
Modulating Tumor-Associated Macrophage polarization by synthetic and natural PPAR γ ligands as a potential target in breast cancer

Giulia Gionfriddo ^{1,#}, Pierluigi Plastina ^{1,#}, Giuseppina Augimeri ¹, Stefania Catalano ¹, Cinzia Giordano ¹, Ines Barone ¹, Catia Morelli ¹, Francesca Giordano ¹, Luca Gelsomino ¹,Diego Sisci ¹, Renger Witkamp ², Sebastiano Andò ¹, Klaske van Norren ^{2,*}, Daniela Bonofiglio ^{1,*}

- ¹ Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; giu.gionfriddo@gmail.com (G.G.); pierluigi.plastina@unical.it (P.P); giusy.augimeri@gmail.com (G.A.); stefania.catalano@unical.it (S.C.); cinzia.giordano@unical.it (C.G.); ines.barone@unical.it (I.B.); catia.morelli@unical.it (C.M.); francesca.giordano@unical.it (F.G.); luca.gelsomino@unical.it (L.G.); diego.sisci@unical.it (D.S.); sebastiano.ando@unical.it (S.A.); daniela.bonofiglio@unical.it (D.B.)
- ² Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands; renger.witkamp@wur.nl (R.W.); klaske.vannorren@wur.nl (K.v.N.)
- # G.G. and P.P. equally contributed to this work.
- * Correspondence: daniela.bonofiglio@unical.it; Tel.: +39-0984-496208 (D.B.); klaske.vannorren@wur.nl @wur.nl; Tel.: +31-0317-485093 (K.v.N.)

Figure S1. Real-time RT-PCR of M1 and M2 markers in TAMs. Real-time RT-PCR of M1 markers IL1 β , MCP1, TNF α (a) and M2 markers CD206, CD163, IL10 (b) in M0 macrophages (-) incubated with CM MCF7 or CM MDA. Each sample was normalized on its RPS27A mRNA. Values represent means ± SD of three different experiments, each performed with duplicate samples. The results are expressed as fold change respect to differentiated cells. *P < 0.05. ns= not significant.

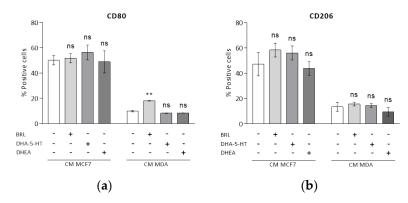
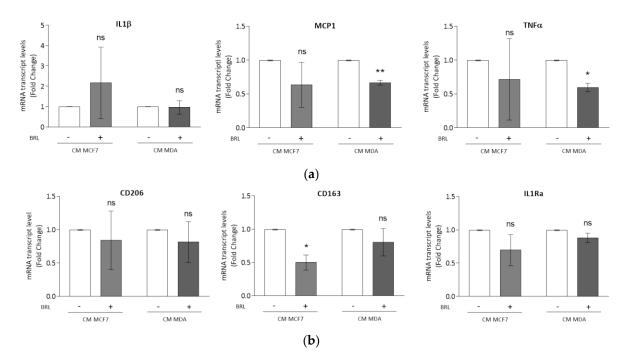
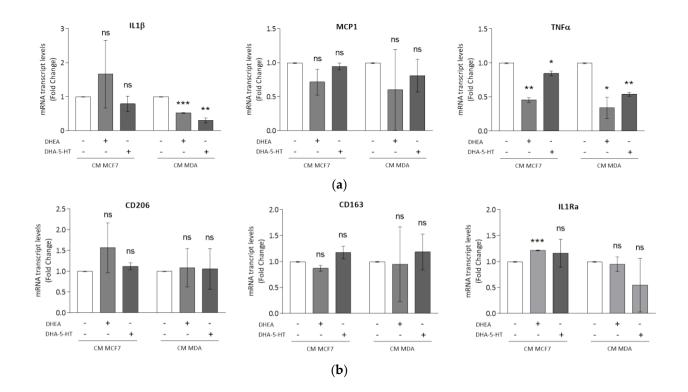




Figure S2. Flow cytometry analyses of cell surface M1 and M2 markers in TAMs with rosiglitazone, DHA-5-HT or DHEA. Flow cytometry analyses of M1 marker CD80 (a) and M2 marker CD206 (b) in M0 macrophages incubated with CM MCF7 or CM MDA and rosiglitazone (BRL) 10 μ M, DHA-5-HT 1 μ M or DHEA 5 μ M for 72 h. Data are expressed as means ± SD. Each experiment was performed two times with duplicate samples. The results are expressed as percentage of positive cells respect to vehicle-treated cells (-).** *P* < 0.005, ns= not significant.

Figure S3. Real-time RT-PCR of M1 and M2 markers in TAMs treated with rosiglitazone. Real-time RT-PCR of M1 markers IL1 β , MCP1, TNF α (a) and M2 markers CD206, CD163, IL1Ra (b) in M0 macrophages incubated with CM MCF7 or CM MDA and treated with rosiglitazone (BRL) 10 μ M for 72 h. Each sample was normalized on its RPS27A mRNA. Data are expressed as means ± SD. Each experiment was performed two times with duplicate samples. The results are expressed as fold change respect to vehicle-treated cells (-). **P* < 0.05, ** *P* < 0.005, ns= not significant.

Figure S4. Real-time RT-PCR of M1 and M2 markers in TAMs treated with DHEA or DHA-5-HT. Real-time RT-PCR of M1 markers IL1 β , MCP1, TNF α (a) and M2 markers CD206, CD163, IL1Ra (b) in M0 macrophages incubated with CM MCF7 or CM MDA and DHEA 5 μ M or DHA-5-HT 1 μ M for 72 h. Each sample was normalized on its RPS27A mRNA. Data are expressed as means ± SD. Each experiment was performed two times with duplicate samples. The results are expressed as fold change respect to vehicle-treated cells (-). **P* < 0.05, ***P* < 0.005, ***P* < 0.005, ns= not significant.

Gene name	Gene symbol	Primer Sequence	
Interleukin 6	IL6	Forward	5'- AACCTGAACCTTCCAAAGATGG -3'
		Reverse	5'- TCTGGCTTGTTCCTCACTACT-3'
Interleukin 1 beta	IL1β	Forward	5'- CACGATGCACCTGTACGATCA-3'
		Reverse	5'- GTTGCTCCATATCCTGTCCCT-3'
Monocyte Chemoattractant Protein 1	MCP1	Forward	5'- CCCCAGTCACCTGCTGTTAT-3'
		Reverse	5'- AGATCTCCTTGGCCACAATG-3'
Tumor Necrosis Factor alpha	TNFα	Forward	5'- ATGAGCACTGAAAGCATGATCC-3'
		Reverse	5'- GAGGGCTGATTAGAGAGAGGTC-3'
Mannose Receptor C-type 1, MRC1	CD206	Forward	5'- GGGTTGCTATCACTCTCTATGC-3'
		Reverse	5'- TTTCTTGTCTGTTGCCGTAGTT-3'
CD163 molecule	CD163	Forward	5'- ACTTGAAGACTCTGGATCTGCT-3'
		Reverse	5'- CTGGTGACAAAACAGGCACTG-3'
Interleukin 1 Receptor Antagonist	IL1RA	Forward	5'- GCCTCCGCAGTCACCTAAT-3'
		Reverse	5'- TCCCAGATTCTGAAGGCTTG-3'
Interleukin 10	IL10	Forward	5'- ACTTTAAGGGTTACCTGGGTTGC-3'
		Reverse	5'- TCACATGCGCCTTGATGTCTG -3'
Peroxisome Proliferator Activated Receptor gamma	ΡΡΑΚγ	Forward Reverse	5'- GGCTTCATGACAAGGGAGTTTC-3' 5'- AACTCAAACTTGGGCTCCATAAAG-3
Ribosomal Protein S27A	RPS27A	Forward	5'- GTTAAGCTGGCTGTCCTGAAA-3'
		Reverse	5'- CATCAGAAGGGCACTCTCG-3'
18S Ribosomal RNAs	RNA18S	Forward	5'-CGGCGACGACCCATTCGAAC-3'
		Reverse	5'-GAATCGGAACCCTGATTCCCCGTC-3

 Table S1. Oligonucleotide primers used in this study.

Table S2. Lactate dehydrogenase (LDH) release into supernatant media of BCC-CM, alone and with rosiglitazone, DHEA and DHA-5-HT. Lactate dehydrogenase (LDH) release into supernatant media after 72 hour treatment with MCF-7 and MDA-MB-231 breast cancer cell conditioned media (CM), alone and with rosiglitazone (BRL), DHEA and DHA-5-HT. Absorbance of reduced formazan dye at 490 nM was normalized to the dispersion-media control. Triton X-100 was used as a positive control and represents 100% of LDH release.

Treatment		Concentration (µM)	Cytotoxicity (%)
Triton-X-100		-	100
MCF-7-CM		-	24±4
MDA-MB-231-CM		-	32±6
MCF-7-CM	BRL	10	32±9
	DHEA	5	27±2
	DHA-5-HT	1	27±5
MDA-MB-231-CM	BRL	10	37±10
	DHEA	5	27±3
	DHA-5-HT	1	33±12