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Abstract: Efficiency and fidelity of protein secretion are achieved thanks to the presence of different
steps, located sequentially in time and space along the secretory compartment, controlling protein
folding and maturation. After entering into the endoplasmic reticulum (ER), secretory proteins attain
their native structure thanks to specific chaperones and enzymes. Only correctly folded molecules
are allowed by quality control (QC) mechanisms to leave the ER and proceed to downstream
compartments. Proteins that cannot fold properly are instead retained in the ER to be finally destined
to proteasomal degradation. Exiting from the ER requires, in most cases, the use of coated vesicles,
departing at the ER exit sites, which will fuse with the Golgi compartment, thus releasing their cargoes.
Protein accumulation in the ER can be caused by a too stringent QC or by ineffective transport: these
situations could be deleterious for the organism, due to the loss of the secreted protein, and to the cell
itself, because of abnormal increase of protein concentration in the ER. In both cases, diseases can
arise. In this review, we will describe the pathophysiology of protein folding and transport between
the ER and the Golgi compartment.
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1. Introduction

The mammalian endoplasmic reticulum (ER) is responsible for the folding and maturation of
almost a third of the total cellular proteome, including almost all proteins destined for secretion or
insertion into the plasma membrane. Besides, the ER houses the enzymes responsible for synthesizing
the majority of steroids and lipids needed for cell-to-cell communications or for the biogenesis
of membranes.

Secretory proteins are synthesized on ER bound ribosomes and attain their native conformation
thanks to a plethora of specific ER folding factors and enzymes (chaperones, lectins, oxidoreductases) [1].
Only proteins that achieve their native structure pass the first step of protein quality control (QC)
localized at the ER level (Figure 1). They are released by the ER folding factors, are inserted in
COPII coated vesicles that bud from the ER exit sites (ERES), traverse the ER to Golgi intermediate
compartment (ERGIC), and then proceed to the Golgi complex. In the ERGIC-cisGolgi compartment,
a second step of QC is present, specifically dedicated to oligomeric proteins whose monomers are
bound by disulfide bonds (adiponectin, IgM). A multifunctional soluble chaperone residing at this
level (ERp44) recognizes and brings back to the ER assembly intermediates of soluble proteins,
while only fully assembled proteins are released in the Golgi lumen [2,3]. As to membrane proteins,
the transmembrane proteins RER1, localized at the cis-Golgi level, interacts with unassembled subunits
of multimeric transmembrane proteins, retrieving them back to the ER [4,5].
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Figure 1. Protein folding, quality control (QC) and transport in the early secretory pathway. Only 
correctly folded proteins can pass the first step of QC located in the endoplasmic reticulum (ER) 
(proximal QC) and have access to transport vesicles at the ER exit sites (ERES). Unfolded proteins are 
instead retained and could eventually form aggregates. In the cisGolgi, a second step of QC (distal 
QC) ensures that only correctly assembled proteins can proceed along the secretory pathway, while 
assembly intermediates are retrieved to the ER for another chance of being incorporated into a 
polymer. 

1.1. Folding and Quality Control in the Early Secretory Pathway 

Protein folding in the ER is extraordinarily challenging, as the ER must manage to modify 
polypeptides that can be present at very high concentration - up to 100 mg/mL - in the ER lumen [6]. 
Moreover, folding in the ER is slow and coupled to covalent disulfide formation, transmembrane 
insertion, N-glycosylation. Nonetheless, the ER displays an extraordinary capacity to assist folding 
and assembly of proteins at the different steps of protein maturation before they are sent out of the 
secretory pathway [7].  

In animal cells, most secreted proteins are translocated into the ER co-translationally as unfolded 
nascent polypeptides. Thus, the rate of messenger RNA (mRNA) translation influences the burden 
of unfolded proteins in the ER. Quality control mechanisms exist that monitor synthesis of proteins 
as they are synthesized on the ribosomes. Alterations in the rate of translation, for example, allow for 
more accurate translation and folding [8]. The quality of the mRNA and its codon usage affect 
translation rates, and translation rate, in turn, alters chaperone binding to the nascent chain [9]. 
Perturbations in the ER can be sensed by the ER-resident transmembrane (PKR)-like ER kinase (PERK) 
that phosphorylates the eukaryotic initiation factor (eIF) 2α and transiently arrest translation, thus 
decreasing the flux of proteins entering the ER [7]. PERK activation is part of a specific stress response 
system, the unfolded protein response (UPR), that protects the ER folding environment by detecting 
and responding to the presence of misfolded proteins in its lumen [10].  

The ER holds a vast repertoire of ER-resident chaperones and folding factors that direct and 
monitor each error-prone step in protein biosynthesis: post-translational modifications, oxidative 
folding, and maturation of client proteins to their functional tertiary or quaternary state [11,12]. In 
the ER, many secretory proteins undergo asparagine-linked glycosylation on specific sites 
(Asn/X/Ser-Thr). Once glycosylated, the two outer glucose units are co-translationally trimmed by 

Figure 1. Protein folding, quality control (QC) and transport in the early secretory pathway. Only
correctly folded proteins can pass the first step of QC located in the endoplasmic reticulum (ER)
(proximal QC) and have access to transport vesicles at the ER exit sites (ERES). Unfolded proteins are
instead retained and could eventually form aggregates. In the cisGolgi, a second step of QC (distal
QC) ensures that only correctly assembled proteins can proceed along the secretory pathway, while
assembly intermediates are retrieved to the ER for another chance of being incorporated into a polymer.

1.1. Folding and Quality Control in the Early Secretory Pathway

Protein folding in the ER is extraordinarily challenging, as the ER must manage to modify
polypeptides that can be present at very high concentration—up to 100 mg/mL—in the ER lumen [6].
Moreover, folding in the ER is slow and coupled to covalent disulfide formation, transmembrane
insertion, N-glycosylation. Nonetheless, the ER displays an extraordinary capacity to assist folding
and assembly of proteins at the different steps of protein maturation before they are sent out of the
secretory pathway [7].

In animal cells, most secreted proteins are translocated into the ER co-translationally as unfolded
nascent polypeptides. Thus, the rate of messenger RNA (mRNA) translation influences the burden of
unfolded proteins in the ER. Quality control mechanisms exist that monitor synthesis of proteins as they
are synthesized on the ribosomes. Alterations in the rate of translation, for example, allow for more
accurate translation and folding [8]. The quality of the mRNA and its codon usage affect translation
rates, and translation rate, in turn, alters chaperone binding to the nascent chain [9]. Perturbations in the
ER can be sensed by the ER-resident transmembrane (PKR)-like ER kinase (PERK) that phosphorylates
the eukaryotic initiation factor (eIF) 2α and transiently arrest translation, thus decreasing the flux of
proteins entering the ER [7]. PERK activation is part of a specific stress response system, the unfolded
protein response (UPR), that protects the ER folding environment by detecting and responding to the
presence of misfolded proteins in its lumen [10].

The ER holds a vast repertoire of ER-resident chaperones and folding factors that direct and
monitor each error-prone step in protein biosynthesis: post-translational modifications, oxidative
folding, and maturation of client proteins to their functional tertiary or quaternary state [11,12]. In the
ER, many secretory proteins undergo asparagine-linked glycosylation on specific sites (Asn/X/Ser-Thr).
Once glycosylated, the two outer glucose units are co-translationally trimmed by glucosidases I and
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II generating a monoglycosylated asparagine-linked oligosaccharide, which is recognized by the
lectin-like molecular chaperones calnexin and calreticulin. Release from these chaperones leads to
enzymatic removal of the remaining glucose unit by ER glucosidase II. Conformational maturation
releases glycoproteins from the protein-folding machinery, coupling this process to productive transport
beyond the ER.

Most accumulated and/or aggregated misfolded proteins are degraded by the endoplasmic
reticulum-associated degradation (ERAD), while others escape the ER and are degraded instead by
lysosomal proteases [13,14]. During ERAD, misfolded proteins are first recognized by ER and cytosolic
chaperones and by chaperone-like lectins [11,15–18]. For glycosylated proteins, the processing of the
N-glycan by the ER mannosidase I acts as a timer for protein fate decision [19]. Actually, the event of
mannose trimming to degradation by ER mannosidase I likely occurs in specific sub-compartments of
the ER, recently named quality control vesicles (QCVs) [20] or in the cisGolgi region [21], suggesting
that some substrates of ERAD need to reach the Golgi before being degraded. Ubiquitinated proteins
are then retro-translocated from the ER to the cytosol and delivered to the 26S proteasome for
degradation [22–24].

1.2. Exiting the ER

A hierarchy of quality control checkpoints sustains protein homeostasis in the ER so that only
correctly folded proteins are released by the ER folding machineries and can proceed along the secretory
pathway. Some proteins move forward following the so called bulk flow: the simple formation of
vesicles exiting the ER creates a sucking force that, by chance, inserts proteins free to move into the
vesicles departing from the ER [25] (Figure 2). In this case the concentration of proteins that are
transported in the secretory vesicles is the same as that present in the ER lumen. Other proteins instead
move thanks to active transport as proteins are recognized by specific cargo receptors: transporters,
adaptors and components of the vesicle coat (Figure 2). These factors actively chose their binding cargo
in the ER and insert them into the forming vesicles. In this case, the proteins to be transported are
concentrated in the departing vesicles. Interestingly, all these mechanisms are such that the ER resident
chaperones and enzymes are normally excluded from the departing vesicles. This is likely because ER
folding factors exist as a supramolecular complex [26], important both for ensuring efficient folding on
one hand and avoiding escape of enzymes by mistake on the other. Another hypothesis is that the
action of cargo selection itself ensures exclusion of ER resident proteins from ER departing vesicles [27].

Vesicles exiting from the ER form at the so-called ER exit sites (ERES) [28,29]. Here, COPII
components are recruited by protein adaptors to start the formation of the vesicles. The COPII coat is
composed of different molecules, the small GTPase Sar1, the Sec23 and Sec24 subunits (which form
heterodimers), and the Sec13/Sec31 subunits (which form heterotetramers) [30,31].

Transmembrane proteins that need to exit from the ER normally directly interact with the coat
components. This interaction is mediated by specific amino acids in their cytosolic tail, which allows
their specific recognition by the COPII components [32–34]. Some of them requires specific adaptors,
as it is the case of AMPA receptors and TGFα. Their transport out of the ER is in fact mediated by
the activity of cargo adaptors called Cornichon Proteins [35,36]. The length of the trans-membrane
domain (TMD) itself is a constraint that allows the exit from the ER only of proteins with longer TMD,
thus excluding from the departing vesicles transmembrane ER resident enzymes [37].

Few cargo receptors have been identified so far for secretory soluble proteins: ERGIC-53/LMAN1,
and proteins with a similar structure such as VIPL, VIP36, ERGICL [reviewed in 28,38]. These are all
transmembrane proteins that bind cargoes in the ER thanks to their luminal domain and interact with
their cytosolic tail with COPII components. The interaction with the cargoes is generally mediated by
glycan recognition, as all those transporters act as lectins [28,38].

Even if the majority of secreted proteins require the formation of COPII vesicles, non-conventional
secretion cases have been described for selected cargoes, in which the exit from the ER is not dependent
on COPII vesicles [39–42].
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1.3. The COPII Cage

The COPII coat is a multimeric protein assembly whose formation is necessary for the secretion of
the majority of proteins in eukaryotic cells (Figure 3) ([30,31] and references therein). Its assembly is
initiated by the transmembrane protein Sec12, which activates the small GTPase Sar1. Sar1, in turn,
inserts its N-terminal amphipathic helix in the ER membrane at the level of the ERES, initiating
membrane curvature and recruiting the other COPII components, Sec23 and Sec24, through direct
interaction with Sec23. Sec23 and Sec24 form a heterodimer that constitutes the inner part of the
COPII coat and recognizes specific transport signals on transmembrane secretory proteins or protein
adaptors. The assembly is completed with the recruitment of the second layer, composed by the Sec13
and Sec31 heterotetramer. The interaction occurs between Sec31 and Sar1 and Sec23 [29,43]. Another
factor playing an important role in these processes is Sec16, an ER peripheral membrane protein that
localizes at ERES independently from Sec23/24 or Sec13/31 [44]. Sec16 acts as a scaffold for COPII
assembly [45,46].

An acute increase of cargo load in the secretory pathway often causes ER stress [7], under these
conditions, mammalian cells show a decreased number of ERES, by reduced formation of COPII
vesicles [47]. On the contrary, a chronic rise in cargo load induces increased size and numbers of
ERES [48,49]. Moreover, the nature of the cargo can also regulate and modify the generation of COPII
vesicles: some cargoes stimulate the Sar1GTPase activity of Sec23/Sec24, other can modify the structure
of the Sec13/sec31 cage, influencing the geometry of the complex and hence the curvature of the vesicles
that are budding from the ER membrane [31].

Interestingly, it has been recently described that the COPII machinery has another additional
function: by selectively interacting with proteins that need to be transported, and protein adaptors,
COPII actively sorts proteins that need to proceed along the secretory pathway. This is important to
avoid the insertion in the departing vesicles of ER resident chaperones and enzymes, and of misfolded
proteins [27].

How is the formation of vesicles departing from the ER controlled? The activity of Sec16 is
required for ERES homeostasis [44] and it is controlled by MAPK signaling [50]. The Raf-MEK cascade,
activated by growth factors in fact activates ERK2 which phosphorylates Sec16 stimulating COPII
vesicles biogenesis [50]. In this way growth factors stimulation increases the levels of ER export [51].
Moreover, it has been very recently demonstrated that the activation of a tyrosine kinase present at
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the ERES (LTK) can phosphorylate Sec12, thus activating Sar1 and starting the assembly of the COPII
coat [52] (Figure 3). How is LTK itself activated is still unknown, but this is for sure an interesting
issue, as the correct, functional and efficient transport of secretory proteins out of the ER is a crucial
step in protein homeostasis along the secretory pathway and, more in general, in the entire cell.
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1.4. What Happens in Case of No ER Exit?

The complexity of the protein maturation steps implies the existence of several machineries
sequentially distributed along the secretory pathway, which must all work properly for proteins
to reach their native state and their correct final localization. Should something go wrong in any
of these steps, the protein will not be able, as a result, to be functionally active, likely leading to a
pathological condition.

Considering the protein maturation checkpoints in the early secretory pathway (ER, ERES, ERGIC),
we can distinguish three different situations that could cause a disease linked to trafficking (Figure 1):

1. The QC (especially the proximal QC) is too stringent: this is the case for example of CFTR.
2. The protein folding is abnormal and the protein aggregates in the ER or the in ERGIC compartment:

this is the case of some mutants of α1-anti trypsin (α1AT).
3. The protein trafficking between the ER and the Golgi is not efficient: this is the case of mutations

in ERGIC-53, MCFD2, or mutations in components of the COPII coat.

2. Excessive Quality Control: The Case of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)

Cystic fibrosis (CF) is the most common lethal monogenic autosomal recessive disease among
the Caucasian population, and it is caused by dysfunction of the cystic fibrosis transmembrane
conductance regulator (CFTR) glycoprotein, which normally functions as a chloride/bicarbonate
channel at the apical membrane of epithelia [53–55]. Thus, its function is to maintain ion and fluid
homeostasis. The human CFTR belongs to the ATP-binding cassette (ABC) transporter superfamily,
and consists of 12-transmembrane domains (TMDs) that form the translocation pathway, two
cytoplasmic nucleotide-binding domains (NBDs) that hydrolyze ATP, and a regulatory (R) domain
that must be phosphorylated to allow the channel to open [55,56].
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The most common CF-causing mutation is a deletion of phenylalanine 508 (∆F508) present
in approximately 85% of CF patients [57,58]. ∆F508 causes CFTR misfolding, which is recognized
by the ER quality control system, resulting in ER retention and targeting for degradation by the
ubiquitin-proteasome pathway [59]. The most severe consequences of the lack of CFTR activity
manifest in the pancreas and in the lung. In the pancreas, the failure of bicarbonate-rich fluid and
enzyme secretion impair intestinal digestion and absorption. In the lung, the defective Cl− transport
(thus fluid secretion) coupled with hyperabsorption of Na+ and fluid, leads to secretion of thick and
dehydrated mucus and colonization by microorganisms causing damaging inflammatory responses.
Multiple checkpoints at the level of folding and trafficking of the mutant ∆F508-CFTR have been
suggested to regulate its ER retention and exit [59,60]. Folding checkpoints involve interaction with
chaperones, and trafficking checkpoints involve recognition of trafficking/exit signals that direct
towards vesicular transport [60–62].

Nascent ∆F508-CFTR is initially recognized by the Hsp70 machinery, which by interaction with
the co-chaperone CHIP is converted from a protein folding system into a proteasomal degradation
factor by mediating the covalent attachment of ubiquitin (E3 ubiquitin ligase activity) to chaperone
substrate proteins [63]. A small fraction of ∆F508-CFTR that has escaped Hsp70 quality control is again
assessed via recognition of its glycan moieties by a calnexin-independent mechanism.

A trafficking checkpoint acts at the levels of recognition of the four three-residue arginine-framed
tripeptides (AFTs) of CFTR, which function as an ER retention motif. Substitution of lysines for one of
the arginines in each of these four triplets simultaneously allows nascent ∆F508-4RK-CFTR to mature
about one-third and increase its function, although not fully to wild-type CFTR levels [64]. However,
full correction of ∆F508-4RK-CFTR folding is not achieved as measured by the gating properties of the
channel [65]. Release of ∆F508-CFTR from ER retention by interfering with recognition of AFTs signals
may provide the basis of a novel therapeutic strategy for CF. VX-809 is a small molecule that repairs
folding and processing defects of CFTR by promoting interactions between the first cytoplasmic loop
(CL1) of transmembrane domain 1 (TMD1) and the first nucleotide-binding domain (NBD1), thus
rescuing ∆F508-CFTR localization [62,66].

A further trafficking checkpoint occurs at the level of CFTR inclusion into COPII vesicles. Sorting
of CFTR into vesicles budding from the ER is mediated by the interaction of the Sec23/24 subunits
of COPII with a highly conserved diacidic code at residues 565–567 (sequence DAD) of CFTR [66].
Mutations in these residues severely affect export of CFTR. When the aspartate residue at 567 is replaced
by an alanine (D567A), CFTR association with Sec24 is reduced [67] but folding is not affected [68].
Replacement of both aspartate residues with alanine (D565A, D567A; DD/AA-CFTR) blocks CFTR exit
from the ER [62].

Progress has been made toward accomplishing the goal of effective CFTR modulator therapy. CFTR
modulators include, among others, potentiators that promote channel activity, correctors (VX-809) that
promote CFTR ER exit and traffic, and readthrough agents that restore full-length CFTR by suppression
of premature termination codons. When combined with potentiators, correctors have been shown
to sufficiently rescue CFTR in human bronchial epithelial cells (20–30% of CFTR activity) [69–71].
However, many patients with rare mutations are not yet impacted by CFTR modulators due to
unknown susceptibility of their mutations to treatment. A growing knowledge of the molecular
mechanisms responsible for defective CFTR suggests that an effective therapy should target repair of
each phase of CFTR expression and function [72].

3. Aggregation of Misfolded Proteins in the ER or the in ERGIC Compartment: The Case of α-1
Anti-trypsin

α1-Antitrypsin (α1AT) is a member of the serine proteinase inhibitor (serpin) superfamily.
The primary role of α1AT is to inhibit the proteolytic enzyme elastase secreted by activated neutrophils
(NE), which degrade elastin within connective tissues. Thus, α1AT maintains the structural integrity
of lung elastin [73,74].
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α1AT is a single-domain protein of 394 amino acid residues, which fold into three β sheets and
nine α helices that surround the β sheet scaffold [74]. A reactive center loop protruding from the
main body of the molecule mediates α1AT inhibitory specificity [75]. Antitrypsin binds covalently to
its target proteinase through specific residues within the RCL, and RCL translocates the proteinase
to the opposite end. Due to this conformational change, α1AT inactivates the protease while α1AT
is stabilized [76]. The metastable nature of α1AT is thus required to facilitate the rapid and gross
conformational changes required for proteinase inhibition. Correct conformational maturation of the
newly synthesized polypeptide is a prerequisite for its productive transport along compartments of the
secretory pathway. During its biosynthesis in the ER, α1AT is subjected to a quality control checkpoint
that initially facilitates the conformational maturation of newly synthesized α1AT [1].

Several naturally occurring genetic variants of α1AT have been identified, which associate with
a diminished systemic concentration of the inhibitor causing α1AT Disease (α1ATD), an inherited
disorder of the lung and liver [77,78]. A severely reduced concentration of α1AT ensues the elastolytic
degradation of lung connective tissue, increasing the risk to develop chronic obstructive pulmonary
disease (loss-of-function phenotype). Notably, as the main site for α1AT biosynthesis is the liver,
the accumulation of mutated α1AT in the ER of hepatocytes is a risk factor for the development of
childhood liver disease (gain-of-toxic function phenotype) [78].

The most frequent disease-associated mutations include a point mutation in the α1AT gene, which
is named the ATZ variant [79,80]. The resulting single amino acid substitution Q342K leads to the
slowdown of the last steps of folding [81], with consequent increased intracellular polymerization and
accumulation of ATZ polymers in the ER of the hepatocytes. This causes ER stress, low secretion of
α1AT, and eventually end-stage pathology requiring liver transplantation [73,82,83].

Intracellular polymers and insoluble aggregates of the mutant ATZ variant have been observed in
the liver biopsy specimens from patients with ATD [74]. The cargo receptor ERGIC-53 described to be
a cargo receptor for α1AT [84] (see paragraph 4.2.4), likely fails to recognize the misfolded, and likely
polymerized, ATZ mutant, thus contributing to its further accumulation in the ER. The accumulation
of ATZ in the ER is associates with markedly dilated ER cisternae, and very large vesicles [85].

Two main pathways are involved in the disposal of misfolded ATZ: the proteasomal pathway and
autophagy. To avoid ER clogging ATZ is eliminated from the secretory pathway by the ER-associated
degradation (ERAD) machinery that targets the misfolded protein into the cytosol for degradation
by 26S proteasomes. Indeed, ATZ was one of the very first identified substrates of the ERAD
pathway [86]. Autophagy was later described as an additional pathway for ATZ clearance [87].
Accumulation of ATZ within the ER (and ERGIC) is sufficient to activate the autophagic response
as demonstrated by increased GFP+ autophagosomes in the liver of an autophagosome reporter
mouse [88]. Notably, autophagy-enhancing drugs promote ATZ clearance and attenuate hepatic
fibrosis [89,90]. Recently, an ER-to-lysosome degradation pathway has been described for proteasome
resistant ATZ aggregates [91].

A peculiar characteristic of the cellular response to the ER accumulation of ATZ is the lack of
significant activation of the unfolded protein response (UPR) [92]. Recent structural data provide
an explanation for why soluble monomeric ATZ does not get recognized by the UPR apparatus:
monomeric ATZ intermediate adopts a conformation that resembles the wild-type molecule and,
therefore, would not be recognized as unfolded [93].

Gene expression profiling of transgenic mice with inducible expression of ATZ in the liver have
shown marked up-regulation of the regulator of G protein signaling (RGS16) [94]. RGS16 did not
increase upon exposure to classical inducers of ER stress, indicating that its activation is characteristic
and specific of ATZ accumulation in the ER. Furthermore, targeted disruption of the heterotrimeric
G protein Gαi3 in a mouse model leads to a marked increase in hepatic insulin-induced autophagic
activity [95]. This data indicates that Gαi3 plays a role in the hepatic anti-autophagic effect of insulin.
Since RGS16 binds to Gαi3 and likely inhibits G signaling, induction of RGS16 upon ATZ accumulation
in the ER might inhibit a Gαi3-mediated signaling pathway and thus de-represses autophagy [96].
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Currently, there is no cure for severe liver disease and the only management option is liver
transplantation when liver failure is life-threatening. New therapies that target the misfolded a1AT or
attempt to correct the underlying genetic mutation are currently under development.

4. Defective Transport

4.1. COPII Cage and Diseases: The Cases of Craniolenticular Dysplasia (CLDS) and Dyserytropoietic Anemia
Type II

Export of folded proteins from the ER is mediated, except a few cases, by COPII coated vesicles.
Different genetic diseases originate from mutation (loss of sense or missense) in COPII components.
Surprisingly, almost all these diseases are tissue-specific and cargo-specific. One should expect in
fact that, given the crucial role for COPII in cargo export from the ER, mutations in one of the COPII
components should be incompatible with life or at least should cause very severe diseases with effects
spread all over the body. The first explanation for this selectivity is the existence of different paralogs
of the COPII components in mammals: in mammalian cells, there are 2 Sar1 isoforms (Sar1 A and
B), 2 Sec23 isoforms (Sec23 A and B), 4 Sec24 isoforms (Sec24 A, B, C, D), 2 Sec31 (Sec31 A and B),
and 2 Sec16 (Sec16 A and B) isoforms. Moreover, not all of these variants are always present in all
tissues and cells. Hence, the presence of different isoforms, with different tissue distributions (Human
Protein Atlas) and different cargo specificity [43,97] can explain the specific restricted effects observed
in the pathologies caused by mutants of COPII components and in knock-out (KO) animal models.

Mutations in Sec23A in humans are responsible for the autosomal recessive disease Craniolenticular
dysplasia (CLDS), a rare syndrome manifesting with large and late closing fontanels and calvarial
hypomineralization, skeletal defects, and hypertelorism and other facial dysmorphisms [98–100]. The
disease is caused by a missense substitution (F382L) in Sec23A. Especially osteoblasts, which have
very low levels of the Sec23 B isoform [100], suffer from the lack of activity of this protein. The
result of the mutation is defective collagen export, with intracellular accumulation in the ER, which
is hence characterized by dilated cisternae [99]. On the other hand, mutations in Sec23B is the cause
of congenital dyserytropoietic anemia type II [101,102], as red blood cells have very low levels of the
isoform Sec24A with respect to Sec23B and cannot face the lack of the isoform B. Very interestingly, KO
mice for Sec23B die very soon after birth because of the degeneration of professional secretory tissues
(pancreas, salivary glands, glands of the digestive tract). The different phenotypes observed between
humans and mice can account for species-specific functions of Sec23B [103].

According to their crucial role in regulating protein export from the ER, COPII components need
to be upregulated under those differentiation programs that physiologically transform a cell into
a protein factory. This is the case of B to plasma cells differentiation. After the encounter with an
antigen, resting B lymphocytes are activated and become protein factories devoted to immunoglobulin
production and secretion. This transformation implies a complete rearrangement of their secretory
pathway [104,105]. As expected, the ERES and COPII components are also upregulated during this
process [106]. The increase of the factory capacity, in fact, has no effects (and could be even deleterious)
if the flux of products exiting from the factory is not increased too.

4.2. ERGIC-53 and MCFD2: The Case of F5F8D

4.2.1. ERGIC-53

ERGIC-53 (also known as LMAN1, Lectin Mannose Binding Protein 1) is a transmembrane protein
of about 53 kDa shuttling from the ER to the cis-Golgi [107] and as such considered as a marker of the
ERGIC compartment. ERGIC-53 presents a luminal lectin domain, a transmembrane region, and a
short cytosolic domain ending with the sequence KKFF. The double phenylalanine at the C-terminus is
a specific sequence needed for interaction with Sec24 for ER export [108,109]. The double lysine instead
are needed for interaction with COPI and retrieval from the ERGIC-cis Golgi back to the ER [110].
ERGIC-53 can form covalent dimers and hexamers via the formation of disulfide bonds at the levels
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of the stalk luminal domain. The formation of at least dimeric structures is needed for ERGIC-53 to
interact with the COPII components [111] while the formation of the hexamers is not required for
ERGIC-53 exiting from the ER [112]. The luminal domain recognizes high mannose N-glycans on
proteins to be transported [113], thus ERGIC-53 receives correctly folded proteins exiting from the
primary QC steps (specifically from the Calnexin-Calreticulin cycle). Binding to the substrates is pH
and calcium-dependent. ERGIC-53 binds its substrates at almost neutral pH in the ER and releases
them in the Golgi because of a lower pH (about 6,5). The pH sensitivity is ensured by a histidine
residue in the core of the lectin-binding domain [114]. Thanks to this mechanism, it is thought that
ERGIC-53 exits from the ER once it is cargo-loaded and comes back empty via COPI vesicles.

4.2.2. F5F8 Deficiency

The first discovered substrates of ERGIC-53 were Factor V and Factor VIII of the blood coagulation
cascade [115]. Mutations of ERGIC-53 are in fact correlated with 70% of the cases of Combined
Deficiency of Factor 5 and Factor 8 (F5F8D), an autosomal recessive mild coagulation disorder
characterized by very low levels in the blood of both Factor V and Factor VIII (between 5% and 20% of
normality). The most common symptoms are epistaxis, menorrhagia, and excessive bleeding during or
after trauma. Factor V and VIII are bulky proteins characterized by a huge number of N-glycosylations.
The lack of ERGIC-53 slows down the velocity of exit from the ER (and hence secretion) of both Factor
V and VIII [116]. The presence, however, of a low level of these proteins in the blood accounts for
secretion via bulk flow, even if the action of other lectin transporters cannot be excluded.

4.2.3. MCFD2

As discussed before, only 70% of F5F8D cases account for mutations in ERGIC-53. The remaining
30% is instead characterized by mutations in MCFD2 (Multiple Coagulation Factor Deficiency protein
2) [117]. MCFD2 is a small soluble protein of about 16kDa, which interacts with ERGIC-53. MCFD2
has two EF hand-sites, which are important for calcium-dependent interaction with ERGIC-53 and
with cargoes [118,119]. Mutations in MCFD2 causing F5F8D are null mutations but also missense
mutations, which cause destabilization of its flexible structure and the loss of its interaction with
ERGIC-53 [120]. Both types of mutation result in the inability of ERGIC-53 to interact with FV and
FVIII leading to disease onset, as MCFD2 is required for ERGIC-53 interaction with FV and FVIII. Using
an immunological comparison, considering ERGIC-53 as an immunoglobulin heavy chain, we could
state that MCFD2 behaves as its light chain.

4.2.4. Other ERGIC-53 and MCFD2 Substrates

ERGIC-53 acts as a lectin transporter not only for FV and FVIII of the coagulation cascade but also
for other proteins travelling along the secretory pathway. Both lysosomal enzymes cathepsin C and
Z have been described as substrates of ERGIC-53 [108,121], as their localization in the lysosomes is
reduced in the absence of the lectin or when mutants unable to exit the ER are expressed. Moreover,
a physical interaction between ERGIC-53 and these lysosomal enzymes has been demonstrated [122].

Metallopreotease-9 (MMP9) has been found associated with ERGIC-53 (both in YFP
complementation assays and after crosslinking) and its secretion is downregulated in ERGIC-53
KO cells [123].

In vitro and in vivo studies also indicated that α1AT is a substrate of the ERGIC-53/MCFD2
complex (see also paragraph 2). The intracellular trafficking of α1AT is delayed both in cells subjected
to ERGIC-53 or MCFD2 KO [84]. ERGIC-53 and MCFD2 KO female mice show lower plasma α1AT
levels and accumulation of α1AT in the hepatocytes, with enlarged ER [124,125]. Up to now, however,
no α1AT patients have been isolated showing an ERGIC-53 mutation. It would be interesting to analyze
whether the few α1AT patients with Z mutations, which develop hepatic disease, have mutations in
ERGIC-53 or MCFD2.
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We demonstrated in the past that a common substrate of the ERGIC-53/MCFD2 pair is the IgM
Heavy Chain µ. ERGIC-53 and MCFD2 downregulation, in fact, decreases both IgM polymerization
efficiency [126] and the intracellular accumulation of a mutant IgM heavy chain lacking the first
constant domain [127]. We proposed that ERGIC-53, being a planar hexamer, could work as a platform
for IgM polymerization during subunit transport from the ER to the Golgi compartment. As such,
both ERGIC-53 and MCFD2 are increased during the differentiation of a B lymphocyte to a plasma
cell. Interestingly, preliminary unpublished data indicate that F5F8D patients show lower levels
of IgM compared to controls (Anelli, Sitia, Peyvandi unpublished data), although in the range of
normality. This also suggests that in plasma cells, redundant mechanisms likely exist to ensure the
correct assembly of such important and essential molecules as IgM.

The soluble secreted protein Mac-2BP, which promotes integrin-mediated cell adhesion, in also a
substrate of the ERGIC-53/MCFD2 complex [128]. According to its role in binding to Mac-2BP and in
ERGIC-53 role in MMP9 secretion, higher levels of MCFD2 were recently described in metastasis of
human oral cancer [129]. This could be also a general characteristic of those cells that need to increase
their secretory capacity.

Recently, it has been shown that ERGIC-53 also promotes the secretion of transmembrane
proteins, the GABAaRs [130] and the GP glycoproteins of Arenavirus [131]: interestingly in these cases,
the interaction seems to be glycan-independent.

5. Concluding Remarks

The components of the QC machinery in the early secretory pathway interact with a diverse array
of cargoes and thus must find the best deal for allowing proteins to exit from the ER. Only folded
proteins are given the permit to leave the ER and continue their journey along the secretory pathway.
Misfolded proteins instead must be stopped and redirected to other destinations—the proteosome or
the lysosome—not to accumulate in the ER and affect the organelle’s homeostasis. While this strategy
protects the ER from proteotoxic stress, in some conditions an excessive QC could not allow a putative
functional protein to reach its final destination, thus leading to a loss-of-function pathological condition.
Further problems might arise when the protein is given the permit to leave the ER, but the transporters
are not functional. Thus, on the one hand novel effective therapeutic approaches for diseases associated
to defects of this route must be directed to multiple intracellular targets. On the other hand, increasing
the current knowledge of the molecular mechanisms regulating protein traffic from the ER could have
important perspectives for the cure of trafficking diseases.
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