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Abstract: Angiopoietin-1 (Ang-1) is an important proangiogenic factor also involved in the
maintenance of endothelial-barrier integrity. The small GTPase Rap1 is involved in the regulation
of adherens junctions through VE-cadherin-mediated adhesion, and in endothelial permeability.
While many studies established that Rap1 activation is critical for endothelial cell–cell adhesions, its
roles in the antipermeability effects of Ang-1 are ill-defined. Thus, we determined the contribution
of Rap1 to Ang-1-stimulated angiogenic effects on endothelial cells (ECs). We found that Rap1
is activated following Ang-1 stimulation and is required for the antipermeability effects of Ang-1
on EC monolayers. Our results also revealed that Rap1 is necessary for EC sprouting stimulated
by Ang-1 but had no significant effect on Ang-1-induced EC migration and adhesion. In contrast,
downregulation of VE-cadherin markedly increased the adhesiveness of ECs to the substratum, which
resulted in inhibition of Ang-1-stimulated migration. These results revealed that Rap1 is central to
the effects of Ang-1 at intercellular junctions of ECs, whereas VE-cadherin is also involved in the
adhesion of ECs to the extracellular matrix.
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1. Introduction

Angiogenesis is the process by which new blood vessels emerge from existing ones. It is involved
in many biological processes, including embryonic development, reproduction, and wound repair [1,2].
However, an imbalance in the angiogenic process participates in the establishment of many malignant
diseases such as cancer, and inflammatory, ischaemic, and immune disorders. Angiopoeitin-1 (Ang-1)
is an angiogenic growth factor that plays an essential role in endothelial cell (EC) survival, migration,
sprouting, and tubule formation through EC-specific receptor Tie2 [3,4].

Dynamic regulation of the endothelial barrier is crucial for angiogenesis during development to
promote the maturation of blood vessels. This barrier is preserved by adherens junctions (AJs) and
tight junctions (TJs), both of which are linked to the actin cytoskeleton, and it maintains tissue integrity.
Vascular endothelial-cadherin (VE-cadherin), a cell-adhesion molecule that forms Ca2+-dependent
homodimer interactions across the cell membranes of neighboring cells, is at the heart of AJs [5].
VE-cadherin has a cytoplasmic tail that links the actin cytoskeleton through interactions with several
cytoplasmic proteins including β-catenin and participates in transmitting signals that relate to
the adhesive function of VE-cadherin and to the outside–in signaling in ECs, both pivotal for
angiogenesis [5]. The small GTPase Rap1 is one of the essential signaling intermediates mediating the
functions of VE-cadherin.

Rap1 activity is spatiotemporally regulated by guanine nucleotide exchange factors (GEFs) and
GTPase activating protein (GAPs) and has been clearly described as an important modulator of
cell–matrix and cell–cell adhesions in many cell types, including ECs [6,7]. Recent research has
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shown that, in ECs, GTP-bound Rap1 can regulate angiogenesis and the endothelial barrier through
the fine-tuning of vascular permeability [8,9]. AJ assembly is enforced by Rap1 through the direct
implementation of VE-cadherin adhesion and junction integrity via several Rap1 effectors, including
KRIT1, RASIP1, and Afadin [10–14]. In ECs that have not yet formed stable junctions with neighboring
cells, Rap1 plays an active role by fostering the endothelial barrier through the direct regulation of
VE-cadherin adhesion and junction integrity via KRIT1 [14]. Active Rap1 can also indirectly control the
endothelial barrier through the dynamic reorganization of the actomyosin cytoskeleton and suppression
of the Rho-ROCK pathway [7]. AJ stabilization is triggered by a number of antipermeability factors
such as Ang-1, which stabilizes blood vessels [15–17]. It is well established that Ang-1 promotes
endothelial-barrier integrity by counteracting the propermeability effect of vascular endothelial growth
factor (VEGF) on ECs [15,17,18]. We previously showed that Ang-1 acts, at least in part, through
the inhibition of VEGF-stimulated nitric oxide release [15]. The role of Rap1 in the formation and
reinforcement of AJs is well-established. However, its role as a downstream effector of Ang-1 on ECs
has never been examined.

Herein, we determine the contribution of Rap1 to Ang-1/Tie2-stimulated angiogenic effects on
ECs. We found that downregulation of Rap1 attenuated the antipermeability effects of Ang-1, and that
Rap1 is necessary for Ang-1-stimulated EC sprouting. Surprisingly, downregulation of Rap1 had no
significant effect on the migration of ECs, in contrast to the downregulation of VE-cadherin, which
affected both processes. These results highlight the involvement of Rap1 in the effects of Ang-1 on EC
junctions and in angiogenic sprouting.

2. Materials and Methods

2.1. Cell Culture

Bovine aortic endothelial cells (BAECs) obtained from VEC Technologies (Rensselaer, NY, USA)
were cultured in Dulbecco modified Eagle medium (DMEM) supplemented with 10% fetal bovine
serum (HyClone, GE Healthcare Life Sciences, Pistacaway, NJ, USA), 2.0 mM L-glutamine, 100 U/mL
penicillin, and 100 µg/mL streptomycin.

2.2. Transfections and Cell Treatments

To silence Rap1 expression, a siRNA against both Rap1a and Rap1b was synthesized. SiRNA
sequences targeting bovine Rap1 were 5′-GAAAGCAAGUUGAAGUAGAUU-3′ (siRap1_1; used
throughout) and 5′-GCAAUGAGGGAUUUGUACAUU-3′ (siRap1_2). The siRNA sequence targeting
bovine VE-cadherin was 5′-GCACAUUGAUGAAGAGAAAUU-3′. An unrelated scrambled siRNA
was used as control, 5′-AUGAACGUGAAUUGCUCAAUU-3′ (Dharmacon, Chicago, IL, USA).
For some experiments, BAECs were transfected with expression plasmids GFP-RAPL (provided by
Dr. Michael Gold, University of British Columbia, Canada) and FAK-GFP (from Dr. Ivan R. Nabi,
University of British Columbia, Canada) to visualize and quantify focal adhesions. SiRNAs and
expression plasmids were transfected in BAECs using Lipofectamine 2000, according to manufacturer
protocol (Invitrogen, Carlsbad, CA, USA). Then, 48 h after transfections, cells were starved overnight in
serum-free media before stimulation by Ang-1. Ang-1 was obtained from R&D System (Minneapolis,
MN, USA) and reconstituted at 100 ng/mL in sterile PBS with 0.1% bovine serum albumin (BSA).

2.3. Endothelial Permeability Assay

Permeability across endothelial cell monolayers was measured using type I collagen-coated
Transwell units (6.5 mm diameter, 3.0 µm pore size polycarbonate filter; Corning Costar, Tewksbury,
MA, USA). BAECs were plated 48 h after transfection at a density of 200,000 cells per well and
cultured for 4 days until the formation of a tight monolayer. Cells were serum-starved for 1 h in
DMEM containing 1% BSA. Ang-1 (100 ng/mL) was added to the upper chambers in the presence of
1mg/mL FITC-labeled dextran (40 kDa molecular mass; Invitrogen). Endothelial permeability was
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measured by collecting a 50 µL sample from the lower compartment, which was diluted with 300 µL
phosphate-buffered saline (PBS) and measured for fluorescence at 520 nm when excited at 492 nm with
a Wallac Victor 3V spectrophotometer (PerkinElmer, Boston, MA, USA).

2.4. Antibodies and Immunoblotting

For immunofluorescence and immunoblot analyses, we used Alexa-coupled antibodies from
Invitrogen and horseradish peroxidase (HRP)-coupled antibodies from Jackson ImmunoResearch
Laboratories (West Grove, PA, USA), respectively. Primary antibodies used were rabbit anti-Rap1
(recognizing both Rap1a and Rap1b; Cell Signaling, Danvers, MA, USA), goat anti-VE-cadherin and
rabbit anti-Tie2 from Santa Cruz Biotechnology (Santa Cruz, CA, USA), mouse anti-phosphotyrosine
(clone 4G10; Millipore Sigma, Burlington, MA, USA), and anti-β-actin (Cell Signaling) and mouse
anti-eNOS (BD Biosciences, San Jose, CA, USA).

For immunoblotting, cells were solubilized with a lysis buffer containing 1% Nonidet P-40,
0.1% sodium dodecyl sulfate (SDS), 0.1% deoxycholic acid, 50 mM Tris-HCl (pH 7.4), 0.1 mM EGTA,
0.1 mM EDTA, 20 mM sodium fluoride, 1 mM sodium pyrophosphate tetrabasic, and 1 mM sodium
orthovanadate. Lysate were incubated for 30 min at 4 ◦C, centrifuged at 14,000× g for 10 min,
boiled in SDS sample buffer, separated by SDS-polyacrylamide gel electrophoresis, transferred onto a
nitrocellulose membrane (Hybond-ECL; GE Life Sciences, Pittsburg, PA, USA), and Western-blotted.
Antibody detection was performed with HRP-coupled antibodies from Jackson Laboratories and using
the Image Quant LAS4000 chemiluminescence-based detection system (enhanced chemiluminescence;
GE Life Sciences).

2.5. Immunofluorescence Microscopy

BAECs were cultured on 0.1% gelatin-coated coverslips (100,000 cells per coverslip) and transfected
as previously described. Cells were serum-starved overnight and stimulated for 30 min with Ang-1.
Cells were fixed for 20 min in serum-free DMEM containing 4% paraformaldehyde (PFA). Once fixed,
cells were rinsed with PBS and permeabilized with 0.1% Triton for 5 min. Fixed cells were then
incubated for 1 h with primary antibodies in 1% BSA in PBS, followed by 1 h incubation with the
appropriate secondary antibodies labeled with Alexa Fluor 488 and/or 568. Coverslips were mounted
on slides using Fluoromount (Sigma-Aldrich, St-Louis, MO, USA) and observed using a Zeiss LSM 800
confocal laser-scanning microscope. Images were assembled using Photoshop CS5 (Adobe Systems,
San Jose, CA, USA). To quantify focal adhesions (FAs), BAECs were transfected with FAK-GFP and
fixed after 48 h. Quantifications were performed using ImageJ version 1.49 (NIH, Bethesda, MD, USA)
by applying a threshold on the GFP level and quantifying the number of GFP-positive FAs per cell.
A total of 20 cells were quantified for each condition.

2.6. Rap1 Activation Assay and Immunoprecipitation

Rap1 activation was determined using an established pull-down method based on the binding
of a GST fusion protein containing the Rap-binding domain of RalGDS (RalGDS-RBD/GST) to the
active GTP-bound form of Rap1. TOPF10 Escherichia coli were transformed with expression vector
pGEX-RalGDS-RBD, and RalGDS-RBD/GST fusion proteins (from Dr. Michael Gold, University
of British Columbia, Canada) were induced with 0.1 mM isopropyl-1-thio-β-D-galactopyranoside
(IPTG). Bacteria were then resuspended in a 50 mM Tris-HCl (pH 7.4) 50 mM NaCl, 1% Triton X-100,
1 mM protease inhibitor cocktail (Roche Life Sciences, Indianapolis, IN, USA) and 1% Nonidet P40,
and sonicated. RalGDS-RBD/GST fusion proteins were purified from the sonicated supernatant by
incubation with glutathione-coupled Sepharose 4B beads (Sigma-Aldrich) overnight at 4 ◦C. The beads
were washed 3 times in a lysis buffer, and the amount of bound fusion proteins was estimated by
SDS-PAGE and Coomassie Blue staining. BAECs were lysed in 1% Nonidet P40, 50 mM Tris-HCl,
0.1 mM EDTA, 0.1 mM EGTA, 0.1% SDS, 0.1% deoxycholic acid, 20 mM sodium fluoride, 1 mM sodium
pyrophosphate tetrabasic, and 1 mM sodium orthovanadate. Aliquots of glutathione–Sepharose beads
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containing about 50 µg of RalGDS-RBD/GST proteins were then used to precipitate GTP-bound Rap1
from cell lysate supernatants by incubation for 1 h at 4 ◦C with gentle rotation. The beads were then
washed 3 times with an excess of lysis buffer. The complexes were precipitated, boiled in SDS sample
buffer, and bound Rap1 was revealed by immunoblotting.

For immunoprecipitation, cells were solubilized in a lysis buffer containing 1% Nonidet P-40,
0.1% sodium dodecyl sulfate (SDS), 0.1% deoxycholic acid, 50 mM Tris-HCl (pH 7.4), 0.1 mM EGTA,
0.1 mM EDTA, 20 mM sodium fluoride, 1 mM sodium pyrophosphate tetrabasic, and 1 mM sodium
orthovanadate. Soluble proteins were incubated with anti-Tie2 antibodies (2 µg) at 4 ◦C overnight.
Protein A-Sepharose (Sigma-Aldrich; 50 µL of a 50% slurry) was added and incubated for an additional
hour. The immune complexes were precipitated and boiled in SDS sample buffer, and phosphotyrosine
levels were revealed by anti-phosphotyrosine (4G10) immunoblotting.

2.7. Migration Assay and Time-Lapse Video Microscopy

Cells were first transfected with siRNAs, and then left for 48 h to recover and reach 90% confluency.
BAECs were starved overnight in 12 well plates. Transfected cells were incubated with fluorescent
vital Hoechst dye for 10 min before performing scratches with a 10 µL pipette tip on the confluent
monolayer. Cell movements were recorded using an Axio-Observer Z1 microscope (Zeiss, Jena,
Germany) equipped with an AxioCam MrM camera (Zeiss) and programmed to capture a frame every
10 min of the migration period (6 h). Temperature was maintained at 37 ◦C, and the atmosphere within
the chamber was kept at 5% CO2/95% air throughout the experiment. Nuclei of cells at the leading edge
were traced by time-lapse video microscopy with the Cell Tracker plugin of ImageJ (NIH, Bethesda,
MD, USA), and nuclei tracks were analyzed with the Manage Cell Tracks plugin of Icy Software
(Institut Pasteur, Paris, France). Total displacement (total distance migrated) and net displacement
(distance from the cell’s starting point) were obtained from each of the tracks, and statistical analyses
were performed as described below.

2.8. Spheroid-Based In Vitro Angiogenesis Assay

Then, 24 h after siRNA transfection, spheroids of BAEC were generated as previously described [16].
Briefly, transfected BAECs were cultured in DMEM containing 25% methocell, 10% FBS, 2.0 mM
L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin in a U-shaped 96 well plate for 24 h to
allow spheroid formation. Spheroids were transferred in a complete medium containing 45% collagen
pH 7.4 and 20% Methocel (Sigma-Aldrich), and cultured for 24 h before fixation in 4% PFA. Images
of the spheroids were taken after 24 h of sprouting using a camera mounted on an inverted Zeiss
Axio observer A2 with a 10×/0.25 NA objective. The extent of capillary sprouting was quantified by
measuring average sprout length and number of sprouts growing out of each spheroid using ImageJ
1.49v software. At least 10 spheroids per condition were analyzed, and 3 independent experiments
were performed.

2.9. Cell-Adhesion Assay

BAEC adhesion was assayed in 96 well plates precoated with 1% gelatin overnight, as described,
with minor modifications [19]. Then, 48 h after transfection, 50,000 cells were plated and left to adhere
at 37 ◦C for 1 h. Adherent cells were stained with 0.2% crystal violet (Sigma-Aldrich) and 20% methanol
in PBS, and adhesion was quantitated by measuring absorbance at 550 nm with a Wallac Victor 3V
microplate reader (PerkinElmer). Each experiment point was performed in triplicate.

2.10. Statistical Analysis

Data are represented as means ± SEM. Two-tailed independent Student’s t tests were used when
comparing 2 groups. Comparisons between multiple groups were made using one-way ANOVA
followed by post hoc Bonferroni’s multiple-comparison test among groups using Prism 5 software
(GraphPad, San Diego, CA, USA); p-value < 0.05 was considered statistically significant.



Cells 2020, 9, 155 5 of 15

3. Results

3.1. Ang-1 EC Stimulation Activates Rap1

We investigated the effect of Ang-1 BAEC stimulation on Rap1 activation using a Rap1 activity assay.
Ang-1 rapidly increased the binding of active GTP-bound Rap1 to the GST fusion protein containing the
Rap-binding domain of RalGDS as determined by pull-down assay (Figure 1A). Quantifications revealed
that Rap1 activation was tripled after 5 min of Ang-1 stimulation and sustained for at least 30 min
(Figure 1B). Activation of Rap1 after Ang-1 stimulation was also determined by examining the cellular
localization of GFP tagged RAPL, a downstream effector protein of Rap1. Following stimulation with
Ang-1 of BAECs transfected with RAPL-GFP expression vectors, RAPL-GFP translocated to the plasma
membrane in close proximity to VE-cadherin staining at cell junctions (Figure 1C). The colocalization
coefficient of GFP and VE-cadherin immunofluorescence was increased twofold in cells treated with
Ang-1 compared to untreated cells (Figure 1D). Collectively, these results indicated that Ang-1 BAEC
stimulation leads to Rap1 activation, which promotes the relocalization of Rap1 effector RAPL at
EC junctions.

Figure 1. Ang-1 activates Rap1 and induces RAPL accumulation at cell–cell junctions. (A) Rap1
activation determined by pull-down assays using RalGDS Rap-binding domain (RalGDS-RBD/GST).
Bovine aortic endothelial cells (BAECs) were treated with Ang-1 (100 ng/mL) for the indicated times,
and pull-down (PD) assay were performed on protein extracts to reveal the amount of active Rap1
(Rap1-GTP) in comparison to the Rap1 amount in total cell lysates (TCL). β-actin was used as loading
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control. Immunoblots are representative of three independent experiments. (B) Densitometric
quantification of Rap1 activation shown in (A). Average ratio of active Rap1 (PD) to Rap1 levels in
TCL for three experiments; * p < 0.05 vs. unstimulated (0 min). (C) Ang-1 BAEC stimulation induces
translocation of the Rap1 effector RAPL to vascular endothelial-cadherin (VE-cadherin) positive cell–cell
junctions. Representative confocal micrograph of BAECs transfected with GFP-RAPL (green), treated
or not with Ang-1 (100 ng/mL) for 30 min, and processed for VE-cadherin immunofluorescence (red).
Recruitment of GFP-RAPL to cell–cell junctions visualized by its colocalization (merge: yellow) with
VE-cadherin staining. Arrow: colocalization at cell–cell junctions. (D) Quantification of colocalization
coefficient of GFP-RAPL and VE-cadherin expressed as arbitrary units (AU). Average colocalization
coefficient of at least 30 cell junctions per condition was quantified in three different experiments;
* p < 0.05.

3.2. Rap1 Required for Ang-1-Stimulated Stabilization of EC Junction

To determine whether Rap1 is essential for Ang-1-induced stabilization of the endothelial barrier,
we examined the permeability of BAEC monolayers to macromolecules in cells with downregulated
Rap1 expression. Transfection of BAECs with siRNA-targeting Rap1 (siRap1) decreased its protein
expression by at least 75% when compared to BAECs transfected with control siRNA (siCT), as
determined by immunoblot (Figure 2A and Supplementary Figure S1). First, we determined if Rap1
downregulation affected the activation of Ang-1 receptor Tie2 following Ang-1 stimulation. BAECs
transfected with siCT or siRap1 were stimulated with Ang-1 (100 ng/mL; 30 min), and Tie2 activation
was monitored by Tie2 immunoprecipitation followed by anti-phosphotyrosine immunoblotting.
Ang-1 BAEC stimulation caused Tie2 autophosphorylation on tyrosine residues in siCT-transfected
cells, which was not affected in Rap1-downregulated cells (Figure 2B). These results indicated that
Rap1 acts downstream of Tie2 to modulate the effects of Ang-1 in ECs.

Then, we examined the permeability of BAEC monolayers to fluorescein isothiocyanate
(FITC)-labeled dextran (40 kDa) in cells transfected with siCT or siRap1. As expected, Ang-1 stimulation
inhibited the transendothelial permeability of control-transfected BAECs (siCT) when compared to
unstimulated cells (Figure 2C). Importantly, the reduction in transendothelial permeability induced by
Ang-1 was inhibited in cells transfected with siRap1. To further document the involvement of Rap1 in
the stabilization of endothelial junctions induced by Ang-1, we examined the reorganization of cell
junctions after Ang-1 stimulation in Rap1-downregulated cells. By visualizing VE-cadherin localization
in BAECs using immunofluorescence, we determined the linearity of intercellular junctions in ECs
transfected with siCT or siRap1 (Figure 2D,E). The junctional linearity index was defined as the ratio of
total junctional length over net linear junctional length at the periphery of cells. BAECs transfected
with siCT had a VE-cadherin positive junction linearity index of around 0.7, whereas cells subjected to
30 min of Ang-1 had a linearity closer to 1, suggesting a tightening of intercellular junctions, which
is consistent with a reduction in endothelial permeability. On the other hand, cells transfected with
siRap1 had a significantly decreased linearity index when compared to untreated siCT-transfected cells,
in agreement with Rap1 promoting cell–cell junction stability (Figure 2E). Furthermore, Ang-1-induced
linearization of EC junctions was abolished in siRap1-transfected cells. Together, these observations
suggested that Rap1 plays a significant role in the Ang-1-induced stabilization of EC junctions and the
inhibition of transendothelial permeability.
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Figure 2. Rap1 is essential for Ang-1-induced cell-junction stabilization and endothelial-permeability
inhibition. (A) siRNA-mediated downregulation of Rap1 in BAECs. BAECs were transfected with
control siRNA (siCT) or targeting Rap1 (siRap1), and downregulation was confirmed by immunoblotting
against Rap1. VE-cadherin and β-actin were used as loading controls. (B) BAECs transfected with siCT
or siRap1 were stimulated with Ang-1 (100 ng/mL) for 30 min. Tie2 tyrosine phosphorylation levels
were monitored in Tie2 immunoprecipitates (IP). Equal immunoprecipitation levels from BAEC lysates
and Rap1 downregulation were confirmed by Western blot. This experiment was repeated three times
with identical results. (C) Transendothelial permeability was determined by measuring the passage of
fluorescein isothiocyanate (FITC)-dextran through BAEC monolayer. Passage of FITC-dextran was
measured after exposure of BAECs, transfected with siCT or siRap1, to Ang-1 (100 ng/mL; 30 min).
Graph presents average of three independent experiments (mean +/– SEM; p < 0.05). (D) Representative
confocal micrographs of BAECs stained for VE-cadherin (green) and with DAPI (nucleus, blue), and
transfected with siCT or siRap1. Where indicated, cells were stimulated with Ang-1 (100 ng/mL) for
30 min prior to fixation. Linearity of cell–cell junction staining (VE-cadherin) was indicative of junction
stability. (E) Quantification of “index of linearity” as described in Material and Methods. Graph
represents average index of linearity +/– SEM of at least n = 30 junctional sections between cells per
conditions; * p < 0.05); ns: not significant.

3.3. Silencing of Rap1 or VE-Cadherin Inhibits EC Sprouting

To examine the involvement of Rap1 in Ang-1-stimulated angiogenesis in vitro, we used a
three-dimensional spheroidal system of EC sprouting. EC spheroids were set in collagen gels, and the
outgrowth of capillary-like structures was analyzed following Ang-1 treatment. In cells transfected with
siRNA against Rap1, the Ang-1-induced sprouting of BAECs was significantly blocked (Figure 3B–D).
Not only were fewer sprouts per spheroid in Rap1-silenced cells stimulated with Ang-1, sprout length
was also significantly reduced (Figure 3C,D). These data show that Rap1 activity is necessary to
promote Ang-1-induced sprouting of ECs in vitro.
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Figure 3. Rap1 and VE-cadherin required for Ang-1-induced BAEC sprouting. (A) SiRNA-mediated
downregulation of VE-cadherin in BAECs. BAECs were transfected with control siRNA (siCT)
or targeting VE-cadherin (siVE-cadherin), and downregulation was confirmed by immunoblotting
against VE-cadherin. Rap1 and β-actin were used as loading controls. (B) Representative images
of phase-contrast micrographs of BAEC spheroids transfected with control siCT or targeting Rap1
(siRap1) and treated with Ang-1 (100 ng/mL) or left untreated (CT). (C,D) Quantification of number of
sprouts per spheroid and sprout length. Data presented as mean ± SEM of three experiments with
at least eight spheroids per condition. Scale bar represents 100 µm. (E) Representative images of
phase-contrast micrographs of BAEC spheroids transfected with siCT or siVE-cadherin and treated
with Ang-1 (100 ng/mL) or left untreated (CT). (F,G) Quantification of number of sprouts per spheroid
and sprout length. Data represented as mean ± SEM of three experiments with at least eight spheroids
per condition. Scale bar represents 100 µm; * p < 0.05.

Since Rap1 acts at VE-cadherin-based EC junctions, we examined if the downregulation of
VE-cadherin had similar functional consequences on EC sprouting as those of Rap1 downregulation.
For this purpose, we first transfected cells with a siRNA against VE-cadherin (siVE-cadherin) or
siCT and confirmed at least 75% reduction in protein expression (Figure 3A). We then performed
EC sprouting assays and quantified the endothelial sprouts from spheroids in response to Ang-1
transfected with siVE-cadherin. Similar to BAEC spheroids with silenced Rap1 expression, silencing
VE-cadherin significantly blocked the Ang-1-induced sprouting of BAECs, reducing sprout length and
number of sprouts per spheroids (Figure 3E–G).
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3.4. Rap1 Not Necessary for Ang-1-Stimulated EC Migration

Next, we examined the role of Rap1 in Ang-1-induced EC migration. As we previously showed,
Ang-1 induces an increase in total cell migration and net cell displacement of BAECs determined by
live-cell tracking (Figure 4A–C) [16]. Interestingly, we did not observe any effect of siRap1 transfection
on Ang-1-stimulated BAEC migration since cells behaved in an identical manner as cells transfected
with siCT. This suggests that Rap1 is dispensable for Ang-1-stimulated EC migration (Figure 4A–C).

Figure 4. VE-cadherin, but not Rap1, is essential for Ang-1-induced BAEC migration. (A) Representative
images of trajectories of migrating BAECs captured by live-cell imaging during 6 h of migration. BAECs
were transfected with control siRNA (siCT) or targeting Rap1 (siRap1) and treated with Ang-1
(100 ng/mL), where indicated. (B,C) Quantifications of total and net cell migration. Graphs are
representative of three independent experiments, each yielding similar results. At least 60 cells
per experiment were quantified (* p < 0.05). (D–E) BAECs were transfected with control siCT or
targeting VE-cadherin (siVE-cadherin), and treated with Ang-1 (100 ng/mL) where indicated, showing
quantifications of total and net cell migration. Graphs representative of three independent experiments,
each yielding similar results. At least 60 cells per experiment were quantified; * p < 0.05.

We then examined the effects of VE-cadherin downregulation on BAEC migration stimulated
with Ang-1. In contrast to Rap1-downregulated cells, we observed a significant inhibition of
Ang-1-stimulated cell migration in BAECs transfected with siVE-cadherin (Figure 4D,E). Total and
net displacement (Figure 4D,E) of Ang-1-stimulated cells within the wounded area of the monolayers
were markedly reduced in VE-cadherin-downregulated BAECs. Interestingly, basal migration was
increased in siVE-cadherin-treated ECs. Overall, these data demonstrate that, in contrast to Rap1,
VE-cadherin is required for Ang-1-induced EC migration.
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3.5. Role of Rap1 and VE-Cadherin in Endothelial Cell Adhesion

To understand how Rap1 and VE-cadherin are differently involved in Ang-1 responses, we
examined cellular adhesion to the extracellular matrix (ECM), which is an essential component of cell
migration. Similar to its effect on EC migration, Rap1 downregulation had no effect on BAEC adhesion to
the ECM in the presence of Ang-1 (Figure 5A). Interestingly, the basal adhesion of cells transfected with
siVE-cadherin was increased compared to BAECs transfected with siCT. Moreover, downregulation of
VE-cadherin prevented a further increase in adhesion stimulated by Ang-1 (Figure 5A). Since tyrosine
phosphorylation of focal adhesion kinase (FAK) is linked to cell adhesion to the ECM and in FA
remodeling, we examined the overall levels of tyrosine phosphorylation in BAECs, which is generally
associated with FAK phosphorylation. We found that, in control-transfected cells, Ang-1 stimulation
increased total phosphotyrosine staining (4G10 antibody), in particular at the cellular edges and in
ruffle-like structures. Downregulation of Rap1 had no effect on Ang-1-induced EC phosphotyrosine
staining. In contrast, siVE-cadherin-transfected cells had elevated basal phosphotyrosine staining,
which was not further increased upon Ang-1 stimulation (Figure 5B). To directly monitor FA remodeling,
we transfected BAECs with FAK-GFP, which was localized to FAs, and we assessed FA number per cell
and their size. As we previously described, Ang-1 stimulation of control-transfected ECs increased
the number of FAs and decreased their average size, which is consistent with increased cell adhesion
(Figure 5C–E) [20]. Downregulation of Rap1 slightly increased basal and Ang-1-stimulated FA numbers
in BAECs (Figure 5C,D) without affecting the Ang-1-stimulated reduction in FA size (Figure 5E).
In siVE-cadherin-transfected cells, a marked increase in FA numbers and a decrease in the size of FAs
was observed basally. These effects were enhanced in Ang-1-stimulated BAECs (Figure 5C–E). Overall,
these results suggest that Rap1 is not involved in EC migration and adhesion stimulated by Ang-1,
while VE-cadherin depletion results in a marked increase of adhesion, which prevents EC migration
stimulated by Ang-1.
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Figure 5. VE-cadherin required for Ang-1-induced cell adhesion to extracellular matrix.
(A) Quantification of relative cell adhesion to gelatin-coated substrates of BAECs transfected with
siRNA against VE-cadherin (siVE-cadherin), Rap1 (siRap1), or control siRNA (siCT), as indicated.
Adhesion assays were performed in absence or presence of Ang-1 (100 ng/mL). Results shown as
relative ratio to untreated and siCT-transfected cells. (B) Representative confocal micrographs of
BAECs stained for total phosphotyrosine (4G10; green) and transfected with siCT, siVE-cadherin, or
siRap1. Where indicated, cells were stimulated with Ang-1 (100 ng/mL) for 30 min prior to fixation.
Arrows point towards cell membrane where phosphotyrosine staining was strongest. Scale bar: 20 µm.
(C) Representative confocal micrographs images of BAECs transfected with GFP-FAK plasmids and
transfected with siCT, siVE-cadherin, or siRap1. Where indicated, cells were stimulated with Ang-1
(100 ng/mL) for 30 min prior to fixation. (D,E) Quantification of number of focal adhesions (FAs)
per cell and FA size in cells shown in C. Total of five cells per condition were counted. Graphs are
representative of three independent experiments each yielding similar results; * p < 0.05.
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4. Discussion

Various angiogenic factors such as thrombin, sphingosine 1-phosphate, and VEGF rely on Rap1
activity to regulate endothelial permeability, migration, tube formation, integrin-mediated adhesion,
and EC polarity [21–27]. The present study reveals the role of Rap1 in the proangiogenic effects of
Ang-1 on ECs. Rap1 is activated in response to Ang-1 and is necessary for Ang-1-induced tightening
of EC junctions and inhibition of endothelial permeability. Both Rap1 and VE-cadherin are required
for EC sprouting in vitro, but only VE-cadherin is involved in the Ang-1 stimulation of cell adhesion
and migration. Thus, these results revealed that Rap1 is central for the effects of Ang-1 at intercellular
junctions of ECs, whereas VE-cadherin is also involved in EC adhesion to the extracellular matrix and,
consequently, endothelial cell migration.

Ang-1 is well-known for its stabilizing effects on EC junctions and the inhibition of endothelial
permeability [15,17,18]. Silencing Rap1 attenuated the ability of Ang-1 to reduce EC permeability
and to stimulate EC sprouting, suggesting that Rap1 is responsible for coupling the Tie2 receptor
to multiple downstream pathways in ECs. We therefore identified a novel molecular intermediate
involved in Tie2 signaling where Ang-1 stimulation activates the small GTPase Rap1 in its GTP bound
state, which consequently induces the activation of signaling pathways involved in the formation
of cell–cell junctions between ECs. These results are in line with a previous study showing that
overexpression of Rap1GAP1, a GTPase-activating protein that inhibits Rap1 activity, blocked the
angiogenic sprouting and tube-forming activity of endothelial cells [22]. Moreover, others showed that,
in mice, deletion of a single allele of Rap1a or Rap1b results in defective angiogenesis [22,28]. Our study
solely relied on in vitro angiogenic assays to demonstrate the importance of Rap1 in Ang-1-mediated
effects. These results should be confirmed using Rap1a- and Rap1b-deficient mice to examine their roles
in Ang-1-driven angiogenesis in vivo.

Interestingly, the role of Rap1 in the dissociation of EC junctions and induction of endothelial
permeability induced by VEGF was previously reported [29,30]. Herein, we report that Rap1 also
mediates the tightening of cell–cell junctions and the inhibition of endothelial permeability induced by
Ang-1, which is similar to its roles in the enhancement of the endothelial-barrier function by cyclic AMP
mobilizing agonists [9,23]. This indicates that Rap1 acts as a central regulator of the barrier properties
of the endothelium. However, we also demonstrated that Rap1 is dispensable for Ang-1-stimulated
EC migration and adhesion to the substratum. This is in contrast with previous studies showing that
Rap1 activation is involved in basic fibroblast growth factors (bFGF) and VEGF-stimulated migration
of ECs [22,28]. Ang-1 and Tie2 were shown to directly interact with integrins or with the extracellular
matrix, supporting that Rap1-independent mechanisms could be involved in the enhancement of
cell–matrix interactions by Ang-1 [31–33]. This suggests that distinct signalling mechanisms are
activated by Tie2 in ECs to modulate cell–matrix and cell–cell contacts, and that the function of Rap1 in
Ang-1-stimulated angiogenesis is mostly related to its role in cell–cell adhesions of ECs.

In contrast to the effects of Rap1 silencing on EC migration, we found that ECs with silenced
VE-cadherin showed a marked increase in basal migration in the absence of Ang-1 stimulation
(Figure 4D,E). This result corroborates studies showing that cells expressing VE-cadherin migrate less
than VE-cadherin-negative cells [34]. Interestingly, Ang-1 stimulation of VE-cadherin-silenced ECs did
not further stimulate their migration. We also found that depleting VE-cadherin from BAECs caused
a significant increase in cell adhesion and markedly enhanced the remodeling of focal adhesions.
This effect of VE-cadherin depletion on EC adhesion could explain the inhibition of cell migration
stimulated by Ang-1. Indeed, increased cell adhesion to the matrix above a certain threshold may
reduce cell migration. VE-cadherin was previously linked to the control of cell spreading and focal
adhesions by regulating RhoA activity [35]. RhoA activity is likely increased in VE-cadherin-depleted
ECs, which contributes to the increase in cell adhesion to the ECM. On the other hand, Rap1 activity is
not necessary for Ang-1-induced adhesion of ECs; therefore, cell migration is not affected by Rap1
knockdown. It is clear that both Rap1 and VE-cadherin are essential for regulating the dynamics
of adherens junction assembly and endothelial permeability, and that Ang-1 stimulation induces
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the cooperation between these two proteins during angiogenic sprouting. The fact that Rap1 and
VE-cadherin suppression results in the inhibition of EC sprouting from spheroids suggests that Rap1
and VE-cadherin cooperate during angiogenic sprouting. Indeed, Rap1 activation was shown to recruit
the Raf-1/Rok-alpha complex at nascent VE-cadherin cell–cell junctions to strengthen EC cohesion
during sprouting [36].

Similar to other GTPases, Rap1 activity is spatiotemporally regulated by guanine exchange factors
(GEFs) and GTPase activating proteins (GAPs) [37,38]. Rap1 activity rapidly increases following
Ang-1 EC stimulation. However, the underlying mechanism is uncertain. It is likely that a GEF,
which acts downstream of the Ang-1 receptor, acts as an intermediate. Furthermore, the roles of C3G
and PDZ-GEF (RA-GEF1), two known Rap1 GEFs, were studied in endothelial cells and in vascular
development in mice [39–41]. Genetic deletion of both of these Rap1 GEFs in mice results in defective
vascular morphogenesis [40,41]. Further studies are required to fully determine the mechanism of
Rap1 activation downstream of Tie2 in ECs.

Overall, this study revealed that Rap1 is an essential molecular intermediate for the stabilizing
effects of Ang-1 at cell–cell junctions of ECs. These effects of Ang-1 mediated by Rap1 at intercellular
junctions have consequences on EC sprouting. This study also revealed that Ang-1 does not utilize
Rap1 to mediate its adhesive effects at the cell–matrix interface of ECs. Thus, Rap1 is central for the
proangiogenic effects of Ang-1 on ECs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/1/155/s1.
Figure S1: Validation of Rap1 siRNAs.
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