suspension filtered through a 100 µm 
mesh filter to eliminate remaining tissue fragments, then the solution was centrifuged at 1200 rpm 
for 10 min to separate the adipocytes and to obtain the stromal vascular fraction (SVF). Isolated SVF 
cells were counted and either analyzed by flow cytometry or plated onto a 25 cm2 culture flasks. After 
24 h, non-adherent cells were removed and the medium replaced. Cells were expanded in a 
humidified environment at 37 °C with 5% CO2, and maintained at subconfluent levels prior to 
phenotypic profile analysis. The identity of ASCs was defined by using the following criteria: 
adherence to plastic, cell surface antigen phenotyping and differentiation into multiple cell lineages. 
All analyses were performed between passages 3 to 4. 

For cell cytometry characterization, cell surface antigen phenotype was performed on ASCs of 
the SVF at passage 3 (P3). The following cell-surface epitopes were marked with anti-human 
antibodies: CD 105, CD 44, CD 29, CD 90, CD 73, CD 45 and CD 14 (Supplemental Table S2). 1 × 105 
cells at P3 or 1 mL of the SVF were suspended in flow cytometry buffer (PBS, 0.1% BSA, 0.1% sodium 
azide) and incubated for 30 min at 4 °C with the corresponding antibodies. After that, reaction was 
stopped by adding 500 µL of flow cytometry buffer or 250 µL of Quicklysis reagent (Cytognos, 
Salamanca, Spain) in the case of the SVF. Quicklysis was incubated for 15 min at room temperature 
to eliminate erythrocytes and reaction stopped by adding other 250 µL of flow cytometry buffer. 

Cellular events (at least 30,000 in the case of P3 cells and between 10,000 and 60,000 in the case 
of the SVF) were acquired and analyzed by fluorescence-activated cell sorting using Coulter EPICS 
XL flow cytometer (Beckman Coulter, Barcelona, Spain) running Expo32 ADC XL 4 color software 
(Beckman Coulter, Barcelona, Spain). 
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2.6. MTS Viability/Proliferation Analysis 

Cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)- 5-(3-carboxymetho-xyphe-
nyl)-2-(4-sulfopheny)-2H-tetrazolium (MTS) assay (CellTiter 96 Aqueous One Solution cell 
proliferation assay kit; Promega, Madison, United States). For this assay, 15 × 103 cells were seeded 
in triplicates into a 96-well plate, and 24 h later, 10 mL of MTS per well were added and then 
incubated for another 2 h while MTS tetrazolium was reduced to formazan (490 nm absorbance) by 
the metabolically active cells. The absorbance was then quantified. Formazan production was directly 
related with the number of cells alive in the culture. 

2.7. Microvesicles Isolation 

ASCs derived microvesicles (MVs) were isolated by ultracentrifugation of P3 cell supernatants 
as previously described [12]. Briefly, fresh supernatants were firstly centrifuged at 900 g for 15 min 
to eliminate cell debris and then at 20,000 g for 45 min to isolate the MVs as a pellet. MVs 
concentration was determined by flow cytometry. For that, MVs were washed with a PBS-citrate 
buffer and centrifuged again at 20,000 g for 30 min. MVs were extracted with PBS-citrate buffer and 
incubated with annexin V (CF Blue ANXV, Immunostep, Salamanca, Spain) and anti-TF antibody 
(FITC conjugated 4508CJ, Sekisui, Maidstone, United Kingdom). Samples were then diluted with 
annexin V binding buffer (BD Bioscience, Madrid, Spain) to stop the reaction and then analyzed on a 
FACSCantollTM flow cytometer (BD Bioscience, Madrid, Spain). 

2.8. Cell Migration 

For the cell migration assay, human microvascular endothelial cells (HMEC-1) (ATCC) were 
used. Briefly, 2.3 × 104 ASCs were seeded into 100 mm dish and cultured with MCDB 131 medium 
supplemented with 10% of FBS for 48h to allow cells to secrete MVs. The day after, 2.5 × 105 HMEC-
1 cells were seeded into a culture-insert 2 well dish (Idibi) and kept with MCDB 131 supplemented 
with 10% of FBS overnight. MVs from the ASCs supernatant were isolated and before performing the 
experiment, the insert was removed by using sterile tweezers and the dish washed with PBS to 
remove cell debris. Cells were treated with 600 µL of: (A) Conditional medium from ASCs after 48 h 
of culture; (B) Conditional medium from ASCs without MVs after 48 h of culture; and (C) ASCs 
derived MVs rich medium. In all conditions the medium was supplemented with 2% of FBS. Cell 
migration and wound repair were controlled every 2 h for 12 h. Wound areas were analyzed by using 
Image J software. Protein, RNA and miRNA were isolated from the ASCs, miRNA from the MVs and 
RNA and miRNA from the HMEC-1 cells after 24 h of cell migration. 

2.9. Gene Expression Analysis from ASCs 

Total RNA was isolated from ASCs in silica-membrane columns with the Qiagen RNeasy Mini 
Kit (Qiagen, Barcelona, Spain) according to the manufacturer’s instructions. 

MirVana miRNA isolation kit (Life Technologies, Madrid, Spain) was used to extract miRNA 
from the cells, and miRNeasy Serum/Plasma Kit for the miRNA isolation from MVs, according to the 
manufacturer’s instructions. 

RNA and miRNA quantity was determined with Nanodrop ND-1000 spectophotometer 
(Nanodrop Technologies, Wilmington, United States). Isolated total RNA was reverse-transcribed 
into cDNA using a high capacity cDNA archive kit (Applied Biosystems, Foster City, CA, USA), and 
microRNA with the TaqMAn advanced miRNA assay (Life Technologies, Madrid, Spain). Gene 
expression analysis was carried out by quantitative PCR using TaqMan® Gene Expression assays 
(Applied Biosystems, Madrid, Spain), and the Applied Biosystems Prism 7900HT Sequence Detection 
System (Applied Biosystems, Madrid, Spain) according to manufacturer’s instructions. Gene 
expression data are expressed as target gene mRNA expression relative to the correspondent 
housekeeping gene expression. 
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2.10. Western Blot Analysis 

Protein was extracted from total cell lysates by using RIPA buffer (50 mM Tris–HCl pH 8, 150 
mM NaCl, 1% NP-40, 0.5% sodium Deoxycholate, 0.1% SDS) or from 48 h cell supernatant. Protein 
concentrations were measured with Pierce BCA Protein Assay Kit (ThermoScientific, Madrid, Spain). 
Twenty-five micrograms of protein were resolved by 1-DE under reducing conditions onto 10% SDS-
PAGE gels and electrotransferred to nitrocellulose membranes. After blocking for non-specific 
binding, membranes were incubated with primary antibody; TF and beta-actin. Band detection was 
performed using a chemiluminiscent substrate dye (SuperSignal® West Dura Extended Duration 
Substrate, Thermo Scientific, Waltham, MA, USA) and a molecular imager ChemiDoc XRS System, 
Universal Hood II (BioRad, Hercules, CA, USA). Band quantification was performed with Quantity-
One software (BioRad laboratories, Hercules, CA, USA). Protein load was normalized with beta-actin. 

2.11. Statistical Analysis 

Data are expressed as mean and standard error unless stated. N indicates the number of subjects 
tested. Statistical analysis was performed with Stat View 5.0.1 software (Abacus Concept). The 
Kolmogrow–Smirnov test was performed to assess sample normality and then, non-parametric 
Willcoxon or Mann–Whitney analysis or parametric t-test analysis was performed depending on the 
compared samples and gene expression distribution. A p-value ≤ 0.05 was considered significant. 

3. Results 

3.1. Influence of Obesity on the Subcutaneous Adipose Tissue 

A custom gene expression assay was performed to assess the differential gene expression of 21 
genes in SAT obtained from individuals with normal weight or obesity (Figure 1A; Supplemental 
Table S3). A significant up-regulation of genes involved in inflammation, immunity and cell 
proliferation was observed in the SAT of obese, compared to individuals with normal weight; AGER, 
CAPG, CD34, CD68, IFI30, NOTCH3 AND SPP1 (Table 2; Figure 1B). On the contrary, three genes 
involved in angiogenesis and one involved in energy homeostasis were up-regulated in thew SAT of 
individuals with normal weight compared to individuals with obesity; DLL4, PLIN2, VEGFA and 
PNPLA2. Additionally, a direct correlation between BMI and gene expression was observed for 
AGER, ANGPT2, CD68, IFI30, NOTCH3 and SPP1 (Figure 2A–F), whereas an inverse correlation was 
achieved for DLL4, PLIN, PNPLA2 and VEGF (genes that were down-regulated due to obesity) 
(Figure 2G–J). These results indicate that obesity decreases the angiogenic capacity of AT.  

Ingenuity pathway analysis (IPA®) data were used to identify new targets of the networks 
affected by these changes. The main affected network was related to the “cardiovascular system 
development and function, tissue and cell morphology”, with a score of 38 and 16 of our studied 
genes involved (Supplementary Figure S1A). 
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Figure 1. (A) Heat map of the gene expression in the subcutaneous fat of volunteers with normal 
weight versus patients with obesity; (B) Ratio of gene expression in subcutaneous fat of volunteers 
with normal weight versus patients with obesity. * p < 0.05; ** p > 0.01; and *** p < 0.001. 

Table 2. Differential transcriptomic expression between subcutaneous adipose tissue (SAT) of 
individuals with normal weight and individuals with obesity. 

 p Value Ratio 
AGER 0.001 1.75 

ANGPT1 0.134 1.31 
ANGPT2 0.094 1.39 

CAPG 0.029 1.33 
CD34 0.041 1.39 
CD68 <0.001 2.13 

COL18A1 0.417 0.93 
DLL4 0.001 0.62 
ENG 0.230 0.93 
IFI30 <0.001 2.55 

NOTCH3 0.005 1.70 
PECAM1 0.416 0.88 

PGF 0.944 1.02 
PLIN2 0.002 0.67 

PNPLA2 <0.001 0.62 
PTX3 0.780 1.00 

SERPINF1 0.939 1.04 
SPP1 <0.001 4.76 
TEK 0.104 0.83 
TNC 0.183 1.12 

VEGFA <0.001 0.46 
Red: up-regulated, green: down-regulated in patients with obesity p < 0.05. 
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Figure 2. Line regression between expression of validated genes and body mass index (BMI). 
Correlations were determined by linear correlations. (A) Line regression between AGER and body 
mass index; (B) Line regression between ANGPT2 and body mass index; (C) Line regression between 
CD68 and body mass index; (D) Line regression between IFI30 and body mass index; (E) Line 
regression between NOCH3 and body mass index; (F) Line regression between SPP1 and body mass 
index; (G) Line regression between DLL4 and body mass index; (H) Line regression between PLIN2 
and body mass index; (I) Line regression between VEGFA and body mass index; (J) Line regression 
between PINPLA2 and body mass index.  

3.2. Influence of Obesity in Fat Depot Genomic Profile 

Gene expression was investigated in SAT and VAT (Figure 3A) and their derived ASCs (S-ASCs 
and V-ASCs, respectively), obtained simultaneously from patients with obesity during bariatric 
surgery. SAT as compared to VAT showed higher transcript levels of genes involved in inflammation 
and angiogenesis (ANGPT1, ANGPT2, CAPG, CD68, NOTCH3, PECAM1, PTX3, SERPINF1, SPP1, 
TEK and TNC) as well as in PNPLA2, which is involved in energy homeostasis (Figure 3B and Table 
3 column 3). In contrast, AGER, PGF and VEGFA were non-significantly upregulated in VAT 
compared with SAT. AT depots exhibit different angiogenic potential, with SAT showing higher 
angiogenic gene transcription levels than VAT. 
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Figure 3. (A) Heat map of the gene expression in subcutaneous versus visceral fat; (B) Fold change of 
gene expression in subcutaneous versus visceral fat. * p < 0.05; ** p > 0.01; and *** p < 0.001. 

To elucidate whether obesity was the main cause of these changes, or on the contrary other 
CVRFs were involved, we analyzed the data, excluding patients with obesity without CVRFs (only 
patients with obesity were excluded from the analysis) and evidenced that most of the gene changes 
previously seen between SAT and VAT remained within the same trend as previously observed. This 
was true for all, except for PTX3, which lost the significance, and IFI30, which reached a significantly 
higher expression in SAT compared with VAT (Table 3 column 4), indicating that changes in IFI30 
may be related to obesity. 

Next, we analyzed the effect of each CVRFs independently. First, we compared expression levels 
in SAT and VAT from obese/non-diabetic and obese/diabetic subjects. When non-diabetic patients 
with obesity were analyzed, eleven genes were significantly modified; all of them overexpressed in 
SAT (ANGPT1, ANGPT2, CD68, DLL4, NOTCH3, PECAM1, PNPLA2, PTX3, SERPINF1, SPP1 and 
TNC) (Table 3 column 5). However, comparative analysis of SAT and VAT from diabetic patients 
with obesity showed that only one gene was significantly higher expressed in SAT compared to VAT, 
NOTCH3 (Table 3 column 6). No differences were found when we analyzed the effects of DM in SAT 
(non-DM versus DM) or in VAT (non-DM versus DM) (Supplemental Table S4). Therefore, DM 
induces a different transcriptomic profile in SAT versus VAT. 

When we studied the effect of dyslipidemia (DLP), only one gene was significantly reduced in 
SAT, COL18A1. No changes regarding DLP were observed in VAT (Supplemental Table S5). We also 
analyzed the different behavior of SAT and VAT from obese/non-DLP patients and we found eight 
genes significantly overexpressed in SAT as compared to VAT; ANGPT1, CAPG, NOTCH3, PNPLA2, 
SERPINF1, SPP1, TNC and VEGFA, and only one gene was found to be downregulated, PTX3 (Table 
3 column 7). On the other hand, when we compared SAT and VAT from obese DLP patients, we 
observed that ten genes were more highly expressed in SAT as compared to VAT; ANGPT1, 
ANGPT2, COL18A1, DLL4, NOTCH3, PECAM1, PNPLA2, SERPINF1, SPP1 and TNC (Table 3 
column 8). 

Finally, we investigated the effects of arterial hypertension (HT) on the angiogenic potential of 
both SAT and VAT, and we observed a significantly higher level of expression of ANGPT1 and a 
significantly reduced level of expression of TNC in the SAT of obese HT patients with obesity as 
compared to nHT patients with obesity (Supplemental Table S6). When we specifically analyzed nHT 
patients with obesity we observed that VEGFA was significantly reduced in SAT. In addition, another 
eight genes showed a higher level of expression in SAT as compared to VAT; ANGPT1, ANGPT2, 
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DLL4, NOTCH3, PECAM1, SERPINF1, SPP1 AND TNC (Table 3 column 9). We also analyzed the 
genomic changes between SAT and VAT of HT patients, finding a higher level of expression of five 
genes in SAT as compared to VAT; IFI30, NOTCH3, PNPLA2, SERPINF1, and TNC (Table 3 column 
10). 

We further analyzed the networks in which these genes were involved using the IPA software 
analysis in order to investigate new potential targets associated with the observed changes. We found 
that, as expected, the “cardiovascular system development and function, tissue and cell morphology” 
network was affected, also with a score of 38 and 16 molecules involved (Supplemental Figure S1B). 

Table 3. Differential genomic expression in SAT versus the visceral adipose tissue (VAT) of patients 
with obesity with different number of CVRFs. 

Gene Ratio 
All 

Patients 
N = 22 

cCRFs 
N = 19 

Diabetes mellitus Dyslipidemia Hypertension 
OB-nDM 

N = 17 
OB-DM 

N = 5 
OB-nDLP 

N = 11 
OB-DLP 

N = 11 
OB-nHT 

N = 15 
OB-HT 

N = 7 
AGER 0.85 0.072 0.184 0.193 0.138 0.051 0.534 0.140 0.176 

ANGPT1 1.56 0.001 0.005 0.002 0.500 0.016 0.026 0.003 0.311 
ANGPT2 1.73 0.011 0.009 0.013 0.500 0.374 0.013 0.027 0.176 

CAPG 1.17 0.049 0.045 0.108 0.225 0.049 0.373 0.270 0.066 
CD34 1.09 0.406 0.414 0.069 0.225 0.819 0.371 0.900 0.264 
CD68 1.23 0.013 0.013 0.028 0.225 0.182 0.033 0.054 0.091 

COL18A1 1.10 0.170 0.089 0.286 0.343 0.277 0.024 0.775 0.086 
DLL4 1.30 0.053 0.070 0.042 0.893 0.497 0.029 0.016 0.828 
ENG 1.20 0.055 0.081 0.087 0.345 0.289 0.110 0.105 0.243 
IFI30 1.17 0.083 0.020 0.269 0.080 0.746 0.052 0.566 0.033 

NOTCH3 3.98 <0.001 <0.001 <0.001 0.043 0.003 0.003 <0.001 0.018 
PECAM1 1.52 0.002 0.006 0.006 0.225 0.062 0.016 0.004 0.176 

PGF 0.83 0.072 0.091 0.084 0.686 0.051 0.594 0.100 0.866 
PLIN2 1.15 0.143 0.382 0.280 0.686 0.073 0.825 0.226 0.428 

PNPLA2 1.31 0.004 0.011 0.013 0.138 0.041 0.021 0.202 0.018 
PTX3 1.11 0.046 0.108 0.050 0.500 0.013 0.657 0.088 0.237 

SERPINF1 1.50 <0.001 <0.0001 <0.001 0.080 <0.001 0.004 0.002 0.018 
SPP1 2.90 <0.001 0.003 0.003 0.225 0.021 0.016 0.001 0.237 
TEK 1.24 0.029 0.031 0.050 0.500 0.213 0.086 0.128 0.145 
TNC 3.03 <0.001 <0.001 <0.001 0.080 0.003 0.008 0.004 0.018 

VEGFA 0.86 0.076 0.096 0.376 0.080 0.024 0.395 0.005 0.957 

Red: upregulated in subcutaneous p < 0.005; green: downregulated in subcutaneous p < 0.05. 

3.3. Angiogenic Related Gene Expression in Subcutaneous or Visceral Derived ASCs from Diabetic/No 
Diabetic Patients with Obesity 

ASCs have been proposed as pro-angiogenic therapy in diabetic patients for treating ischemic 
complications. We analyzed whether obesity and diabetes affected molecules involved in 
angiogenesis; such as TF, VEGFA and two miRNAs (miR-126 and miR145) [31,32]. First, we 
investigated the angiogenic potential of SAT-ASCs of subjects with normal weight or obesity and we 
found no significant changes on the analyzed genes due to obesity (Supplemental Figure S2). Next, 
we studied the effect of DM and fat depot (SAT-ASCs versus VAT-ASCs) on the same molecules. The 
comparison of the differential expression yielded a significant up-regulation of the proangiogenic 
gene/protein TF (P < 0.001; Figures 4A and 5A) and microRNA miR126-3p (P = 0.015; Figure 4C) in 
VAT-ASCs, whereas miR145 was down-regulated (P < 0.001; Figure 4D). There was a significant 
increase in VEGFA gene expression in VAT-ASCs from diabetic patients compared with non-
diabetics (P = 0.019; Figure 4B). However, when we analyzed miR145 (an antiangiogenic miRNA), we 
observed that it was reduced in VAT-ASCs as compared to SAT-ASCs and no differences were 
observed due to the presence of diabetes. 
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Figure 4. Box-plot diagram showing adipose-derived stem cells (ASCs)-transcriptomic profile. (A) 
Differential mRNA expression of TF in SAT-ASC and VAT-ASC from diabetic with obesity and non-
diabetic patients; (B) Differential mRNA expression of VEGFA in SAT-ASC and VAT-ASC from obese 
diabetic and non-diabetic patients; (C) Differential miR126 expression in SAT-ASC and VAT-ASC 
from obese diabetic and non-diabetic patients; (D) Differential miR145 expression in SAT-ASC and 
VAT-ASC from diabetic with obesity and non-diabetic patients. (* p < 0.05; ** p > 0.01; and *** p < 
0.001). 

Interestingly, TF protein was significantly higher in VAT-ASC than SAT-ASCs independently of 
DM, while VEGFA protein levels (Figure 5A) were higher in VAT-ASCs than SAT-ASCs, but there 
was a significant effect of DM. Indeed, protein VEGFA levels were lower in VAT-ASCs from diabetic 
patients as compared to VAT-ASCs from non-diabetic patients. 
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Figure 5. TF and VEGF expression in in Subcutaneous or Visceral Derived ASCs from Diabetic/No Diabetic 
Patients with Obesity. (A) TF and VEGFA expression in ASCs obtained from SAT (S) or VAT (V) in obese patients 
(OB) in presence (DM) or absence (nDM) of diabetes. Western blot analysis of TF and VEGFA proteins in ASCs. 
To test for equal loading Western blots were reproved by β-actin; (B) Quantitative analysis of TF and VEGFA to 
β-actin relative levels. 

3.4. Subcutaneous and Visceral ASCs Derived Microvesicles and Effects on Wound Repair 

The angiogenic potential of ASCs had been attributed to exocrine functions, particularly 
microvesicles (MVs) released from ASCs [33]. Given that, TF may be secreted in form of MVs, the 
number of MVs released by ASCs, from each fat depot in non-obese/obese and non-diabetic/diabetic 
individuals, was measured by flow cytometry. No differences were found in the number of total MVs 
released by the subcutaneous derived ASCs (S-MVs) from non-obese or obese individual (Figure 6A). 
Significant differences (P = 0.015) were found in S-MVs as compared to visceral derived ASCs MVs 
(V-MVs), visceral ASCs released significantly more MVs than subcutaneous ASCs. Moreover, results 
show that annexin V+, TF + or both positive MVs released by subcutaneous ASCs were decreased in 
individuals with obesity as compared to individuals with normal weight, no differences were 
observed between S-MVs or V-MVs. However, DM reversed the effect induced by obesity. When we 
separated groups by adipose tissue location, we found that this statistical significance remained. 
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Figure 6. (A) ASC microvesicles (MVs) secretion. Influence of obesity and diabetes on ASC derived 
MVs. Number of MVs measured by flow cytometry (Total, annexin-V positive, TF positive and 
annexin-V/TF positive MVs); (B) miR126 and miR145 relative gene expression in S-MVs and V-MVs. 
(* p < 0.05). 

Since released MVs carry miRNA from the parental cells, we analyzed miR-126 and miR-145 in 
MVs. The results showed that expression of miR-126 was significantly reduced in MVs obtained from 
obese-ASCs as compared to non-obese patients, and expression levels were restored in V-ASCs 
(Figure 6B). Diabetes did not modify the expression of miR-126 in MVs neither from SAT-ASCs or 
VAT-ASCs. In contrast, miR-145 expression was significantly higher in MVs obtained from S-ASCs 
than those obtained from VAT-ASCs both in non-diabetic and diabetic patients. 

Next, in order to analyze the induced-migration potential of MVs released by ASCs as paracrine 
mediators, a migration assay with human microvascular endothelial cells (HMEC-1) was performed. 
Confluent HMEC-1s cultures were wounded by a fixed size scratch and treated with MVs released 
by ASCs to investigate the repair potential. After scratching, HMEC-1 were cultured with 
conditioned media (CM) obtained after 48 h of ASCs culture. CM was centrifuge to obtain MVs 
(MVs+) and CM without MVs (MVs-). Wound healing was quantified by measuring the covered 
surface 10 h after the scratch (time needed to close the gap) (Figure 7). Wounds closed faster in 
HMEC-1 treated with CM rich MVs (MVs+) than those cells treated with CM poor MVs (MVs-). 
Moreover, results show that MVs from VAT-ASCs have a higher capacity to induce migration than 
MVs from SAT-ASCs. Additionally, the presence of diabetes reduces migration capacity. All results 
were corrected by the number of MVs. 
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Figure 7. Effect of ASC-MVs in endothelial cell migration. Human microvascular endothelial (HMEC-
1) cells treated with ASC conditioned medium, MVs depleted or MVs rich medium. (A) Images show 
the wound repair at 10 h; (B) Cell coverage of the wounded area at 10 h. Results are expressed as % 
of covered wounded area ± SEM. * p < 0.05. 

Because we observed changes in MVs content and in scratch-time closing in HMEC-1 treated 
with MVs from ASCs, we analyzed TF and VEGFR2 (receptor for VEGFA). MVs from VAT-ASCs 
induced significantly higher TF and VEGFR2 expression in HMEC-1 cells (Figure 8). 
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Figure 8. Effect of ASCs-MVs on protein expression in protein endothelial cells. (A) TF and VEGFR2 
protein expression in migrating endothelial cells treated with media with (+) or without (-) MVs 
obtained from 48 h cultured of subcutaneous (S) or visceral (V) ASCs from patients with obesity 
without diabetes (OB-nDM) or with diabetes (OB-DM); (B) Quantitative analysis of TF to β-actin 
relative levels; (C) Quantitative analysis of VEGFR2 to β-actin relative levels. (* p < 0.05). 

4. Discussion 

Over the past decades, AT perception has changed considerably because of the dramatic increase 
in the incidence of obesity and obesity-related comorbidities [34]. Moreover, AT has also been 
considered as a source of ASCs for organ regeneration therapies due to their angiogenic properties 
[35]. The growing of AT requires the support of the angiogenic process [3] and it is known that AT 
from different anatomical localizations have different angiogenic capacities [24]. Our hypothesis is 
that adipose tissue, depending on its location, as well as its derived ASCs, presents different 
angiogenic capacity. This ability is also modified not only by the presence of obesity but also by other 
risk factors. In our study, we have used a transcriptomic approach to investigate the effect of different 
CVRFs, individually or as a cluster, on the angiogenic and inflammatory behavior of AT from two 
different depots in the same patient, the subcutaneous and visceral WATs. We analyzed 21 genes 
involved in different angiogenic or inflammatory pathways. Additionally, to investigate the behavior 
of fat tissue and its resident stem cells, ASCs from these fat depots were also isolated. 

In SAT from obese patients, a significant reduction in the VEGFA expression and an increase in 
serpin family F member 1 (SERPINF1, also known as pigment epithelium-derived factor, PEDF) 
expression was observed with respect to SAT obtained from lean healthy donors. Since PEDF can 
inhibit VEGF-mediated angiogenesis in the endothelial cells (EC) by activating ɣ-secretase, which 
cleaves VEGFR after the translocation of the C-terminal region of the receptor [36–38], a significant 
inhibition of angiogenesis ensues in obese SAT. However, no differences were observed in VEGFA 
gene expression in the SAT-ASCs from both obese and non-obese subjects, suggesting than the 
angiogenic potential of SAT could be related with the non-mesenchymal cell components of the 
tissue. Contrary to what we could expect from previous studies [39–41], the levels of the PNPLA2, 
gene involved in the maintenance and development of AT, as well as in regulating energy 
homeostasis, was significantly lower in the SAT of patients with obesity as compared to individuals 
with normal weight. Schrammel et al. [42] have demonstrated that ATGL knockout mice (ATGL is 
an enzyme that in humans is encoded by the PNPLA2 gene) suffer a pronounced micro and 
macrovascular endothelial dysfunction and activation of lipolysis by exercise modified angiogenic 
gene expression in a fat depot specific manner [43]. 

It is accepted that SAT and VAT have different compositions and different metabolic influence 
and thus, each depot has a different transcriptome and proteome [44–46]. Although obesity is widely 
known as a risk factor for different pathologies, many studies have shown that being overweight and 
obesity can exert, in certain cases, a protective role, giving rise to what is known as the “paradox of 
the obesity”. Thus, SAT is a protective tissue, while VAT is much more damaging [3,4]. In fact, it is 
demonstrated that insulin resistance is associated with VAT but not with SAT. Obesity and fat 
accumulation can be related with two different processes related to adipocytes, hypertrophy 
(enlarged adipocytes) or hyperplasia (increased number of adipocytes), the first being the 
predominant contributor to adult obesity. Conversely, metabolic healthy obesity is associated with 
an increased number of small adipocytes, and therefore with adipocyte hyperplasia. We show that 
human SAT and VAT in obese and lean patients, not only in the total fat tissues but also their resident 
SAT-ASCs and VAT-ASCs, have different angiogenic properties. 

When we analysed the transcriptomic profile of SAT and VAT fat, we observed a higher pro-
angiogenic gene expression in SAT compared with VAT of the same obese patients, as for the 21 genes 
analyzed, only three had a higher expression in VAT. Thus, the observed angiogenic-related gene 
expression increase observed in the SAT compared with VAT suggests that adipocytes hyperplasia 
predominates in SAT, which as previously discussed is predominant in women. 
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AT is composed of adipocytes and preadipocytes, stromal cells, macrophages and leukocytes 
among others, which secrete inflammatory and angiogenic factors, therefore being central mediators 
of the angiogenic process [47]. Here, we have observed that in obese patients, different angiogenic 
pathways are activated depending on the AT depots analyzed. We have evidenced that the VEGF-
mediated angiogenic pathway, which involves genes such as PGF, VEGFA and PEDF, was partially 
blocked in SAT. However, other pathways such as the ANGPT and NOTCH pathways among others, 
were enhanced (Figure 9). Additionally in SAT compared with VAT, there was a significant 
overexpression of ANGPT1 and ANGPT2, as well as their receptor TIE2. This ANGPT-TIE2 system, 
gives a connection between the angiogenic and the inflammatory pathways [48]. ANGPT1 induced 
TIE-2 phosphorylation (p-Tie-2), which leads to the maintenance of EC stability. The role of ANGPT1 
and VEGFA on blood vessel growth seems to be complementary, since both genes can induce TIE-2 
phosphorylation and therefore maintain endothelial homeostasis [49]. On the contrary, ANGPT2 
does not induce p-Tie-2 and therefore is considered as an ANGPT1 antagonist. However, ANGPT2, 
which is mainly produced by EC, promotes angiogenesis by promoting the dissociation of pericytes 
from old vessels and facilitating the liberation of diverse pro-angiogenic and pro-inflammatory 
molecules [47–50]. In addition to the observed effects on the ANGPT-TIE2 system, we also observed 
increased expression of NOTCH3 and its ligand DLL4 on SAT compared with VAT. The Notch 
signaling pathway is composed of four receptors (Notch1–4) and five membrane-bound ligands 
(Jag1-2 and DLL1,3 and 4) [51]. When these ligands interact with any of the receptors, TNFα and ɣ-
secretase induce the cleavage of the intracellular NOTCH-domain, which translocates to the nucleus, 
where it activates expression of target genes responsible for different cellular decisions and functions. 
NOTCH activation enhanced the phosphatidylinositol 3-kinase (PI3K)/AKT pathway promoting cell 
migration and proliferation and therefore, promoting angiogenesis [52–55] (Figure 9). 

 
Figure 9. Inflammatory and angiogenic pathways differentially affected in SAT versus VAT, in green 
downregulated and red up regulated. 

Besides the differential regulation of these three pathways between the different AT depots, 
other genes were also differentially expressed. Platelet endothelial cell adhesion molecule-1 
(PECAM1), endoglin (ENG) and advanced glycation end-products (AGER) were more highly 
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expressed in the SAT compared to the VAT. These three genes have an important role in the 
PI3K/AKT cell migration and proliferation related pathways. In fact, ENG and PECAM1 have a great 
influence over one another, and PECAM1 deficiently is associated with ENG reduction [56,57]. 
capping actin protein (CAPG) is also more highly expressed in SAT than in VAT. CAPG is a member 
of the gelsolin family, with an important role in endothelial and fibroblast cell motility as well as in 
macrophage conservation [58,59]. The inflammatory pathway was also differentially regulated 
between both tissues, higher levels of CD68, a monocyte and macrophage surface marker, were 
observed in SAT compared with VAT, as well as increased expression of the interferon-gamma-
inducible protein 30 (IFI30), expressed by macrophages [60] and tenascin-C (TNC), protein with roles 
both in inflammation and in cell migration and proliferation [61,62]. It is important to point out that 
all these differences disappeared if we only study the obese-diabetic group, due to the fact that SAT 
from patients with obesity might have a protective angiogenic role, whereas when obesity is 
accompanied by other metabolic diseases, SAT could be as deleterious a tissue as VAT. 

Regarding the mesenchymal stem cell reservoir in these adipose tissues, we observed no 
significant changes in VEGFA expression, up-regulation in TF (F3) and miR-126 expression and 
down-regulation in miR-145 expression in the VAT-ASCs with regards to SAT-ASCs. miR-126 
inhibits PIK3R2 and SPRED1, genes that in turn inhibit VEGFA [32], on the contrary, miR-145 has 
VEGFA as a direct target [63]. However, PIK3 is required for Tie-2 activation by ANGPT1, Tie-2 and 
ANGPT1 are therefore negatively regulated by miR-126 levels [64]. These results support the up-
regulation of VEGFA, seen in the total visceral fat analysis, as well as the ANGPT1 and TIE-2 
reduction. However, unlike what we saw in the total fat tissue, these changes are not affected by the 
presence of diabetes mellitus. 

ASCs secrete MVs that may be involved in crosstalk functioning with target cells [65]. In our 
study we found improved wound healing and viability in the endothelial cells treated with S-ASCs 
derived MVs. However, this repair function was not VEGF-dependent. 

Unfortunately, the main limitation of this study is the difficulty to recruit samples of these types 
of patients. However, besides this technical limitation, the changes observed are significant enough 
to help improve the existing knowledge in this field. 

AT can be largely distributed around the human body, and therefore, its properties and 
composition differ from one location to the other. In this study we have analyzed, for the first time, 
the angiogenic potential of the subcutaneous and visceral adipose tissue and their derived stem cells, 
as well as their extracellular MVs, all obtained from the same subject. In this approach we minimized 
genetic differences in the comparisons. In addition to obesity, other comorbidities, were investigated. 
Even though more studies in this field are needed, we can conclude that adipose tissue is a very active 
organ, independent of location. The subcutaneous adipose tissue from obese patients, expresses a 
greater number of angiogenic molecules than the visceral fat, independent of the presence of other 
CVRFs. However, the VEGF pathway is partially blocked in SAT, both compared with the visceral 
adipose tissue and with the subcutaneous adipose tissue from lean healthy donors. We have also 
observed that, even though adipose tissue composition is very heterogeneous, the adipose stem cells 
and their derived microvesicles have a pivotal role in the angiogenic properties of the adipose tissue. 
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perform the experiments; Table S3: Gene expression profile of the subcutaneous and visceral adipose tissue of 
patients and controls; Table S4: Gene expression of SAT and VAT from non-diabetic (non-DM) and diabetic 
(DM) obese patients. Significance between non-DM versus DM; Table S5: Gene expression of SAT and VAT from 
non dyslipemic (non-DLP) and dyslipemic (DLP) obese patients. Significance between non-DLP versus DLP; 
Table S6: Gene expression of SAT and VAT from non hypertens (non-HP) and hypertens (HP) obese patients. 
Significance between non-HP versus HP; Figure S1: IPA network analysis; Figure S2: Box-plot diagram showing 
ASC genomic profile. 
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Abbreviations 

ASCs Adipose derived stem cells 
AT Adipose tissue 
CVRFs Cardiovascular risk factors 
DLP Dyslipidemia 
DM Diabetes mellitus 
HT Hypertension 
MVs Microvesicles 
OB Obesity 
S- Subcutaneous 
SAT Subcutaneous adipose tissue 
SAT-ASCs Adipose derived stem cells obtained from subcutaneous adipose tissue 
S-MVs Microvesicles released by adipose derived stem cells obtained from subcutaneous 

adipose tissue 
V- Visceral 
VAT Visceral adipose tissue 
VAT-ASCs Adipose derived stem cells obtained from visceral adipose tissue 
V-MVs Microvesicles released by adipose derived stem cells obtained from visceral 

adipose tissue 
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