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Abstract: CD276 can discriminate between tumor derived and normal CECs (circulating endothelial
cells). We evaluated whether CD276+CEC is a clinically relevant biomarker to predict response
to palliative systemic therapy in patients with metastatic colorectal cancer (mCRC). Samples were
prospectively collected from patients with mCRC enrolled in the ORCHESTRA trial (NCT01792934).
At baseline and after three cycles of 5-fluorouracil/leucovorin and oxaliplatin ± bevacizumab,
CECs were measured by flowcytometry (CD34+CD45negCD146+DNA+; and CD276+). A clinically
relevant cut-off value of (CD276+)CECs was determined as 100% sensitivity (and 80% specificity in
95% confidence interval) identifying patients with progressive disease within 6 months. There were
182 baseline samples and 133 follow up samples available for analysis. CEC and CD276+CEC
counts significantly increased during treatment from 48 to 90 CEC/4 mL (p = 0.00) and from 14 to 33
CD276+CEC/4 mL (p = 0.00) at baseline and at first evaluation, respectively. CEC and CD276+CEC
counts were not predictive for poor response (area under the curve (AUC) 0.53 for CEC and AUC
0.52 for CD276+CEC). Despite numerical changes during therapy, CEC and CD276+CEC counts do
not adequately predict poor response to first line palliative systemic therapy in patients with mCRC.
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1. Introduction

Metastatic colorectal cancer (mCRC) is the third cause of cancer related death worldwide [1].
Modern palliative systemic therapy regimens consisting of 5FU-based combination chemotherapy with
oxaliplatin, irinotecan, anti-VEGF targeted therapy, anti-EGFR antibodies, and more recently introduced
agents (regorafenib, TAS-102) have improved overall survival up to a median of 30 months [2–5].

Current first line palliative systemic treatment usually consists of doublet chemotherapy with
targeted therapy. A triple chemotherapy regimen like FOLFOXIRI with bevacizumab has demonstrated
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high response rates in patients with mCRC [6] and may be a valuable option for patients who will not
benefit from combination chemotherapy, if these patients could be identified upfront. Currently it is
recommended that RAS and BRAF mutated tumors and right sided primary tumors be excluded from
anti-EGFR therapy [7,8]. Obviously, there is a clinical need for a biomarker with independent additional
value that will predict response to first line systemic therapy. If patients who will not respond to
treatment can be predicted with clinically relevant sensitivity and specificity prior to starting systemic
therapy, unnecessary treatment can be withheld and toxicity prevented. Furthermore, alternative
treatment strategies can be considered for these patients.

Circulating endothelial cells (CECs) are cells detached from damaged vasculature. Compared to
healthy controls, CEC values are frequently elevated in patients with disseminated malignancies.
Previously, it has been shown that in patients with metastatic cancer, CEC numbers at baseline and
changes in CEC numbers during systemic therapy are associated with prognosis. Consequently,
enumeration of CEC is considered a promising biomarker in oncology [9]. However, limited data is
available on the value of CECs in predicting treatment response.

CECs measured in patients with advanced cancer are thought to derive from both damaged
normal vasculature as well as tumor vasculature. Although CECs have been shown to be increased in
patients with CRC compared to healthy controls [10,11], this surrogate marker of endothelial damage
can increase in a variety of conditions including ischemia, infections, and vascular or autoimmune
disease [12–14]. Measuring tumor-derived CECs could increase specificity and improve predictive value
in cancer. Several tumor endothelial markers have been described in literature based on comprehensive
SAGE (serial analysis of gene expression) analysis and mouse models differentiating pathological from
physiological angiogenesis [15], with CD276 being a promising candidate as described by Mehran et al.
and Kraan et al. [16,17]. Tumor cells express low levels of CD276, but tumor associated endothelial
cells express high levels. In mCRC varying results have been published on the relationship of CECs
with survival [10,11,13,14,16,18,19]. Direct comparison of the data is difficult because of the use of
different CEC identification techniques.

Our group developed a flowcytometry based detection assay for tumor derived CD276+CECs,
differentiating CECs from non-endothelial cells (i.e., pericytes) and between normal and malignant
vasculature, which enables to distinguish a subpopulation of CECs coming from malignant vasculature
in patients with advanced malignancies. CEC counts in healthy donors were median 15 (IQR 17.5) [9,17].
Median CD276+CEC counts were 9 cells/4 mL for patients with advanced CRC (range 1–293, n = 15)
compared to 3 cells/4 mL for healthy donors. The subset of CD276+CEC in peripheral blood samples
were detectable above the upper limit of normal (ULN) for healthy individuals (>8 cells/4 mL, mean
+1.96 SD) in more than 53% of patients with advanced CRC (n = 15) [17]. As this subpopulation of
CD276+CECs and changes therein are likely to reflect better potential effects on tumor vasculature than
the total number of CECs, further investigation on the frequency of these cells and their association
with outcome in patients with cancer is warranted.

The primary objective of the current study was to establish the prevalence of CD276+CECs
in patients with mCRC and evaluating the dynamics of CD276+CECs during systemic therapy.
Furthermore, we evaluated the association of (CD276+) CEC counts with clinical parameters. We aimed
to determine a clinically relevant cut-off value of the absolute count of CD276+CECs at baseline with
100% sensitivity for patients with progressive disease within 6 months of first line palliative systemic
therapy, with a specificity of 80% included in the confidence interval.

2. Materials and Methods

Samples were collected as part of the translational study program of the ORCHESTRA trial from
May 2013 to July 2018. The ORCHESTRA trial is a randomized multicenter clinical trial for patients
with multi-organ, colorectal cancer metastases comparing the combination of chemotherapy and
maximal tumor debulking versus chemotherapy alone (NCT01792934).
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Written informed consent was obtained from all patients included in the ORCHESTRA trial.
Patients were 18 years or older and had an indication for first line palliative systemic therapy for mCRC.
Comprehensive in and exclusion criteria are available at clinicaltrials.gov. The trial protocol was
approved by the Ethical Committee of the VU university Medical Center in Amsterdam, the Netherlands
(no. 2012-073).

All patients received 5-FU/oxaliplatin based systemic therapy ± bevacizumab at physician
discretion. Systemic therapy consisted of orally administered capecitabine 1000 mg/m2 twice a day
for two weeks and oxaliplatin 130 mg/m2 intravenous (CAPOX) on day 1 of each 3-week cycle or
comparable intravenous regimen consisting of oxaliplatin 85 mg/m2 on day 1 and 400 mg/ m2 LV
followed by 400 mg/m2 5-FU bolus and 2400 mg/m2 continuous infusion over 46 h (modified FOLFOX6)
of each 2-week cycle. Bevacizumab was added at physician discretion to the CAPOX regimen at a dose
of 7.5 mg/kg bevacizumab as intravenous infusion over 30–90 min on day 1. The FOLFOX regimen
could be combined with biweekly 5 mg/kg bevacizumab as intravenous infusion over 30–90 min on
day 1. After 3 cycles of CAPOX (B) or 4 cycles of FOLFOX (B) a CT scan of thorax and abdomen was
performed. Follow up scans were done at least every 3 months. Blood samples were collected at
baseline and at first evaluation (after 3 cycles of CAPOX ± B or 4 cycles of FOLFOX ± B). Samples were
collected in Cellsave tubes and shipped to central laboratory at Erasmus MC Cancer Institute and
processed within 96 h. A multi-color flow cytometry protocol was used to identify endothelial
cells [9]. CECs were defined as nucleated cells staining positively with the DNA specific nuclear dye
DRAQ5, that express the endothelial markers CD34, CD144, and CD146, and lack the expression of
the pan-leukocyte marker CD45. By adding CD276 we identified the subset of tumor derived CECs.
Total and CD276+CEC were enumerated in a total blood volume of 4 mL as described previously [17].

2.1. Clinical Data

Data were collected on age, gender, location of primary tumor, location, and number of metastases
as well as baseline LDH and CEA. Systemic therapy regimen (CAPOX or FOLFOX ± bevacizumab) was
documented per patient. The number of organs involved in metastatic disease, number of metastases
and baseline LDH were used as indicators of tumor burden. After three cycles of CAPOX (B) or four
cycles of FOLFOX (B) response was evaluated according to Response Evaluation Criteria in Solid
Tumors (RECIST1.1) and at least every 3 months thereafter. At data cut off, progression free survival at
6 months after study inclusion was documented for all patients.

2.2. Statistical Analysis

Median cell counts of (CD276+)CECs and interquartile range were reported. Significance levels
were calculated with Mann–Whitney U test for dichotomous variables or Kruskal–Wallis for categorical
variables. Baseline and follow-up samples were compared by Wilcoxon signed rank test. Areas under
the curve were calculated by receiving operating curves. Correlations were calculated by Spearman’s
Rho. Univariate logistic regression was used to calculate predictive value for response.

3. Results

Between May 2013 and July 2018 218 patients were included in the ORCHESTRA trial in the
Netherlands. From 20 patients no baseline sample was available and they were excluded from analysis.
Sixteen patients did not complete study treatment due to early withdrawal, toxicity or death of
unknown cause prior to evaluation (Figure 1). This resulted in 182 patients being evaluable for baseline
CEC analysis. From 131 patients, both baseline and follow up samples were available. From 30
patients no sufficient follow up was available to evaluate response to systemic therapy. Eight patients
had progressive disease at first evaluation after local treatment as part of the intervention in the
ORCHESTRA trial, since chemotherapy was therefore interrupted they were excluded from analysis
for response evaluation. Two patients had evident clinical progression prior to the first per protocol
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evaluation CT scan, both had completed two cycles of systemic therapy and were included in this
analysis. An overview of the study inclusion is provided in the flow chart (Figure 1).
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Figure 1. Flowchart of the inclusion of patients for analyses of CECs.

(CD276+) CEC Counts

At baseline a median of 48.5 CEC/4 mL (IQR 65) and a median of 18 CD276+CEC/mL (IQR 35)
was measured (Figure 2). The median subset of CD276+CEC from total CECs was 41%. We measured
a CD276+CEC count higher than the ULN (>8 CECs/4 mL) in 74% of patients. CEC counts for relevant
clinicopathological variables revealed no significant differences for both total CEC and CD276+CEC
counts for any of the variables. Total CEC and CD276+CECs counts had no significant correlation with
white blood cell count, platelets, LDH, CEA, the number of organs involved in metastatic disease or
total number of metastatic lesions (<5, 5–10 or >10). High baseline LDH, involvement of >2 organs or
>10 metastases were used as surrogate markers for high tumor burden, but did not show significant
differences in (CD276+)CEC counts (supplementary Table S1). From a subgroup of 40 patients total
volumetric measurements were done. There was poor correlation with total volume and (CD276+)CEC
counts (CEC spearmans Rho 0.10, p 0.15, R2 0.003; CD276+CEC Spearman’s Rho 0.17, p 0.27, R2 0.006).
(data not shown).
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= 0.09) (Table 1, Figure 3). 

Table 1. Circulating endothelial cells (CEC) counts/4 mL 

 All Paired Samples 
n = 131 

Bevacizumab 
n = 98 

No Bevacizumab 
n = 33 

 
BL a 

Median 
(IQR c) 

FU b 

Median 
(IQR c) 

p 
Value 

BL a 

Median 
(IQR c) 

FU b 

Median 
(IQR c) 

p 
Value 

BL a 

Median 
(IQR c) 

FU b 

Median 
(IQR c) 

p 
Value 

CEC 48 (57) 90 (120) 0.00 * 47 (59) 75.5 (93) 0.00 * 48 (75) 131 (187) 0.03 * 
CD276+CEC 14 (33) 33 (50) 0.00 * 15.5 (30) 28 (40) 0.01 * 14 (43) 41 (110) 0.01 * 

CD276 subset 0.41 (0.33) 0.36 (0.25) 0.09 0.40 (0.30) 0.35 (0.24) 0.05 * 0.41 (0.36) 0.42 (0.27) 0.74 
a BL = baseline. b FU = follow up. c IQR = Interquartile range. * significant p value < 0.05. 

0

2

4

6

2 8 13 17 22 27 31 35 39 44 48 53 60 64 68 78 84 94 99 10
9

11
9

15
6

20
0

23
4

25
1

48
1

70
1

10
76

# 
pa

tie
nt

s

CEC count / 4 mL

0
2
4
6
8

10

0 3 6 9 12 16 19 22 25 28 32 35 39 43 52 60 70 77 90 10
3

12
1

13
3

17
2

19
8

37
3

56
1

16
08

# 
pa

tie
nt

s

CD276+CEC / 4 mL

Figure 2. Histograms of (CD276+) CEC counts of all available patients (n = 142). (A) CEC counts per
4 mL; median 48.5 CEC/4 mL (interquartile range 65). (B) CD276+CEC counts per 4 mL, median 18
CD276+CEC/mL (interquartile range 35).

From 131 patients a follow up sample was available. During systemic therapy the CEC count
increased significantly (p < 0.00) from median 48 to 90/4 mL. The CD276+CEC increased significantly
(p < 0.00) from median 14 to 33/4 mL. The CD276+ subset of total CECs decreased from 41% to 36%
(p = 0.09) (Table 1, Figure 3).

Baseline (CD276+)CEC values were not significantly different from patients treated with or
without bevacizumab (Supplementary Table S1; CEC p = 0.80; CD276+CEC p = 0.88). In patients
treated with bevacizumab, CEC counts were lower after three cycles compared to patients treated
with chemotherapy alone 75.5 vs. 131 CEC/4 mL (p = 0.04), 28 vs. 41 CD276+CEC/4 mL (p =0.08).
Both in patients treated with doublet chemotherapy alone and patients treated with chemotherapy and
bevacizumab a significant increase in total CEC and CD276+CEC counts was seen after three cycles of
systemic therapy.

For patients treated with doublet chemotherapy plus bevacizumab (n = 98) there was a significant
increase in total CEC counts after three cycles of systemic therapy (from median 47 to 75.5/4 mL,
p = 0.00), and CD276+CEC from median 15.5 to 28/4 mL (p = 0.01). The CD276+ subset of total CECs
decreased significantly after treatment from 40% to 35% in the follow up sample (p = 0.05).

Table 1. Circulating endothelial cells (CEC) counts/4 mL

All Paired Samples
n = 131

Bevacizumab
n = 98

No Bevacizumab
n = 33

BL a

Median
(IQR c)

FU b

Median
(IQR c)

p
Value

BL a

Median
(IQR c)

FU b

Median
(IQR c)

p
Value

BL a

Median
(IQR c)

FU b

Median
(IQR c)

p
Value

CEC 48 (57) 90 (120) 0.00 * 47 (59) 75.5 (93) 0.00 * 48 (75) 131 (187) 0.03 *
CD276+CEC 14 (33) 33 (50) 0.00 * 15.5 (30) 28 (40) 0.01 * 14 (43) 41 (110) 0.01 *
CD276 subset 0.41 (0.33) 0.36 (0.25) 0.09 0.40 (0.30) 0.35 (0.24) 0.05 * 0.41 (0.36) 0.42 (0.27) 0.74

a BL = baseline. b FU = follow up. c IQR = Interquartile range. * significant p value < 0.05.
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Figure 3. (CD276+)CEC dynamics. CEC and CD276+CEC counts per 4 mL in baseline and follow up
blood samples. * Significant p value.

For patients treated with only doublet chemotherapy without bevacizumab (n = 33) both total
CEC as well as CD276+CEC counts increased significantly after three cycles of therapy (median CEC
from 48 to 131; p = 0.03 and median CD276+CEC from 14 to 41 p = 0.01). The subset was 41 versus 42%
respectively (p 0.74) (Table 1).

None of the circulating endothelial cell measurements, both baseline or follow up CEC and
CD276+CEC counts, nor the change in CEC count (Delta CD276+CEC) could predict poor response to
systemic therapy with statistical significance (Table 2). Receiver operating characteristic (ROC) curves
for total CEC and CD276+CEC in predicting progressive disease within 6 months showed low AUCs
of 0.533 for total CEC and 0.524 for CD276+CEC (Figure 4).

Table 2. Response prediction of (CD276+)CEC.

PFS a > 6 Months
Median (IQR b)

PFS a < 6 Months
Median (IQR b) p-Value MWU c

n 115 27
Baseline CEC 48 (67) 48 (67) 0.60

Baseline CD276+CEC 18 (35) 17 (29) 0.70
Subset 0.43 (0.34) 0.37 (0.36) 0.87

n 89 17
FU d CEC 76 (131) 131 (98) 0.14

FU d CD276+CEC 25 (51) 42(34) 0.13
FU d subset 0.36 (0.26) 0.36 (0.28) 0.78
Delta CEC 14 (91.5) 87 (114.5) 0.08

Delta CD276+CEC 7 (37) 22 (49) 0.08
a PFS = Progression Free Survival. b IQR= Interquartile range. c MWU = Mann-Whitney-U test. d FU = follow up.
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4. Discussion

Our study was designed to evaluate the prevalence of tumor derived circulating endothelial cells
(CD276+CEC) measured by flowcytometry in patients with mCRC and explore the predictive value for
response to systemic therapy. Previous studies evaluating CEC using (CD34+CD45negDNA+CD146+)
for CEC identification focused mainly on predicting survival in patients treated with first line systemic
therapy for mCRC [18,19]. Both studies used the CellSearch system (by Veridex®, Menarini Silicon
Biosystems Inc. Huntington Valley, PA 19006, USA), one showing no prognostic value for PFS or
OS [18], the other increase of PFS and OS for baseline CEC counts < 65/mL [19]. In a third prospective
series, CEC ≤ 21/4 mL was found to be an independent prognostic factor of poor survival for patients
with mCRC amenable for potentially curative surgery, which was of stronger prognostic value than
circulating tumor cells [20]. The flow cytometry enumeration we used, as described before by Kraan et
al. has the same markers for CEC identification, albeit with different fluorescent antibodies. CEC counts
demonstrated to correlate well with CellSearch system counts, with a slightly higher recovery [9].
Other studies used flow cytometry for CEC enumeration with different cluster of differentiation
markers. Ronzoni et al. [10], showed increase of PFS and OS for patients with mCRC with CEC
count < 40/mL (CD45neg CD146+CD34+CD133neg) if treated with first line palliative systemic therapy
with bevacizumab. Malka et al. [14] showed increase in PFS but not for OS (cut off 23 CEC/mL
based on CD31+CD146+CD45neg7AADneg viable cells/mL by FACS analysis) in 97 patients from the
randomized phase II FNCLCC ACCORD 13/0503 trial, receiving first line palliative systemic therapy
with bevacizumab with either XELIRI or FOLFIRI. In patients undergoing resection for colorectal liver
metastases CEC counts (CD34+CD45negCD146+) before surgery did not have additional value in
predicting 2 year outcome [21].

We were able to detect CECs by FACS analysis in all patients with a range from 2–1627 per
4 mL blood and CD276+CECs were measured in all but one patient, ranging from 0–1608/4 mL.
The median CEC count of 48.5/4 mL (12/mL) is higher than reported by others using the same markers.
Simkens et al. reported a median of 6.8 CEC/mL in a large population of 435 patients [18]. Studies from
CEC counts prior to liver resections reported 5/mL (CellSearch, 140 patients) or 10 vs. 20/mL for
patients with respectively good (n = 102) or poor (n = 52) outcome, (CD34+CD45−CD146+ measured
by FACS). [20,21]. In this study, a significant higher CEC count after three cycles of chemotherapy
(p = 0.00), with a nearly 2-fold increase (48 to 90/4 mL) was detected. This is in line with the findings of
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Simkens who reported a 1.5 fold increase (median CEC from 6.8 to 10.5/mL after 6–12 weeks), which
was not prognostic for PFS or OS [18].

Our aim was to identify patients who progress within 6 months of start with therapy by
(CD276+)CEC counts. The AUC of the ROC for CEC counts duration of response < 6 months was 0.53
and 0.52 for CD276+CEC counts, indicating that measuring (CD276+)CECs is a poor test to predict
response to therapy. No clinically relevant cut-off value could be established. Baseline (CD276+)CEC
counts were not significantly different for any baseline clinicopathological variable. We were not
able to validate the cut-off established by Malka et al. [14] who found baseline CEC above the 75th
percentile to be an independent prognostic factor for 6 months PFS rate (p = 0.44,), nor the finding by
matsusaka et al. [19] who found an increase of pFS and OS for patients with a baseline CEC count of
<65/mL (p 0.347).

There are several potential factors that might confound our results. CD276 could also be detected
in normal liver endothelium [16]. As in our cohort 83% of patients had liver involvement in metastatic
disease, this could interfere with tumor specificity of the CD276+CECs, due to CD276 expression on
liver endothelial cells. In contrast with this thought, we did not find a significant difference between
CD276+CEC counts of patients with or without liver metastases (median 17 vs. 23/4 mL; p = 0.33, data
not shown). Since patients had to had adequate liver function to be eligible for study participation,
important underlying liver disease interfering with CD276+CEC counts seems unlikely. Only 5% of
patients had > grade 1 elevation of liver enzymes at follow up, possibly reflecting oxaliplatin induced
liver toxicity, no important changes in CD276+CEC counts were seen in these patients.

Since circulating endothelial cells act as a surrogate marker of endothelial damage, counts can
increase in a variety of conditions including ischemia, infections, and vascular or autoimmune disease.
All baseline samples were taken prior to start of systemic therapy. Previous adjuvant systemic therapy
did not include bevacizumab and was at least 6 months prior to inclusion and is therefore less likely to
influence measurements.

Prior to trial participation, patients with hypertension should have well controlled blood pressure
under 160/95 mmHg on a stable antihypertensive regimen (grade II hypertension according to CTCAE
4.03). Patients with uncontrolled infections, a history of congestive heart failure >New York Heart
Association class 2 or active coronary artery disease and cardiac arrhythmias requiring anti-arrhythmic
therapy were excluded from trial participation (beta blockers or digoxin permitted). Closer evaluation
of six patients with baseline (CD276+)CEC values > mean +2 SD, revealed no hypertension or a history
of peripheral vascular or cerebrovascular disease in these patients. None of these patients had surgery
or radiotherapy < 6 weeks prior to baseline measurement.

Patients were not randomized to receive bevacizumab or not. Seventy-six percent of patients were
treated with bevacizumab in combination with CAPOX or FOLFOX at physician discretion, which
is in line with guidelines adherence in the Netherlands (63–71% use of targeted therapy in first-line
treatment) [22]. The reason to withhold bevacizumab was in 42% a (relative) contraindication for
anti-VEGF therapy and for 32% due to the fact that bevacizumab administration was no standard
practice in the institution. We did not find significant differences in baseline CEC and CD276+CEC
counts between patients that did or did not receive bevacizumab.

Kinetics of CECs have been studied with varying results. Murine models showed that VEGF
pathway inhibitors can have differential effects on CECs in that inhibition of tumor angiogenesis
is associated with an initial increase in mature CECs, followed by a subsequent reduction [16].
We showed a significant increase in CEC and CD276+CEC counts during treatment with chemotherapy
combined with bevacizumab. The subset of CD276+CEC decreased from 40% to 35% (p = 0.05).
Simkens found an significant increase after 1–2 weeks compared to baseline in patients with mCRC,
with no further increase thereafter [18]. Ronzoni et al. [10] did not find a significant change in CEC counts
(CD45−CD146+CD34+CD133neg by FACS) for patients with radiologic response. Manzoni et al. [11]
showed that patients with an increase in CECs (CD45negCD146+D34+, CD133neg by FACS) at the
sixth cycle of first line chemotherapy in combination with bevacizumab had a better PFS (p 0.009).
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5. Conclusions

In conclusion, CD276+CEC counts can be measured in patients with mCRC, but no correlation
with clinical parameters was demonstrated. Cell counts increased during systemic therapy. In patients
treated with bevacizumab, CEC and CD276+CEC counts in follow up samples were lower compared
to patients not treated with bevacizumab. Despite numerical changes during therapy, (CD276+)CEC
counts alone do not adequately predict poor response to first line palliative systemic therapy in patients
with mCRC.
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