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Abstract: Natural hematopoietic stem cells (HSC) are susceptible and tend to lose stemness,
differentiate, or die on culture condition in vitro, which adds technical challenge for maintaining bona
fide HSC-like cells, if ever generated, in protocol screening from pluripotent stem cells. It remains
largely unknown whether gene-editing of endogenous genes can genetically empower HSC to endure
the culture stress and preserve stemness. In this study, we revealed that both NUP98-HOXA10HD
fusion and endogenous Nras mutation modifications (NrasG12D) promoted the engraftment
competitiveness of HSC. Furthermore, the synergy of these two genetic modifications endowed HSC
with super competitiveness in vivo. Strikingly, single NAV-HSC successfully maintained its stemness
and showed robust multi-lineage engraftments after undergoing the in vitro culture. Mechanistically,
NUP98-HOXA10HD fusion and NrasG12D mutation distinctly altered multiple pathways involving
the cell cycle, cell division, and DNA replication, and distinctly regulated stemness-related genes
including Hoxa9, Prdm16, Hoxb4, Trim27, and Smarcc1 in the context of HSC. Thus, we develop a
super-sensitive transgenic model reporting the existence of HSC at the single cell level on culture
condition, which could be beneficial for protocol screening of bona fide HSC regeneration from
pluripotent stem cells in vitro.
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1. Introduction

Single cell transplantation of fresh wild type hematopoietic stem cells (HSC) can successfully
repopulate multi-lineage hematopoiesis in myeloid-ablated mice [1–3]. However, the success rates
of engraftment remained low in recipients when using 1% donor cell contribution as a readout of
successful engraftment. In addition, unlike induced pluripotent stem cells, which can be reported by
the OCT4 gene reporter, currently, there is no single gene acting as a reporter that can robustly mark
bona fide HSC in vitro. Various functional tests for HSC have been developed [3]. However, it is still
necessary to produce genetically enhanced HSC for a more sensitive stemness-readout of HSC in vitro.
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Natural HSC tend to lose their stemness, differentiate to lineage offspring, or die on the condition
of in vitro culture stress. Although there have been many reports that HSC proliferated in vitro in the
presence of certain cytokines, chemical compounds, and feeder cells [4–8], the clinical application of
in vitro expanded HSC for disease treatment is still lagging behind. Alternative resource of HSC, such
as induced HSC from induced pluripotent stem cell (iPSC), is urgently needed for universal clinical
applications. Among various technical challenges, a sensitive reporting system of bona fide HSC is
essential for large-scale screening approaches to regenerate induced HSC in vitro from iPSC.

Hoxb4 has been reported to be the key element in HSC stemness and was used to mediate pluripotent
stem cell differentiation toward HSC [9,10]. Since NUP98-HOXA10 was reported to expand HSC more
efficiently than HoxB4 and the leukemogenic effect and HSC-expanding effect of NUP98-HOXA10
fusion protein can even be separated by a new artificial fusion form of NUP98-HOXA10HD [8].
Moreover, we and others previously reported that the mutant NrasG12D HSC showed a competitive
engraftment advantage [11]. However, whether NUP98-HOXA10HD and NrasG12D represent
ideal genetic modification to sensitively report the existence of HSC on a culture condition requires
further study.

In this study, we compared the effects of the NrasG12D mutation and the NUP98-HOXA10HD
fusion gene on the engraftment competitiveness of HSC and their combinative role in preserving the
stemness of HSC after in vitro culture stress. Despite that both the NUP98-HOX10HD fusion gene
and the NrasG12D mutation enhance the competitiveness of HSC engraftment, they employ distinct
signaling mechanisms and the synergy of these two factors result in super competitiveness in vivo in
modified HSC (NAV-HSC). The single NAV-HSC preserved their stemness after a 10-day feeder-free
culture in vitro and showed robust multi-lineage engraftments in vivo upon transplantation. Thus,
we developed a super-sensitive model reporting the existence of HSC at the single cell resolution,
which is beneficial for protocol screening of bona fide HSC regeneration from pluripotent stem cells
in vitro.

2. Results

2.1. NUP98-HOXA10HD-Knock-In Mice Show Normal Hematopoiesis with Decreased Hematopoietic Stem
and Progenitor Compartment

Overexpression of the NUP98-HOXA10HD fusion protein promotes expansion of both mouse
and human HSC in vitro [12,13]. In this scenario, we established an NA10hd knock-in transgenic
mouse by inserting the NA10hd expression elements into the ROSA26 locus of mouse embryonic
stem cells (C57BL/6 background). For easy measurement of NA10hd expression at a protein level,
we inserted a 3xFlag sequence at the end of the NA10hd sequence. To report the expression of
NA10hd, we added a sequence encoding the Tdtomato fluorescent protein after the internal ribosome
entry site (IRES) following the NA10hd sequence (Figure 1A). The expression of NA10hd is locked
by a loxp-stop-loxp (LSL) cassette and can be activated in a tissue-specific manner by a Cre line.
A Southern blot identified the recombinant ES cells (Figure 1B). NA10hd conditional expression mice
(LSL-NA10hd) were generated by blastocyst injection. To express NA10hd in the hematopoietic
system, the LSL-NA10hd mice were further crossed to Vav-Cre mice (C57BL/6 background) to produce
LSL-NA10hd and Vav-Cre compound mice (NA10hd mice, CD45.2+). A Western blot using antibodies
and recognizing the 3xFlag confirmed the expression of NA10hd-3xFlag protein in the bone marrow
nucleated cells of NA10hd mice (Figure 1C).
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Figure 1. Establishment and analysis of multi-lineage hematopoiesis and hematopoietic progenitors
in NA10hd transgenic mice. (A) Schematic diagram of mouse embryonic stem cell (ESC) targeting
strategy for 3xFlag-NA10hd expression elements in the ROSA26 locus. (B) Southern blot analysis of
targeted ESC clones. (C) Western blot of 3xFlag-NA10hd fusion protein in NA10hdLSL/+; Vav-Cre
mice. Bone marrow nucleated cells of NA10hdLSL/+; Vav-Cre mice or control mice (NALSL/+, Ctrl)
were analyzed. (D–G) Flow cytometric analysis of hematopoietic lineages in peripheral blood and
bone marrow. Representative flow plots of hematopoietic lineage analysis in peripheral blood (D),
hematopoietic stem/progenitor cell (hematopoietic stem cell, HSC/multipotent progenitor, MPP) (E),
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common lymphoid progenitor (CLP) (F), and myeloid progenitor (MP) (G) in bone marrow of NA10hd
and control mice are shown. Data are representative of three independent experiments. (H) The absolute
cell number of Lin−CD48−c-Kit+Sca1+CD135+CD150− MPP, Lin−CD48−c-Kit+Sca1+CD135−CD150−

ST-HSC, and Lin−CD48−c-Kit+Sca1+CD135−CD150+ LT-HSC in one million bone marrow cells of
NA10hd and control mice was calculated. Lin cocktail includes CD2, CD3, CD4, CD8, B220, Mac1,
Gr1, and Ter119. (I) The percentages of Mac1+ myeloid cells and CD19+ B cells and CD90.2+ T cells
in peripheral blood of NA10hd mice. (J–K) The absolute number of Lin−CD127+c-KitmidSca1+CLP
(J), Lin−CD127−c-Kit+Sca1+CD16/32+CD34+ GMP, Lin−CD127−c-Kit+Sca1+CD16/32midCD34mid CMP,
and Lin−CD12−c-Kit+Sca1+CD16/32−CD34− MEP (K) in one million bone marrow cells of NA10hd and
control mice was calculated based on a respective percentage measured by flow cytometric analysis.
Data are represented as means ± SD. An unpaired Student’s t-test (two-tailed) was performed. N = 3
mice, * p < 0.05, ns indicates not significant.

To assess the effect of NA10hd on hematopoiesis, we performed flow cytometric analysis on
multi-blood lineages in peripheral blood (Figure 1D), hematopoietic stem cells, multi-potential
progenitors cells (Figure 1E), and myeloid and lymphoid progenitors (Figure 1F,G), in bone marrow
of NA10hd and littermate control mice. The absolute cell number of hematopoietic stem cells and
multilineage progenitor cells of NA10hd was mildly less than those of control mice (Figure 1H).
However, the absolute number of the mature myeloid or lymphoid cells in the peripheral blood
(Figure 1I), lymphoid progenitor cells (Figure 1J), and myeloid progenitors (Figure 1K) in the bone
marrow was comparable between NA10hd and the control. Analysis results from 12-month-old aged
NA10hd mice were largely similar, despite the number of long-term HSC and lymphoid progenitors
being significantly less than the littermate control (Figure S1). Taken together, NA10hd-expresssing
mice generally show normal hematopoieisis despite having a decreased number of hematopoietic stem
and progenitor cells.

2.2. NUP98-HOXA10HD Expression Confers Competitive Transplantation Advantage on HSC

To further assess the impact of NA10hd on engraftment and lineage contribution, we retro-orbitally
injected 2.5 × 105 total bone marrow cells from NA10hd mice into lethal irratidation (2 × 5.0 Gy) treated
mice (CD45.1) together with an equal number of bone marrow competitor cells from littermate control
(NA10hdLSL/+) mice (CD45.2) (Figure 2A). These recipients were bled every four weeks retro-orbitally
to evaluate the multi-lineage reconstitution capacity of transplanted cells. The recipients showed
a signifcantly higher proportion of NA10hd-cell chimersim (>70%) in peripheral blood (Figure 2B)
starting from week 4 until week 20. We then asked whether dominance of NA10hd in periheral blood is
a result of dominance at the HSC level. Chimerism of the HSC compartment were examined in the bone
marrow of recipient mice 20 weeks after transplantion. As expected, NA10hd-HSC composed of more
than 80% of the HSC compartment, which was significantly higher than the control HSC (p < 0.001)
(Figure 2C,D). These results show that NA10hd confered a competitive advantage on hematopoietic
stem cells (HSC) in the transplantation setting.
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Figure 2. Hematopoietic stem cells expressing NA10hd protein demonstrates a competitive engraft advantage. (A) Diagram of the competitive transplantation assay 
of NA10hd and the littermate control (NA10hdLSL/+, CD45.2) bone marrow hematopoietic stem cells. NA10hd and control bone marrow nucleated cells were 
transplanted into lethally irradiated (2 × 5.0 Gy) recipients (CD45.1) at a ratio of 1:1, and the percentage of donor cells and donor-derived specific lineage within 
donor-derived cells in peripheral blood were analyzed regularly after transplantation. (B) Donor chimerism in peripheral blood. (C) Flow cytometric analysis of 
donor-derived (NA10hd or control) hematopoietic stem cell (HSC) proportion in bone marrow of recipients 20 weeks post transplantation. Data are representative 
of two independent experiments. (D) Statistical analysis of NA10hd or control donor-derived HSC in recipient bone marrow 20 weeks post-transplantation. Data 
are represented as means ± SD. Unpaired Student’s t-test (two-tailed) was performed. Three mice, *** p < 0.001. 

Figure 2. Hematopoietic stem cells expressing NA10hd protein demonstrates a competitive engraft advantage. (A) Diagram of the competitive transplantation
assay of NA10hd and the littermate control (NA10hdLSL/+, CD45.2) bone marrow hematopoietic stem cells. NA10hd and control bone marrow nucleated cells were
transplanted into lethally irradiated (2 × 5.0 Gy) recipients (CD45.1) at a ratio of 1:1, and the percentage of donor cells and donor-derived specific lineage within
donor-derived cells in peripheral blood were analyzed regularly after transplantation. (B) Donor chimerism in peripheral blood. (C) Flow cytometric analysis of
donor-derived (NA10hd or control) hematopoietic stem cell (HSC) proportion in bone marrow of recipients 20 weeks post transplantation. Data are representative of
two independent experiments. (D) Statistical analysis of NA10hd or control donor-derived HSC in recipient bone marrow 20 weeks post-transplantation. Data are
represented as means ± SD. Unpaired Student’s t-test (two-tailed) was performed. Three mice, *** p < 0.001.
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2.3. Synergistic Effect of NUP98-HOXA10HD and NrasG12D on the Competitiveness of HSC In Vivo

The NrasG12D oncogenic gene confers a competitive advantage on HSC [14,15]. To compare
the effects of NrasG12D mutation (NV) and NA10hd on HSC competitiveness, we injected 2.5 × 105

NrasG12D-expressing total bone marrow cells (NV) together with an equal number of NA10hd cell
counterparts into lethal irratidation (2 × 5.0 Gy) treated mice (CD45.1). Donor-cell chimerism was
analyzed every four weeks post-transplantation. NV cells dominated the peripheral blood from week
4 and contributed significantly higher (>95%) than NA10hd cells (<5%) in the peripheral blood of
recipients 20 weeks post-transplantation (Figure 3A). Consistently, we observed that NV-HSC (>90%)
rather than NA10hd-HSC (<10%) dominantly occupied the HSC compartment in bone marrow of
recipients 20 weeks post-transplantation (p < 0.001) (Figure 3B). Thus, our results indicate that NV
confers stronger competitiveness on HSC than NA10hd in the transplantation setting.

Next, we investigated the accumulative effect of NA10hd and NV on HSC competitiveness. The
NV and NA10hd strain were bred together with Vav-Cre mice to obtain compound (NAV) mice, which
simultaneously express NUP98-HOXA10HD and NrasG12D proteins in the circulatory system. We
subsequently transplanted 2.5 × 105 bone marrow nuleated cells from NAV mice, together with an
equal number of bone marrow competiter cells from NV mice, into lethally irratidated (2 × 5.0 Gy)
recipients (CD45.1). The conribution of NAV-derived cells in peripheral blood was stable and higher
than NV and exceeded 60% post transplantation (Figure 3C). In bone marrow, the NAV-derived HSC
were also dominant (p < 0.001) (Figure 3D). NV-derived T cells were significantly higher than NAV
at four weeks but became comparable to NAV thereafter. NV-drived B cells were much higher than
NAV at week 16 and week 20, while NV-derived myeloid cells were significantly lower than NAV at
week 4, week 16, and week 20. Collectively, both the NrasG12D mutation and the NA10hd fusion gene
conferred competitiveness on HSC, and a combination of these two factors produced the strongest
accumulative effects on HSC engraftment. Thus, the order of engraftment competitiveness is as follows:
NAV-HSC > NV HSC > NA10hd HSC > WT HSC.

2.4. NUP98-HOXA10HD and NrasG12D Enhance the Competitiveness of HSC via Distinct Signaling
Mechanisms

To investigate the molecular mechanism by which NV and NA10hd enhanced the
competitiveness of HSC, we sorted Lin (CD2, CD3, CD4, CD8, B220, Gr1, Mac1,
Ter119)−CD48−c-Kit+Sca1+CD135−CD150+ (Figure S2) HSC from NV, NA10hd, and wild-type mice for
transcriptome analysis. Since one thousand cell input for RNA-Seq produced reads uniformly covers
all transcripts [16], we sorted one-thousand HSC aliquots for RNA-Seq analysis. Differential gene
expression analysis identified 225 differential expression genes (DEGs) in NA10hd HSC (Table S1) and
998 DEGs in NV HSC (Table S2) when compared to wild-type HSC (DEGs were defined as a difference
in the expression level over 1.5-fold, adjusted the p value < 0.05 (DESeq2 R package)). There were only
59 overlapping DEGs in NA10hd and NV (Figure 4A). GO enrichment analysis using the NA10hd or
NV DEGs showed that these DEGs were largely related to pathways of the cell cycle, cell division, and
DNA replication and nuclear division (Figure 4B,C). Only 14 of the 59 (<20%) overlapping DEGs from
NA10hd and NV HSC showed a similar expression trend (Figure 4D). However, more than 80% of the
overlapping DEGs had opposite expression trends in NA10hd and NV. There were approximately 17
(28%) DEGs that were up-regulated in NA10hd HSC, but down-regulated in NV HSC including H19
and Igf2 that regulate HSC quiescence [17] (Figure 4E). In addition, 28 (>50%) DEGs were up-regulated
in NV HSC, but down-regulated in NA10hd HSC (Figure 4F).
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transplantation. (D) The proportion of NV or NAV HSC were measured by flow cytometric analysis 20 weeks post-transplantation. (E–G) Donor-derived 
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NUP98-HOXA10HD enhance the competitiveness of HSC via distinct signaling mechanisms. 

Figure 3. Comparison of engraftment competitiveness of NA10hd and NrasG12DLSL/+; Vav1-Cre (NV) hematopoietic stem cells. (A) Donor-derived cell chimerism
in peripheral blood. NV and NA10hd bone marrow nucleated cells were transplanted into lethally irradiated (2 × 5.0 Gy) recipients (CD45.1) at a ratio of 1:1,
and the percentage of donor cells in peripheral blood was analyzed regularly after transplantation. (B) The proportion of NA10hd or NV HSC in recipient bone
marrow was measured by flow cytometric analysis 20 weeks post-transplantation. (C) Donor-derived cell chimerism in peripheral blood. NAV and NV bone marrow
were transplanted into lethally irradiated (2 × 5.0 Gy) recipients (CD45.1) at a ratio of 1:1, and the donor cells in peripheral blood was analyzed regularly after
transplantation. (D) The proportion of NV or NAV HSC were measured by flow cytometric analysis 20 weeks post-transplantation. (E–G) Donor-derived percentages
of T lymphocytes (E), B lymphocytes (F), and myeloid cells (G) in peripheral blood were analyzed regualrly after transplantation. Data are represented as means ± SD.
Unpaired Student’s t-test (two-tailed) was performed. N = 5 mice. * p < 0.05, ** p < 0.01, *** p < 0.001, ns indicates no significant. NrasG12D and NUP98-HOXA10HD
enhance the competitiveness of HSC via distinct signaling mechanisms.
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DESeq2 was used to normalize the gene expression matrix and find out the differential expression 
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Figure 4. Gene expression pattern in HSC altered by NA10hd and NV expression. For each RNA-Seq
sample, one thousand HSC (Lin−c-Kit+Sca1+CD135−CD150+) from NA10hd, NV, or littermate control
mice were sorted as input cells. The raw reads (fastq files) were aligned to NCBIM37 mouse genome by
hisat2 software. Gene expression value (raw counts) was extracted using featureCounts. DESeq2 was
used to normalize the gene expression matrix and find out the differential expression genes (DEGs).
(A) Overlap DEGs (p.adj < 0.05, fold change > 1.5) in NA10hd-HSC and NV-HSC compared with
control (Ctrl) HSC. (B) GO enrichment (EGO) analysis of differential expression genes (DEGs) in
NA10hd-HSC. The EGO analysis was performed by a clusterProfiler R package. (C) GO enrichment
(EGO) analysis of DEGs in NV-HSC. (D) Heatmaps of overlapping DEGs with a similar expression
alteration trend in NA10hd-HSC and NV-HSC. (E) Heatmaps of DEGs that were up-regulated in
NA10hd but down-regulated in NV-HSC. (F) Heatmaps of DEGs that were down-regulated in NA10hd
but up-regulated in NV-HSC. Heatmaps were plotted by gplots (heatmap.2). Columns represent the
indicated biological replicates of each population (D–F).
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Further gene set enrichment analysis (GSEA) analysis showed that NA10hd and NV regulated the
cell cycle, MCM_Pathway, and Apoptosis_by_CDKN1A_Via_TP53 signaling pathways in an opposite
manner (Figure 5A). Furthermore, the leading-edge genes analysis showed that the cell cycle-related
genes including the cyclin dependent kinase (Cdk) family genes (Cdk1, Cdk2, Cdk4, Cdk6) and cell
division cycle (Cdc) family genes (Cdc7, Cdc6, Cdc16, Cdc27, Cdc23, Cdc25a, Cdc25b, Cdc25c) were
upregulated in NV HSC but down-regulated in NA10hd HSC (Figure 5B). At the same time, the cell
cycle and initiator proteins of DNA replication related genes mini-chromosome maintenance complex
(Mcm) family genes (Mcm2, Mcm3, Mcm4, Mcm5, Mcm6, Mcm7) and Origin Recognition Complex
(ORC) family genes (Orc1, Orc2, Orc3, Orc4, Orc6) (Figure 5C) had the same expression trend as Cdk
or Cdc family genes. In addition, cell apoptosis related genes Hmgb2 [18], Ccnb1 [19], Aurka [20],
Rrm1 [21], Tpx2 [22], Prc1 [23], and Pbk [24] were upregulated in NV HSC while downregulated in
NA10hd HSC (Figure 5D). Genes that regulate the hematopoietic stem cell activity [25–28] including
Hoxa10, Hoxa7, Hoxa9, Ski, Prdm16, Vps72, Hoxb4, and Akt1 were up-regulated in NA10hd HSC, while
only Trim27 and Smarcc1 were up-regulated in NV HSC (Figure S3). Collectively, the above results
demonstrate that NA10hd and NV conferred competitiveness on HSC by distinct mechanisms.
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Figure 5. Gene set enrichment analysis (GSEA) showed opposite-signaling patterns in HSC altered
by NA10hd and NV expression. (A) The gene sets of the KEGG_Cell_Cycle, MCM_Pathway,
and Apoptosis_by_CDKN1A_Via_TP53 signaling pathways from the public GSEA database
(http://software.broadinstitute.org/gsea/downloads.jsp) were used for GSEA analysis using the GSEA
R package. Nominal p value, empirical phenotype-based permutation test (p < 0.05, FDR < 0.25).
(B) Heatmaps represent the expression of leading-edge genes in a KEGG_Cell_Cycle pathway. (C)
Heatmaps represent the expression of leading-edge genes in an MCM pathway. (D) Heatmaps represent
the expression of leading-edge genes in Apoptosis_by_CDKN1A_Via_TP53 signaling pathways.
Columns represent the indicated biological replicates of each population (B–D).

2.5. Single NAV-HSC Survive and Expand in Feeder-Free Medium and Its Derivatives Fully Repopulate
Multi-Lineage Hematopoiesis in Recipients

HSC are susceptible to stress and prone to die in vitro in the absence of feeder cells, which can
only be expanded with cell lines such as AFT024 and UG26 [29,30]. It is also reported that adult mouse
HSC (E-SLAM cells) transduced with a retrovirus expressing NA10hd could expand efficiently during
the 14-day culture with an addition of IL-3, IL-6, and SCF [4]. We wondered whether single NAV-HSC
could overcome the culture stress and expand in a feeder-free condition. We sorted single Lin (CD2,
CD3, CD4, CD8, B220, Gr1, Mac1, Ter119)−CD48−c-Kit+Sca1+CD135−CD150+ NAV-HSC or WT-HSC
into individual wells of a 96-well low adhesion plate containing 150 µL culture medium (StemSpan™
SFEM plus with 100 ng/mL mSCF, 20 ng/mL human IL11, and β-mercaptoethanol (2000-fold diluted)).
To evaluate the stemness preservation, colony-forming unit (CFU) and transplantation assay were
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performed using the single cell-derivatives after a 10-day culture (Figure 6A). Amazingly, more than
30% (25/80) of wells with single NAV-HSC input proliferated to produce colonies composed of more
than 100 cells (Figure 6B). In contrast, we observed very rare daughter cells from the WT HSC group
(data not shown). Notably, certain wells showed homogenous morphology with uniform offspring
cells in size. We divided the recovered cells from each well into two equal aliquots, one for an in vitro
colony-forming assay (CFU-C) and the other for in vivo transplantation. As expected, only the cells
with homogeneous morphology daughter cells (Figure S4A) produced CFU-Mix colonies (Figure 6C),
but not the wells with heterogeneous size derivatives (Figure S4B).
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Figure 6. Evaluation of multi-lineage potential by a colony forming assay using 10-day-cultured single
NAV HSC. (A) Schematic diagram of feeder-free culture of single NAV HSC and subsequent function
assessment. (B) Colony morphology formed by single NAV HSC after the 10-day culture. Single
HSC were sorted into individual 96-wells and cultured in defined feeder-free medium (StemSpan™
SFEM plus with 100 ng/mL mSCF 20 ng/mL human IL11, β-mercaptoethanol (2000-fold diluted)).
Representative images from day 0 and day 10 were shown. The absolute cell number of cells within
each colony was counted at day 10, and only colonies with more than 100 cells per well were further
analyzed. Scale bars, 200 µm. (C) Colony-forming unit (CFU) assay of in vitro cultured cells. Half of
the cells from individual colonies with homogeneous morphology were used as input for the CFU
assay. Total CFU and CFU-mix colonies were counted. Scale bars, 200 µm.

To further evaluate stemness of single NAV HSC derivatives, in addition to the CFU-C assay,
we transplanted 50 cells from representative individual wells into sub-lethally irradiated mice (CD45.1).
Of the transplanted nine colonies, five were homogenous and four were heterogeneous. Cells from
six individual wells, including five homogenous colonies and one heterogeneous colony, successfully
reconstituted multi-lineage hematopoiesis over 16 weeks after transplantation (Figure 7A,B). To further
confirm whether these mice contained donor-derived hematopoietic stem cells, we performed flow
cytometric analysis of the bone marrow nucleated cells. As expected, phenotypic donor HSC were
detected in the bone marrow of the recipients of homogenous colonies (Figure 7C), but not in the
recipients transplanted with heterogeneous colonies (data not shown). The estimated absolute number
of donor-derived phenotype HSC expanded around 24-fold than their input (Figure 7D). Collectively,
our data indicated that NAV-modified HSC expanded in vitro and preserved their stemness in a
feeder-free medium condition.
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3. Materials and Methods

3.1. Mice

C57BL/6 (CD45.1) and Vav-Cre strain (CD45.2) mice were purchased from the Jackson Laboratory.
C57BL/6 (CD45.2) were from the Beijing Vital River Laboratory Animal Technology Ltd. NA10hdLSL/+

mice were generated by targeting a mouse ES line (C57BL/6 line, Beijing Biocytogen Co., Ltd.)
through homologous recombination at the ROSA26 locus. NALSL/+ mice were subsequently bred with
Vav-Cre mice to generate NA10hdLSL/+ and Vav-Cre (NA10hd) compound mice. Mice expressing
the conditional oncogenic NrasG12D mutation (a gift from Dr. Jing Zhang lab at the University of
Wisconsin-Madison, Wisconsin, USA) were crossed with Vav-Cre mice to generate LSL NrasG12D/+ and
the Vav-Cre compound (NV) mice. Mice were housed in the SPF grade animal facility of the Guangzhou
Institution of Biomedicine and Health, Chinese Academy of Science (GIBH, CAS, China). All animal
experiments were approved by the Institutional Animal Care and Use Committee of Guangzhou
Institutes of Biomedicine and Health (IACUC-GIBH).

3.2. Competitive Transplantation

All the competitive transplantation of total bone marrow were performed at the ratio of 1:1
(0.25 million to 0.25 million). The recipients (CD45.1) of all competitive transplantation were lethal
irradiated (2 × 5.0 Gy). The donor-derived chimeric ratios of peripheral blood cells were analyzed
regularly and the HSC compartment was analyzed 20 weeks post-transplantation. Donor-derived cells
from NA10hd and NAV were identified with Tdtomato.

3.3. Flow Cytometric Analysis

Antibodies for the hematopoietic lineage and hematopoietic progenitors or stem cells analysis:
CD45.2 (104), CD2 (RM2-5), CD3e (145-2C11), CD4 (RM4-5), CD8a (53-6.7), Ter119 (TER-119), Mac1
(M1/70), B220 (6B2), Gr1 (RB6-8C5), CD19 (1D3/CD19), CD90.2 (53-2.1), CD48 (HM48-1), IL-7R (A7R34),
Sca1 (E13-161.7), c-Kit (2B8), CD34 (RAM34), and CD16/32 (93) antibodies were purchased from
eBiosciences, and CD150 (TC15-12F12.2) was purchased from Biolegend. DAPI (#D9542-50MG) was
purchased from Sigma.

All the nucleated cells harvested from moue tissues were first treated with ACK solution, and then
blocked with the CD16/32 antibody. For lineages staining, blocked nucleated cells were incubated with
antibodies mixture of CD19-FITC, Mac1-PE-Cy7, and Thy1.2-APC. For myeloid progenitors staining,
bone marrow cells were stained with antibodies mixtures of Lin (CD2, CD3e, CD4, CD8a, Ter119, Mac1,
B220, Gr1)-FITC, Sca1-PerCP-Cy5.5, c-Kit-APC-eFluor® 780, CD34-Alex700, and CD16/32-PE-Cy7.
For lymphocyte progenitors staining, BM cells were stained with the antibodies mixture of Lin (CD2,
CD3e, CD4, CD8a, Ter119, Mac1, B220, Gr1)-FITC, IL-7R-APC, Sca1-PerCP-Cy5.5, c-Kit-APC-eFluor®

780. For hematopoietic stem cell (HSC) and multipotent progenitor (MPP) staining, BM cells were
stained with the antibodies mixture of Lin (CD2, CD3e, CD4, CD8a, Ter119, Mac1, B220, Gr1)-FITC,
CD48-FITC, Sca1-PerCP-Cyanine5.5, c-Kit-APC-eFluor® 780, CD45.2-PE (only in NV and CD45.1
competitive transplantation recipients), and CD150-PE-Cy7. Lastly, all the cells were resuspended in
DAPI solution.

The stained cells were analyzed on LSR Fortessa (BD Bioscience), and the data were analyzed
using Flowjo software (FlowJo).

3.4. Single HSC Feeder-Free Culture

Individual NAV or wild-type (WT) HSC was sorted into a 96-well low adhesion plate containing
150 µL culture medium (StemSpan™ SFEM (stem cell, #09650) and 100 ng/mL mSCF + 20 ng/mL human
IL11 + β-mercaptoethanol (2000 fold diluted)). A half-medium change was performed every other
day. Colonies with more than 100 cells in each well were divided into equal aliquots. One aliquot of
around 50 cells were plated for CFU-C colony-forming assay following the manufacturer’s instructions
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(STEMCELL Technologies) and the other aliquot of 50 cells were transplanted into sub-lethally
irradiated (6.5 Gy) recipients (CD45.1) after a 10-day in-vitro culture.

3.5. RNA-Seq and Data Analysis

NA10hd, NV, and littermate control (Ctrl) HSC were sorted separately into 200 µL DPBS-BSA
buffer (0.5% BSA) using a 1.5 mL Eppendorf tube. The cDNA of sorted 1000-cell aliquots were generated
and amplified, as described previously [31]. Then qualities of the amplified cDNA were examined by
qPCR analysis of housekeeping genes (B2m, Actb, Gapdh). Samples that passed quality control were
used for subsequent sequencing library preparation by illumina Nextera XT DNA Sample Preparation
Kit (FC-131-1096). All libraries were sequenced by illumina sequencer NextSeq500 (illumina). The fastq
raw data files were generated using illumina bcl2fastq software and uploaded to the Gene Expression
Omnibus public database (GSE118809). All the fastq files were aligned to the NCBIM37 mouse genome
by Hisat2 software. Normalization of gene expression and differential expression gene analysis were
performed by DESeq2. Heatmaps were plotted using gplots (heatmap.2). Gene set enrichment analysis
(GSEA) was performed as described [32].

3.6. Statistical Analysis

The data were represented as mean± SD. Two-tailed independent Student’s t-tests were performed
for a comparison of two groups of data (SPSS v.23, IBM Corp., Armonk, NY, USA). P values of less
than 0.05 were considered statistically significant (* p < 0.05, ** p < 0.01, *** p < 0.001).

3.7. Data Availability

The data that support the findings of this study are available from the corresponding author upon
request. All RNA-Seq data are in the GEO database with accession code GSE118809.

4. Discussion

NA10hd transgenic mice had normal multi-lineage hematopoiesis, demonstrated by normal
lineage and progenitor contribution indistinguishable from control mice. A previous study reported
that knockdown of Pbx1 improves the competitiveness of HoxB4-overexpressing HSC and that
the capacity of NUP98-HoxA10HD to induce HSC expansion does not require a PBX-interacting
motif [8,33]. Consistent with these findings, our competitive transplantation assay further confirmed
that NA10hd with only the homeodomain of Hoxa10 in the fusion improved the competitiveness of
hematopoietic stem cells. This competitive advantage may be due to dominance of NA10hd HSC in
the HSC compartment. Moreover, recipient mice with NA10hd HSC transplantation did not develop
myeloproliferative disease until the end of the experiment. This is consistent with a previous study,
which shows restriction of NUP98-fusion to the homeodomain of Hoxa10 blunts lineage bias and
leukemogenic potential of Nup98-Hoxa10 [8].

It was previously reported that NrasG12D could sustainably increase the competitiveness of
HSC [14,15]. It is of particular interest to show that NV HSC had stronger competitiveness than
NA10hd HSC. The transcriptomic analysis of NA10hd HSC and NV HSC showed that both NV and
NA10hd affected the signals of DNA replication, the cell cycle, and apoptosis of HSC. However,
NA10hd HSC and NV HSC represent an opposite trend in regulating the cell cycle, DNA replication,
and Apoptosis_by_CDKN1A_Via_TP53 signaling pathways. NA10hd may enhance the transplantation
and proliferative capacity of hematopoietic stem cells through HSC activators such as Hoxb4, Hoxa9,
Hoxa10, Prdm16, Ski, and Vps72 etc. [25,34–36], and maintain the stemness of hematopoietic stem
cells through an H19-Igf2-related pathway [17]. In contrast, NV may enhance the engraftment
advantage of hematopoietic stem cells by regulating the Stat5 signaling pathway and MEK/ERK
pathway [11,14,15,37]. Of note, we have identified a signature of 14 genes, which were commonly
downregulated or upregulated by both NA10hd and NrasG12D HSC (Figure 4D). Functional analysis
of HSC with these 14 signature genes would shed light on the mechanism of increased competitiveness
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of HSC in both NA10hd and NrasG12D HSC. Flt3l, which is one of these signature genes, has been
reported to regulate multipotent stem and progenitor cells and enhance their proliferation [38].

The co-expression of NA10hd and Nras in hematopoietic stem cells conferred the strongest
engraftment advantage in vivo than NV or NA10hd alone. In addition, a transplantation assay of
single NAV HSC-derived cells after 10-day feeder-free in vitro culture showed that the NAV HSC
derivatives could efficiently reconstitute the whole blood lineages in all the recipients. These results
suggested that NA10hd and NrasG12D gene could synergistically enhance the competitiveness and
preserve stemness of hematopoietic stem cells. Since NA10hd and NV HSC employs mostly distinct
signaling pathways yet share a similar trend for a group of genes to confer competitiveness, how
NA10hd and NV collaborate to eventually confer a competitive advantage in HSC deserves further
investigation. In addition, it would be of great interest to investigate whether the NAV modification
could be introduced into pluripotent stem cells to capture bona fide HSC regenerated from pluripotent
stem cells.

In conclusion, HSC with NrasG12D and NUP98-HOXA10HD gene-modifications possess a
super engraftment advantage and preserved their multi-lineage potential after in vitro culture. Thus,
we established a super-sensitive readout system reporting the existence of HSC on the culture condition
at single cell resolution, which could be beneficial for screening induced HSC from pluripotent
stem cells.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/9/951/s1.
Figure S1. Flow cytometric analysis of multi-lineage hematopoiesis and hematopoietic progenitors in aged NA10hd
transgenic mice. Figure S2. Sorting strategy of HSC. Figure S3. Heatmaps present the relative expression level of
genes that affect hematopoietic stem cell activity. Figure S4. Colony morphology formed by single NAV-HSC
after 10-day culture on feeder-free condition. Table S1. Differential expression genes between NA10hd-HSC and
control HSC. Table S2. Differential expression genes between NV-HSC and control HSC.
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