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Abstract: Meniscal injuries have posed a challenging problem for many years, especially considering
that historically the meniscus was considered to be a structure with no important role in the knee joint.
This led to earlier treatments aiming at the removal of the entire structure in a procedure known as a
meniscectomy. However, with the current understanding of the function and roles of the meniscus,
meniscectomy has been identified to accelerate joint degradation significantly and is no longer a
preferred treatment option in meniscal tears. Current therapies are now focused to regenerate, repair,
or replace the injured meniscus to restore its native function. Repairs have improved in technique
and materials over time, with various implant devices being utilized and developed. More recently,
strategies have applied stem cells, tissue engineering, and their combination to potentiate healing to
achieve superior quality repair tissue and retard the joint degeneration associated with an injured or
inadequately functioning meniscus. Accordingly, the purpose of this current review is to summarize
the current available pre-clinical and clinical literature using stem cells and tissue engineering for
meniscal repair and regeneration.
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1. Introduction

The meniscus is an essential member of the knee joint and without its proper functioning,
pathologic force distribution and instability occur in the knee, negatively affecting overall joint
biomechanics [1,2]. Due to the avascular and hypocellular nature of meniscal tissue, it possesses a
capacity for healing once damaged [3,4]. Though the guarded prognosis of meniscectomy was noticed
as early as 1923 [5], many surgeons still perform total or partial removal of the meniscus to address
meniscal tears. This management option remains popular as modern-day medicine is yet to find an
effective evidence-based solution. It is now generally accepted that every effort should be made to
repair and retain as much native meniscal tissue as possible [6]. This change in approach has led to
the introduction of several novel reparative techniques and strategies to restore meniscal function
in individuals with meniscal injuries. Owing to the complex phenotype of meniscal tissue, tissue
regeneration using stem cell therapy may hold the key to tackling meniscal tears. The use of both
meniscal cells and mesenchymal stem cells (MSCs) have proven effective in regenerating meniscal
tissue, however meniscal cell harvest poses an unacceptable donor site morbidity and tear site cells
have little to no chondrogenic potential [7]. Therefore, the majority of research has been focused on
stem cells where there is a reasonable amount of pre-clinical data but limited clinical data.

Meniscal replacement strategies in the form of a collagen meniscal implant and a polyurethane
polymer scaffold have been employed over recent years with promising clinical results. However,
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these implants have been unsuccessful in emulating normal meniscal biomechanics and radiological
follow-up does not demonstrate images resembling that of normal meniscus [8–11]. Meniscal allograft
transplantation has also been an option in selected healthcare systems but has several limitations ranging
from graft availability, congruence, biocompatibility, fixation problems, and potential infection [8].
With the current preferred management option being meniscal repair, the purpose of this article is
to comprehensively review the current status of stem cell treatments in both pre-clinical and clinical
studies, dividing them into injection-based and tissue-engineered cell therapies.

2. Anatomy of the Meniscus

The menisci are composed of two semilunar shaped structures divided into a medial and
lateral component of which both are biphasic and fibrocartilaginous. They are composed of a dense
extracellular matrix (ECM) with low cellularity and vascular supply exclusively to the outer 10–15% of
tissue [12–15]. The menisci are attached to the tibial plateau at anterior and posterior roots and are
part of a meniscal ligament complex consisting of the medial collateral ligament (MCL), the transverse
ligament, the meniscotibial and meniscofemoral ligaments [12,16,17] (Figure 1).

Within the meniscus fibrils, fibers, and fascicles are arranged in diverse patterns depending on
the region of tissue [18]. The innermost region consists of small unorganized woven radial collagen
fibrils with a structure similar to that of cartilage [19,20], with greater proteoglycan content. The outer
region consists of intertwined collagen fibrils in a circumferential orientation with radially oriented
three-dimensional arrays of fibers known as “tie-fibers” (Figure 2). They lie perpendicular to the
circumferential collagen fibers and originate from the joint capsule creating a complex honeycomb
network [18,21]. The root attachments of the meniscus to the tibia are more ligamentous-like structures
with a fibrocartilaginous enthesis [22].

The biochemical composition of meniscal tissue is 72% water, 22% collagen, 0.8%
glycosaminoglycan (GAG) and 0.012% DNA [23]. Within the meniscal ECM, there is a greater
amount of collagen I in the outer red–red zone and a greater amount of collagen II in the inner
white–white zone [24]. Numerous proteoglycans exist within meniscal tissue of which the most
abundant is aggrecan, others include biglycan, decorin, fibromodulin, lubricin, and elastin [25–27].
These proteoglycans provide the meniscus with its viscoelastic, low friction, yet strong phenotype.

The cellularity of meniscal tissue is composed of oval fibrochondrocytes and spindle-shaped
fibroblast-like meniscus cells near the outer region connected via long cell extensions [12,28,29]. The
cells present in the inner region of the meniscus are chondrocyte-like and are more rounded and
embedded within the ECM [30]. Within the superficial zone of the meniscus, one more population of
cells described has a flattened, fusiform morphology without any cell extensions. These have been
postulated to be progenitor cells with regenerative capabilities [31].
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Figure 1. Schematic diagram of the axial section at the level of the tibial plateau depicting the anatomy,
attachments, and relations of the menisci. MM, Medial Meniscus; PCL, Posterior Cruciate Ligament;
LM, Lateral Meniscus; ACL, Anterior Cruciate Ligament.

Figure 2. Schematic cross-sectional diagram of the meniscus displaying the circumferential arrangement
of collagen fibers and radial tie fibers.

3. Functions of the Meniscus

The meniscus plays an important role in normal knee joint mechanics and function by the
transmission of joint reaction forces, lubrication, nutrition to the cartilage and shock absorption [32,33].
During standard weight-bearing, the forces applied to the meniscus are known as “hoop stresses”.
These are circumferential forces generated as a result of vertical axial forces being converted to
horizontal tensile forces owing to the meniscal tissues circumferential collagen fiber arrangement [34].
Shear forces are similarly developed between collagen fibers when the meniscus undergoes radial
deformation [35]. The wedge shape of the meniscus allows for better articulation and stability for
the rounded femoral condyle on the flat tibial plateau [2,36]. The medial meniscus has also been
demonstrated to have a considerable contribution to preventing anterior tibial translation alongside
the anterior cruciate ligament (ACL) [37].

It is hypothesized that through a system of micro canals within the meniscal tissue there is the
transport of synovial fluid in order to nourish the articular cartilage by compressing synovial fluid into
the cartilage reducing friction on the chondral surface [38,39]. Another key feature of the meniscus is
the presence of proprioceptive mechanical receptors, in the form of Pacinian corpuscles and Ruffini
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endings located in the anterior and posterior horns of the menisci contributing to joint position sense
and afferent sensory feedback [40–42].

It is important to note the several roles of the meniscus and focus on interventions restoring it to
full capacity. It can be certainly agreed that the complex phenotype of the meniscus is in accordance
with its complex functionality.

4. Meniscus Pathology

Meniscal injuries may be acute or degenerative and be as a result of macro-trauma or chronic
repetitive attrition commonly encountered in middle-aged and older patients. Acute tears are usually in
association with a traumatic event where a combination of compressive, shear, and rotational forces are
applied across the meniscus from the femoral condyles onto the tibial plateau. Acute tears are classified
into different patterns: Longitudinal, radial, and horizontal, these can progress to more complex tears.
In certain situations, tears may displace the tissue and it may get lodged between the femoral condyles,
thereby locking the knee joint in flexion. Degenerative meniscal lesions occur more gradually over
time and are usually associated with osteoarthritis (OA) [43,44]. Data suggests that the incidence
of degenerative tears is higher than earlier believed, as many tears remain asymptomatic [45–47].
Degenerative tears are more frequently located in the posterior horn of the medial meniscus and
are of horizontal-cleavage or flap tears with some element of tissue destruction [48]. Besides tear
morphology, the overall position of the meniscus is important to evaluate. Extrusion of the meniscus
can occur concomitantly with certain tear types, particularly root and radial tears, and usually occurs
in degenerative lesions in the setting of OA [49–51].

The healing potential of a meniscal tear is largely dictated by the tear location. The meniscus
has been described to have an inner white–white avascular zone and an outer red-red vascular zone.
Between these is a red–white zone of less, but still some degree of, vascularity (Figure 3). Tears involving
the inner zone have the least healing potential due to a lack of blood supply [3,52].

When the meniscal function is compromised in the event of an injury, the biomechanics of the
knee is deranged. There is increased stress on the cartilage in the joint which can lead to cartilage loss,
bony changes, and OA progression [53–56]. Studies have even shown trabecular bone variations as
a result of the loss of meniscal function. In settings of meniscal extrusion, the meniscus no longer
absorbs hoops stresses, joint space is reduced and there is an increased possibility in the occurrence of
bone marrow lesions [57,58].

Figure 3. Schematic cross-sectional diagram of the body of the meniscus representing the vascular
zones of the meniscus.
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5. Types of Mesenchymal Stem Cells

Stem cell therapies in musculoskeletal medicine have employed numerous sources of stem cells,
and more recently the breakthrough of the induced pluripotent cell has meant cells can now be
reprogrammed to perform as stem cells [59]. Treatment strategy focus has been primarily on cartilage,
meniscus, and bone to treat chondral defects, meniscal injuries, and fractures. MSCs have been of keen
interest in stem cell treatments due to their ease of availability and differentiation capabilities [60].
Cell source is an important consideration for successful outcomes in stem cell therapies [61] and
common sources include bone marrow [62], adipose [63], synovium [64], and blood [65]. There is
no absolute best cell source as each source has its advantages, disadvantages, and differentiation
capacities. Table 1 has been constructed based on studies by Sakaguchi et al. on human MSCs [64]
and Yoshimura et al. on rat MSCs [66]. Both studies concluded that synovial tissue was the superior
choice of tissue when comparing osteogenic, chondrogenic and adipogenic capacities of the three cell
sources. Additional literature has also found synovium to be a superior and effective cell source of
MSCs [61,67,68]. Bone marrow has been a popular cell source in the majority of studies. The principal
difficulties associated with bone marrow MSCs (BMMSC) is the harvesting process being painful, and
their limited differentiation potential with in vitro expansion [69]. Adipose-derived stem cells (ADSCs)
have gained popularity for their high yield [70] and ease to procure through liposuction. Literature
does, however, report ADSCs to be inferior to synovial MSCs in terms of their chondrogenic and
osteogenic differentiation capacities [64]. The clinical advantages and disadvantages of the discussed
cell sources have also been outlined in Table 1 [64,69–71]. Concerning meniscal tissue, the ideal cell
source remains to determined and despite showing varying differentiation capacities between sources
in different models the literature still lacks evidence to state one cell source superior to another in
meniscal regeneration.

Table 1. Summary table showing differentiation capacities as well as advantages and disadvantages of
bone marrow, adipose and synovium mesenchymal stem cells (MSCs) [64,66–71].

MSC Source Osteogenic Chondrogenic Adipogenic Clinical
Advantage

Clinical
Disadvantage

Bone marrow +++ +++ ++
Aspiration can be
done under L/A

Invasive, Painful,
Low yield

Adipose + + +++
Less painful than

marrow aspiration
and high yield

L/A toxic to ASCs
therefore harvest

preferable under GA

Synovium +++ +++ +++

Painless,
Minimally invasive
and Minimal tissue

requirement

Staged surgery, cells
require expansion

Abbreviations: L/A, Local anesthesia.

6. Mechanism of Meniscal Repair

The precise mechanism by which a meniscal regeneration occurs remains unknown, it is, however,
thought to occur via both extrinsic and intrinsic pathways [72–74]. The extrinsic pathway is dependent
on the tear site vascularity, where undifferentiated MSCs and growth factors can encourage the repair.
The more direct intrinsic pathway occurs via the self-healing capability of the meniscal tissue and is
not always a strong contributor to repair [75]. It is known that after meniscal injury the number of
MSCs in the synovial fluid increases providing endogenous cells required for repair [76].

As with all healing, angiogenesis is a vital factor in meniscal tear repair too, promoting repair
by supplying growth factors and inflammatory processes. The significance of angiogenesis has been
demonstrated in a rabbit meniscal defect model where angiogenin treated defects had significantly
better healing rates than the control group [77]. This is following other studies that have shown good
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healing rates in the vascular rich red-red zone of the meniscus [78,79]. Some literature has also shown
synovium to contribute some element of vascularity to injured meniscal sites [80,81]. The role of
growth factors remains dependent on the injury site vascularity and their anabolic effects have shown
to improve MSC differentiation and phenotype [52]. Such growth factors are secreted as a result of the
paracrine functions of MSCs into exosomes, allowing them to modulate angiogenesis, cell migration,
differentiation, and numerous additional processes [82]. For this reason, research has focused on the
application of various growth factors within scaffolds, to meniscal injury models with the hope of an
enhanced healing response. Of note, recently transforming growth factor (TGF-β3) and connective
tissue growth factor (CTGF) have shown positive results in ovine model meniscal repairs, with the
ability to induce cell differentiation towards native zone-specific matrix phenotypes [83,84]. This
highlights the key roles of MSCs and growth factors in successful meniscal healing to generate cellular
phenotypes resembling that of normal meniscal tissue.

Mechanical factors also affect meniscal healing considerably and can have undesirable effects on
healing when the meniscus is loaded pathologically. This is the rationale behind stabilizing tears with
sutures to immobilize tear sites. Though tear site stability seems to be more important than complete
immobilization of the joint [85,86]. Normal physiologic loading of the meniscus has been shown to
have anti-inflammatory and overall anabolic effects while pathological loading has the exact opposite
effect increasing catabolism, inflammation, and cell death [87]. Overall it can be summarized that
meniscal repair is very much dependent on vascularity and stability of the tear site. Good vascularity
facilitates pluripotent stem cells and endogenous growth factors to interact and mediate the production
of repair meniscal tissue.

7. Pre-Clinical Studies

7.1. Stem Cell Injection

Simple MSC injections from different sources have been employed in various animal models
to evaluate their effects on tissue regeneration and healing. Recently, synovium has been identified
as a good source of MSCs as these cells have a high potential for proliferation and chondrogenic
differentiation [64,88,89]. Nakagawa et al. [90] combined allogeneic synovial MSCs and a suture repair
to a meniscal defect model in a porcine model. In their study, the time to outcome assessment was only
12 weeks, though they reported superior results than in an isolated suture repair group. The MSC group
demonstrated higher histology scores, collagen deposition and greater tensile strength in the repair site.
They noted no immunologic reactions despite not using any immunosuppressive drugs in the subjects.
A similar study employing allogeneic synovial MSCs was performed by Hatsushika et al. [91] using
multiple doses of intraarticular synovial MSC injections in a porcine model. The defect model was
somewhat large where the entire anterior half of the medial meniscus was removed. Subjects injected
with MSCs showed defect filling with synovial tissue at 2 weeks. At 16 weeks when compared to the
control group, the MSC group had superior quality tissue with improved safranin-o and collagen I and
II staining. They concluded that synovial derived MSCs promoted meniscal regeneration and were
more effective with repeated intraarticular injection use, though the optimal number of injections was
yet to be determined. Both studies [91,92] did also mention that this was an acute meniscal tear model
and that regenerative results may be different in a chronic scenario as demonstrated by Ruiz-Iban et
al. [92]. In this study, rabbit meniscal lesions were created, and some subjects underwent an acute
treatment protocol while others were treated after 3 weeks to simulate tear chronicity. Meniscal healing
was significantly better in the acutely treated groups, thereby confirming tear chronicity having a role
to play in tissue healing.

A study by Ferris et al. [93] administered an intraarticular injection of autologous BMMSCs to horse
stifle joints after the diagnosis of a meniscal tear by arthroscopy. This model is more accurate in that
the time from injury to injection simulated that of a normal clinical scenario as opposed to the creation
of a defect and immediate subsequent treatment. The subjects received only debridement followed by
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the intraarticular BMMSC injection, no suture repair was performed alongside the treatment. Eighteen
out of twenty-four horses with documented meniscal lesions returned to work with 9 horses reaching
their previous levels of activity. The outcomes of this study were compared to previous reports and
they reported significant positive outcomes in BMMSC injections for the treatment of meniscal lesions
in horses. Another study employing only autologous BMMSCs in a canine meniscus tear model found
better healing responses in injected subjects compared to the controls [94]. Injected subjects exhibited
significantly better histology with marked angiogenesis, fibroblast proliferation, chondrogenesis, and
collagen deposition. They concluded that BMMSCs were effective in regenerating meniscus tissue and
could function by either BMMSC differentiation or mediator release signaling a healing mechanism.
From these models, it is evident that MSCs have a role to play in meniscal regeneration and that
subjects who received some form of stem cell injection, whether combined with a repair or not, did
display superior healing responses and histology.

As mentioned earlier, it has still not been determined which cell source is superior for MSC
treatments, but each has shown promising results with their own advantages and disadvantages.
In addition, allogeneic cells have also shown promising results, which would have its own benefits
for manufacturing, cost, and development of single-stage treatment strategies. Table 2 summarizes
pre-clinical stem cell injection data studies included in our review.

Table 2. Summary of pre-clinical studies using stem cell injections.

Author/Year Animal/Defect
Model

Source/Cell
number/Method

of Delivery
Control

Outcome
Measurement/

Timeline
Results

Nakagawa et al.
[90]/2015

Micro
minipig/Medial

Meniscal full
thickness

longitudinal tear

Allogeneic
Synovial MSCs/20
× 106/Suture repair
+MSC suspension

injection

Suture repair +
Acellular

suspension

Macro and Histo
analysis, IMHC,

TEM, MRI,
Biomechanical

analysis/12 weeks

Macroscopy: Scores were
better in MSC group at all
time points compared to

control. Histology: Scores
were higher in MSC group at
all time points compared to

control. TEM: dense collagen
fibrils in MSC group, none in
control. MRI: MSCs group has
T1rho values closer to intact

meniscus than control. Higher
tensile strength in MSC group

Hatsushika et al.
[91]/2014

Pig/Medial
meniscus anterior

half resection

Allogeneic
Synovial MSCs/50
× 106

× 3/IA
injections x3 with

2-week gaps of
synovial MSCs

PBS injection
Macro and Histo

analysis. IMHC TEM
MRI/16 weeks

Macro: regeneration of
anterior medial meniscus in
both groups. Histo: better

Safranin-O staining in MSC
group, COL I and II staining
showed larger representation
in MSC group. Mod Pauli’s

score was higher in MSC
group. MRI: regenerate area
appeared more organized in

MSC group

Ferris et al.
[93]/2014

Horse/Meniscal
tear

Autologous
BMSCs/15–20 ×

106/Arthroscopy +
IA injection of

BMSCs

Previous
surgical data

Return to work/24
months

18/24 (75%) horses with
meniscal lesions returned to
work. 9 returned to previous

level of activity

Abdel-Hamid et al.
[94]/2005

Dog/Longitudinal
full thickness
meniscal tear

Autologous
BMSCs/2-4ml

aspirate/Injection
at tear site

Tear with no
treatment

Histo, IMHC/12
weeks

Better healing response in
injected group compared to
control. Histo: angiogenesis,

collagen deposition and
fibroblast proliferation in

injected compared to control

Abbreviations: Macro, Macroscopic; Histo, Histology; IMHC, Immunohistochemistry; TEM, transmission electron
microscopy; MRI, magnetic resonance imaging; BMMSC, bone marrow MSCs.

7.2. Tissue Engineering

Tissue engineering techniques concerning meniscus regeneration have employed MSCs in
combination with engineered scaffolds and growth factors to achieve more efficient and better-quality
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repair/regenerate tissue. Several scaffolds have been developed ranging from synthetic polymers to
more natural tissue-derived sources. In vitro studies have demonstrated the outcomes of using different
cell types [7] and the benefits of adding growth factors to cultures that can promote GAG production
and improve cell differentiation enhancing the bioactivity of the overall scaffold for integration [95].
Such study models have also shed light on the effects of inhibitory effects on the meniscal repair
by interleukin-1 and tumor necrosis factor-α commonly upregulated in injured joints [96–98]. The
mechanical variations of the inner and outer zone cells of the meniscus have also been thought to bring
about variation in gene expression and protein regulation [99]. The challenge in scaffold optimization
is in finding a delicate balance between mechanical strength and bioactivity.

Zhang et al. [100] in a goat model demonstrated the healing capacity of BMMSCs transfected
with human insulin-like growth factor 1 (hIGF-1) using a calcium alginate gel for delivery into a
full-thickness meniscal defect. Their study included three control groups: one group with cells and no
hIGF-1 transfection, one with the alginate gel alone, and one without any form of treatment. The group
repaired with hIGF-1 transfected cells developed the best reparative tissue with margins difficult to
delineate from the neighboring native tissue. This group also demonstrated a greater number of cells,
more cartilaginous tissue, and higher GAG content than the control groups. This is a clear example of
an in vivo application of a growth factor (hIGF-1) in combination with MSCs promoting and enhancing
the meniscal regenerate.

Moriguchi et al. developed a natural tissue-engineered construct (TEC) consisting of a high- density
monolayer culture of allogeneic synovial MSCs in the presence of ascorbic acid [101]. Four-millimeter
cylindrical defects were created in a porcine meniscus model and repaired using TEC or left untreated
for control. All TEC implanted defects were filled with well-integrated repair tissue, while the controls
remained empty or partially filled. Histology of the TEC repair displayed cartilage-like cells with
lacunae indicative of fibro-cartilaginous tissue. The incidence of chondral injury 6 months after defect
creation was significantly less in the TEC group in comparison to the control. Interestingly, TEC
is scaffold-free and yet provides good bioactivity and mechanical support to the repair site. The
study concluded that a fibrocartilaginous repair tissue is a desirable result for meniscal defects as
meniscal tissue displays mixed characteristics of hyaline cartilage and fibrous tissue. This animal
study validated that TEC could be an effective solution to achieve the desirable hybrid tissue qualities
required to fill a meniscal defect and retard OA progression that typically follows a meniscal injury.
Kondo et al. [102] used autologous synovial MSC aggregates to repair meniscal defects in a primate
model. They found the medial meniscus in the repair group to have larger regenerate at both time
points of 8 and 16 weeks. The regenerated meniscus also stained better with safranin-o and had T1rho
magnetic resonance imaging (MRI) that resembled native meniscal tissue. Both the control and the
study group did show OA changes, though the MSC treated group had better scores. This study again
demonstrated both the regenerative potential of synovial MSCs and also the use of aggregates alone
without the need for a fixation method to treat meniscal injury.

Desando et al. [103] used a hyaluronic acid (HA) scaffold seeded with autologous BMMSCs
in an ovine meniscal defect model. No fixation technique was employed as the mesh had intrinsic
adhesive properties [104]. The BMMSC seeded HA scaffold group revealed a superior repair with a
smooth restored surface and good proteoglycan content compared to the control group. There was
greater expression of collagen type I and II and lower expression of matrix metalloproteinase-13 and
interleukin 1 beta indicating less collagen degradation [105–107]. The bone marrow seeded HA group
was therefore determined to be more chondroprotective when compared to the control group. This
study confirmed that BMMSCs can enhance a more effective meniscal repair, as well as reduce the
biochemical changes associated with the progression of OA. Table 3 summarizes the pre-clinical tissue
engineered stem cell studies included in our review.



Cells 2020, 9, 92 9 of 17

Table 3. Summary of pre-clinical studies using tissue engineering.

Author/Year Animal/Defect
Model

Source/Cell
number/Method of

Delivery
Control

Outcome
Measurement/

Timeline
Results

Zhang et al.
[100]/2009

Goat/full thickness
defect in medial

meniscus anterior
horn

BMMSC with
transfection of

hIGF-1/30 ×
106/mL/Calcium

alginate gel into defect

Defect with nil
treatment

Histo, TEM, GAG
Assay

MRI/16 weeks

BMMSC w/hIGF-1 group had
better repair tissue without

clear margin. Large number of
well aligned cells within repair

defect. TEM showed round
oval like chondrocyte like cells.

MRI: smooth continuous
anterior horn

Higher GAG content to
control

Moriguchi et al.
[101]/2013

Pig/4 mm
cylindrical defect

in medial meniscus

Synovial MSC/0.2 ×
106 cells—3 weeks
culture/3D matrix
construct (TEC)

Nil treatment Gross morphology
Histo/6 months

TEC implanted defects
showed fibrocartilaginous

repair and integration
compared to control.

Histo: cartilage like cells with
nuclei in lacuna

Kondo et al.
[102]/2017

Monkey/Anterior
horn of medial

meniscus Partial
Meniscectomy

Synovial MSCs/0.25 ×
106/Aggregates Nil aggerate

Macro and Histo
analysis

MRI/8 weeks (n =
3)

16 weeks (n = 4)

Macro: Regeneration in
control and MSCs groups with

MSC showed larger medial
meniscus at 8 and 16 weeks.

Histo: Safranin-O slight
staining at 8 weeks, positive at

16 weeks. No staining in
control

MRI: MSC groups closer
resembled intact menisci

compared to control.

Desando et al.
[103]/2016

Sheep/Unilateral
medial

meniscectomy

Bone marrow
concentrate or

BMSCs/BMC:39 × 106

BMSCs: 6 × 106/
Arthrotomy Bone

marrow or BMMSC in
HA mesh

Nil treatment

Gross morphology
Microtomography

Histo
Immunohistology/12

weeks

Meniscal tissue regeneration
greatest in BMC + HA group.
Both BMC and BMSCs group
showed good cell density and

proteoglycan content
compared to control. BMC+

HA group had higher
expression of Col II than I

compared to BMSCs group.

Abbreviations: BMMSCs, Bone marrow mesenchymal stem cell; Macro, Macroscopic; Histo, Histology; TEM,
Transmission electron microscopy; MRI, Magnetic resonance imaging; GAG, Glycosaminoglycan; MSC, Mesenchymal
stem cell; HA, Hyaluronic Acid.

8. Clinical Studies

8.1. Stem Cell Injection

Clinical studies evaluating the effects of MSC injections in the knee joint are limited, but early
clinical data suggests encouraging results. Currently, there have not been any reported safety concerns
or side-effects in the clinical use of MSC injections.

There is only one randomized double-blind controlled study to date studying the effects of MSC
injections into the knee post medial meniscectomy [108]. The study contained 55 subjects in 3 groups
who underwent a percutaneous injection of allogeneic MSCs with one group receiving 50 × 106 cells
another 150 × 106 cells and control receiving only HA. At 12 months follow up, MRI scan findings
reported a significant increase in meniscal volume in 24% of patients receiving 50 × 106 cells and 6%
receiving 150 × 106 cells. None of the control group patients demonstrated an increase in meniscal
volume. The study is limited to MRI scan being the only objective outcome measure, but the study
methodology is rigorous in that it has the advantage of being blinded and randomized.

Pak et al. [109] reported the results of a single patient who received an ultrasound guided
autologous adipose stem cell (ASC) intraarticular injection to the knee joint for treatment of an isolated
meniscus tear. The final injection mixture contained the ASCs, platelet-rich plasma (PRP), HA and
calcium chloride. This patient also received follow up injections of PRP, HA, and dexamethasone.
The patient was followed up for a period of 18 months and reported continued improvement in knee
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pain scores and superior knee function. A 3-month MRI scan reported almost complete resolution of
the meniscal tear. Radiologic evaluation beyond this time point was not available. This study lacked
control therefore, it remains difficult to determine the efficacy of this treatment. However, it is worth
noting the same patient did undergo PRP and HA injections prior to the stem cell injection and had
reported unsatisfactory outcomes with these treatments. Centeno et al. [110] reported a patient who
received an intraarticular injection of BMMSCs which were expanded using platelet lysate extracted
from the patient’s own blood. After the radiologic MRI diagnosis of degenerative changes in the medial
meniscus and medial femoral condyle, the patient was injected with the BMMSCs after expansion in
the growth factors present in the platelet lysate. The expanded MSCs were injected into the knee joint
along with fresh whole marrow. The patient did also receive 2 subsequent injections of platelet lysate
combined with 1ng/mL dexamethasone. The post-procedure 3-month MRI scan showed evidence of
increased meniscus volume, and the patient did report improved pain scores. This is encouraging data
for a relatively simple procedure, though this case report is limited to one patient without a tissue
biopsy, so the exact nature of the regenerated tissue remains unknown.

A recent paper by Onoi et al. [111] reported second-look knee arthroscopy findings in two patients
after ASC injections. However, only one of the treated patients had a second-look arthroscopy. This
patient underwent a partial meniscectomy for a degenerative tear in the posterior horn of the medial
meniscus. At 6 months after ASC injection, the second-look arthroscopy not only showed improved
cartilage status but also repair of the resected part of the meniscus. The meniscus tissue was not
biopsied, and the sample size was small, but the second-look arthroscopy findings were encouraging.

Sekiya et al. [112] studied the addition of synovial MSCs to degenerative medial meniscus lesions
in 5 patients. The patients underwent an initial arthroscopy where the lesions were confirmed, repaired
with sutures and finally, a synovial tissue biopsy was performed. The synovial tissue was cultured and
expanded for 14 days and a repeat arthroscopy was performed where a synovial MSC cell suspension
was delivered to the site of the repair. Patients reported significant clinical score improvement by
2 years and 3D MRI scan results reported no evidence of tear at the repair site. Table 4 summarizes the
clinical stem cell injection studies found in the literature.

Table 4. Summary of clinical studies using stem cell injections.

Author/Year
Study

type/Patient
number

Source/Cell
Number Method of Delivery Outcome/Follow Up Results

Vangsness et al.
[108]/2014

Randomized
control trial/55

Allogeneic MSCs
derived from

BMAC/A:50 × 106

B:150 × 106

Percutaneous knee
injection

MRI
VAS

Lysholm knee score/2
years

Significant improvement in
scores at 3 months.

12-month
MRI at 12 months:

significant increase in
meniscal volume in MSC

groups compared to control

Pak et al.
[109]/2014 Case control/1

Abdominal
liposuction/Not

reported

Percutaneous knee
injection

VAS, Functional
rating index, ROM,

MRI/18 months

At 3 months MRI showed no
evidence of meniscal tear,
Symptoms improved and

asymptomatic at 18 months

Centeno CJ et al.
[110]/2008 Case control/1 Iliac crest BMAC/

45.6 × 106
Percutaneous knee

injection

VAS, Functional
rating index, MRI/3

months

Increased meniscus volume
on MRI.

Decreased VAS Score from
3.33 to 0.13

Onoi et al.
[111]/2019 Case report/2 Liposuction from

thigh/5.5 × 106
Percutaneous knee

injection

MRI
KOOS

Arthroscopy/6
months

Both patients reported better
scores at 6 months follow up.

2nd look arthroscopy
showed meniscal tear

healing

Sekiya et al.
[112]/2019 Case series/5

Arthroscopically
harvested
Synovial

Tissue/32–70 × 106

Arthroscopic
transplantation of

autologous synovial
MSC suspension to
sutured meniscal

lesion

Lysholm knee score
KOOS
NRS

3D MRI/24 months

Significant improvement of
Lysholm score by 1 year.

Other scores significantly
increased by 2 years
3D MRI: Tears were

indistinguishable

Abbreviations: MSC, Mesenchymal stem cell; BMAC, Bone marrow aspirate concentrate; Macro, Macroscopic; Histo,
Histology; MRI, Magnetic resonance imaging; VAS, Visual Analogue Score; ROM, Range of motion; KOOS, Knee
Injury and Osteoarthritis Score; NRS, Numeric Rating Scale.
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8.2. Tissue Engineering

The combination of MSCs and tissue engineering is also an emerging field from a clinical
standpoint, and a greater number of studies have focused more on finding a solution for cartilage
defects. Whitehouse et al. [113] reported a case series of 5 patients where BMMSCs were injected onto
a collagen scaffold and sutured into an avascular meniscal tear using vertical mattress sutures. Three
out of 5 patients reported positive outcomes beyond 12 months with significantly improved clinical
scores and subsequent MRI scans showing in situ repair along with a reduction in the abnormal signal
of the scaffold. Two patients had a failure of treatment, sustaining repeat tears at around 15 months.
A very recent study by Olivios-Meza et al. [114] combined a polyurethane meniscal scaffold with
MSCs for meniscal repair. They divided patients into two groups, one with an acellular scaffold repair
and another enriched with MSCs. Scaffolds were arthroscopically implanted into patients who had
a history of receiving a meniscectomy in the past. MSCs were obtained from a blood draw after the
subjects received 3 days of consecutive 300 µg subcutaneous G-CSF injections in order to increase
the peripheral bloodstream MSC pool. After cell separation, CD90+ expression cells were isolated,
cultured and seeded on the scaffold. Scaffolds were sutured to the neighboring meniscal tissue and
joint capsule to fill the defect with all inside sutures. Outcomes were determined by assessing cartilage
adjacent to the repair site with an MRI cartigram. They noted a significant radiologic and clinical
improvement in both groups but concluded the addition of MSC to the polyurethane scaffold repair
made no difference. This study did, however, have a small sample size with no randomization, and the
post-operative MRI scan findings of the meniscal repair site were not reported. Table 5. summarizes
the clinical studies available on tissue-engineered meniscal tear treatments.

Table 5. Summary of clinical studies using tissue engineering.

Author/Year
Study

Type/Patient
Number

Source/Cell
Number Method of Delivery Outcome/

Follow Up Results

Whitehouse et al.
[113]/2017 Case Series/5

Iliac crest
BMAC/

1 × 106/cm2

Arthroscopic MSC
injection into

Collagen Scaffold

IKDC Score
Lysholm Score.

ROM MRI/2
years

3 patients reported
significantly improved
clinical outcomes and

MRI imaging

Olivos-Meza
[114]/2019 Case Series/17

s/c G-CSF x 3
blood draws.

Cell separation
isolation and

culture CD 90+
cells/20 × 106

Arthroscopic
implantation of MSC

cell seeded
polyurethane

scaffold vs. acellular
polyurethane

scaffold

Lysholm Score
MRI/12 months

Both groups improved in
Lysholm scores. No

intergroup difference
was noted. MRI

Cartigram: Improved in
cell seeded scaffold at 9
months but reduced to

initial value at 12 months

Abbreviations: BMAC, Bone Marrow aspirate concentrate; MSC, Mesenchymal stem cell; IKDC, International Knee
Documentation Committee; ROM, Range of motion; MRI, Magnetic resonance imaging; G-CSF, Granulocyte Colony
stimulating factor.

9. Conclusions

In summary, the available literature demonstrates that MSCs appear to be safe and effective in
producing superior quality meniscal repairs. There is compelling pre-clinical data that has studied the
effects of various cell sources, scaffolds, and even growth factor additives. Despite this, presently there
is no consensus on the ideal cell source and scaffold for meniscus regeneration. Current limitations
of the data include a lack of long-term follow-up, control groups, and objective outcome endpoints.
In comparison to articular cartilage regeneration, where there have been more clinical studies that have
reported on repair tissue histology, second-look arthroscopy, and radiologic imaging, robust outcomes
are still lacking for meniscal stem cell therapy studies.

At the end of our review, we do note that each therapy and mode of delivery has its own
advantages and disadvantages and at present, we cannot identify or recommend a certain intervention
as a standard of care. We do however encourage the use of stem cell therapies as an investigational
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agent in the setting of meniscal injuries in order to increase the available literature and evidence for or
against its use.

The solution to meniscal tissue regeneration is a particularly elusive one and appears far more
complex than that of cartilage regeneration due to the complex phenotype and function of meniscal
tissue. We anticipate that stem cell therapies will become more effective in the near future in order to
aid meniscal repair modalities, thereby adding another weapon to retard dreaded OA progression in
the knee.
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