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Abstract: The important role of microRNAs (miRNAs) in the formation, development, diagnosis,
and treatment of diseases has attracted much attention among researchers recently. In this study,
we present an unsupervised deep learning model of the variational autoencoder for MiRNA–disease
association prediction (VAEMDA). Through combining the integrated miRNA similarity and the
integrated disease similarity with known miRNA–disease associations, respectively, we constructed
two spliced matrices. These matrices were applied to train the variational autoencoder (VAE),
respectively. The final predicted association scores between miRNAs and diseases were obtained
by integrating the scores from the two trained VAE models. Unlike previous models, VAEMDA
can avoid noise introduced by the random selection of negative samples and reveal associations
between miRNAs and diseases from the perspective of data distribution. Compared with previous
methods, VAEMDA obtained higher area under the receiver operating characteristics curves (AUCs)
of 0.9118, 0.8652, and 0.9091 ± 0.0065 in global leave-one-out cross validation (LOOCV), local LOOCV,
and five-fold cross validation, respectively. Further, the AUCs of VAEMDA were 0.8250 and 0.8237 in
global leave-one-disease-out cross validation (LODOCV), and local LODOCV, respectively. In three
different types of case studies on three important diseases, the results showed that most of the top 50
potentially associated miRNAs were verified by databases and the literature.
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1. Introduction

MicroRNAs (miRNAs), which consist of about 22 nucleotides, are a class of important
single-stranded non-coding RNA molecule [1]. Normally, they participate in the regulation of
post-transcriptional gene expression through cleaving or translationally repressing target messenger
RNAs (mRNAs) [2]. To date, numerous studies have shown that miRNAs influence various biological
processes, including cell proliferation, development, differentiation, death, apoptosis, metabolism,
aging, signal transduction, and viral infection [3–7]. Therefore, miRNAs have attracted increasing
attention, especially with respect to the associations between miRNAs and human diseases. Moreover,
some associations between miRNAs and human diseases have been confirmed [8–11]. For example,
in neurological diseases, miR-34a, miR-141 and miR-9 can contribute to Parkinson’s disease-related
pathogenic processes by affecting the expression of BCL2, BDNF, and SIRT1 [12]. Further, it was
demonstrated that the loss of motor neuron-specific miR-218 might cause systemic neuromuscular
failure [13]. Biological experimental verification also showed that both miR-372 and miR-373 act as
potential novel oncogenes, participating in the development of human testicular germ cell tumors by
numbing the p53 pathway [14]. Another example of miRNA–disease association is that the loss of
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the Wilms tumor gene on the X chromosome, which is mediated by miR-20a/miR-106a, can regulate
colorectal cancer progression and metastasis [15].

There is no doubt that identifying miRNA–disease associations not only enhances the
understanding of molecular mechanisms and the pathogenesis of diseases, but also benefits clinical
diagnosis and treatment. As is known, carrying out experiments is a scientific and effective method
to discover miRNA–disease associations [16–18]. Nevertheless, this traditional method has the
disadvantages of a long cycle and high cost, such that it cannot meet the needs of researchers to
efficiently discover miRNA–disease associations. To be more specific, experimental methods such as the
anchored polymerase chain reaction, competitive polymerase chain reaction, and reverse transcription
polymerase chain reaction have been widely used by researchers, yet they have complex experimental
steps and need a large number of chemical reagents [19–22]. Without doubt, these experiments are
time-consuming and expensive. With the accumulation of biological data and the improvement of
computing ability, utilizing computational models to predict disease-related miRNAs has begun to
develop [23]. As a supplement to experimental methods, computational approaches can provide
reasonable candidate disease-related miRNAs for future biological experiments.

According to the statistics, computational models for predicting miRNA–disease associations
have emerged in recent years. Some of these models based on different principles performed well
in predicting miRNA–disease associations [24]. As follows, the first three models introduced are
based on random walk analysis. Unlike previous local network similarity measures, Chen et al. [25]
developed a computational model of random walk with restart for MiRNA–disease association
(RWRMDA). They took full advantage of global network similarity measures and performed random
walk with restart on the miRNA functional similarity network in order to predict potential associations
between miRNAs and diseases. Afterwards, Shi et al. [26] developed a method to identify human
miRNA–disease associations on basis of functional links between miRNA targets and disease genes in
a protein–protein interaction (PPI) network. They performed a random walk with the restart algorithm
in the PPI network to calculate the association scores between miRNAs and diseases. Last but not
least, Xuan et al. [27] released another random walk-based model named MIRNAs associated with
disease prediction (MIDP). Specifically, according to the known associations between miRNAs and
the investigated disease, they first classified all nodes of a miRNA functional similarity network into
labeled nodes and unlabeled nodes. Then, two transition matrices were constructed for labeled nodes
and unlabeled nodes, respectively. Further, the labeled nodes were assigned higher transition weights
than the unlabeled nodes. After performing the random walk on the miRNA functional similarity
network, the association scores between each unlabeled node and the investigated disease could
be obtained. Through constructing a miRNA–disease bilayer network, they proposed an extension
method named MIDPE based on MIDP. Moreover, MIDPE can be utilized to select candidate miRNAs
for diseases without any known associated miRNAs.

Later, Xuan et al. [28] devised a computational model named human disease-related MiRNA
prediction (HDMP) that is one of the typical representatives to use the scoring function. Given an
investigated disease, k, most similar neighbors of each unlabeled miRNA were selected on the basis of
miRNA functional similarity. In the process of computing sub-scores between k’s most similar neighbors
and the given disease, the neighbors that belong to the same cluster or family with the unlabeled
miRNA would be assigned higher weights. Finally, by summing up the sub-scores, the final association
score between the unlabeled miRNA and the investigated disease could be obtained. Because the
calculation of sub-scores relied on known associations between the investigated disease and miRNA’s
k neighbors, HDMP cannot be applied to a new disease without any known associated miRNAs. Then,
Mork et al. [29] provided a protein-driven approach called miRNA–protein–disease (miRPD) to predict
potential associations between miRNAs and diseases. Using protein as a medium, they designed a
scoring scheme by combining the miRNA–protein association scores and protein–disease association
scores. Furthermore, Chen et al. [30] put forward a method of within and between score for
MiRNA–disease association prediction (WBSMDA). In detail, for an unknown miRNA–disease pair,
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they calculated the within score and between score, respectively. From the perspective of miRNA,
the highest similarity score between the investigated miRNA and the known related miRNAs of the
investigated disease was defined as the within score. Further, the highest similarity score among the
similarity scores between the investigated miRNA and the unrelated-miRNAs of the investigated
disease was defined as Between-Score. Similarly, the within score and between score could also be
obtained in view of the disease. Then, based on the within score and between score, the final association
score of the unknown miRNAdisease pair could be obtained. Moreover, Pasquier and Gardes [31]
released a model called MiRAI to predict potential miRNA–disease associations. In the model,
through incorporating a miRNA–disease association matrix, miRNA–neighbor association matrix,
miRNA–target association matrix, miRNA–word association matrix, and miRNA–family association
matrix, they obtained a spliced matrix with the aforementioned information. Then, they reduced the
dimension of this matrix with singular value decomposition to obtain miRNA vectors and disease
vectors. Finally, the association score of a miRNA–disease pair could be obtained by calculating the
cosine distance between a miRNA vector and a disease vector.

Here are also some network algorithm-based models to predict potential associations between
miRNAs and diseases. Gu et al. [32] presented the network consistency projection for miRNA–disease
associations (NCPMDA) method to predict potentially related miRNAs for diseases. They first
constructed a miRNA similarity network and a disease similarity network. After that, on the basis of
network consistency, the two similarity networks were projected to the miRNA–disease association
network, respectively. At last, the final prediction scores were given via combing and normalizing the
miRNA space projection scores and the disease space projection scores. Yu et al. [33] also came up
with a complex network model named MaxFlow to enable large-scale prediction of miRNA–disease
associations. Firstly, they built the heterogeneous miRNA–disease association network by integrating
miRNA–disease associations, miRNA family, and cluster information. Next, through combining the
miRNA functional similarity network, the disease semantic and phenotypic similarity network and the
heterogeneous miRNA–disease association network, the microRNAome-phenome network graph was
constructed. For an investigated disease, through introducing a source node and a sink node to this
graph, the maximum information flow from the source over all links to the sink were calculated using
the push-relabel maximum flow algorithm. The flow quantity leaving a miRNA node was used as the
association score between the miRNA and the investigated disease. Afterwards, bipartite network
projection for MiRNA–disease association prediction (BNPMDA) was proposed by Chen et al. [34].
In the beginning, Chen et al. constructed bias ratings for miRNAs and diseases by using agglomerative
hierarchical clustering. Then, in view of the bias ratings, they allocated transfer weights to resource
allocation links between miRNAs and diseases, and executed the bipartite network recommendation
algorithm to achieve association scores between miRNAs and diseases. What’s more, taking full
advantage of the sparse learning method to eliminate the noise of the miRNA–disease adjacency matrix
before the heterogeneous graph inference method, Chen et al. [35] proposed matrix decomposition
and heterogeneous graph inference for miRNA–disease association prediction (MDHGI).

Additionally, computational models for miRNA–disease association prediction using machine
learning methods have also begun to appear. Firstly, Chen et al. [36] designed a semi-supervised
classifier model of regularized least squares for MiRNA–disease association prediction (RLSMDA).
Under the framework of regularized least squares, they constructed two optimal classification functions
in miRNA space and disease space, respectively. Afterwards, through taking a simple weighted
average operation, two optimal classifiers in different spaces were combined to infer miRNA–disease
associations. Analogously, Chen et al. [37] developed another semi-supervised model of inductive
matrix completion for MiRNA–disease association prediction (IMCMDA). They first constructed the
objective function to find an approximation of the known miRNA–disease association matrix. Then,
by employing gradient descent, they calculated the optimal solution of the objective function to obtain
the low dimensional representation of miRNAs and diseases. Last, by means of matrix multiplication,
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the two low dimensional representation matrices were directly incorporated by the similarity matrix of
miRNAs and diseases to obtain final relevance scores of miRNA–disease pairs.

Supervised machine learning models require reliable negative samples compared to the semi-
supervised machine learning methods above. Recently, Chen et al. [38] developed a supervised machining
learning model named ranking-based KNN for miRNA–disease association prediction (RKNNMDA).
Initially, they utilized the k-nearest neighbors (KNN) algorithm to select k-nearest-neighbors for miRNAs
and diseases. Secondly, based on the support vector machine (SVM) ranking model, they reranked the
k-nearest-neighbors respectively for miRNAs and diseases. Then, the weighted voting method was
applied to calculate the association scores between miRNAs and diseases. Then, Chen et al. [39] released
random forest for MiRNA–disease association prediction (RFMDA), which was a supervised classifier
model. In the model, negative samples were randomly selected from unlabeled miRNA–disease pairs
and positive samples included all known miRNA–disease associations. Next, based on integrated
miRNA similarity and integrated disease similarity, they constructed feature vectors for negative
samples and positive samples, respectively. Then, a filter-based method was implemented to reduce
the dimension of feature vectors. Finally, the random forest was trained to infer potential relationships
of unlabeled miRNA–disease pairs. Further, Wang et al. [40] developed another supervised model of
negative samples extraction based MiRNA–disease association prediction (NSEMDA). Each sample
was represented by a feature vector on the basis of integrated miRNA similarity and integrated disease
similarity. By means of calculating the specificity score, they chose robust features for each sample.
Using the spy classifier and Rocchio classifier, they selected reliable negative samples, reliable positive
samples, and ambiguous samples from an unlabeled sample set. After constructing the support vector
machine-similarity weight (SVM-SW) model, they trained the model with a training sample set that
included positive samples, negative samples, and ambiguous samples with similarity weight. Finally,
SVM-SW was used to infer potential associations between miRNAs and diseases.

Although some computational models for miRNA–disease association prediction have been
developed, most of them still need to be improved in order to serve the purposes of biological
experiment and clinical application. On the one hand, some computational models cannot predict
miRNAs potentially associated with new diseases. On the other hand, supervised machine learning
methods require reliable positive and negative samples, but there are no real negative samples in the
miRNA–disease association prediction. Selecting negative samples from unknown miRNA–disease
pairs may introduce errors that reduce the predictive effect. In order to overcome these problems,
we proposed the variational autoencoder for MiRNA–disease association prediction (VAEMDA),
which is an unsupervised deep learning model to predict the associations between diseases and
miRNAs. According to statistics, VAE has been well applied in different fields. Through combing
high-throughput cell line assays of drug-induced transcriptomic perturbation effects, the drug response
variational autoencoder (Dr.VAE) has been developed to improve drug response prediction [41].
Rashid et al. have well applied VAE to unmask tumor heterogeneity from single cell genomic
data [42]. Further, Tezcan et al. have succeeded in reconstructing magnetic resonance (MR) images
from under-sampled measurements with VAE [43]. Xu et al. also developed a novel model of
the semi-supervised sequential variational autoencoder (SSVAE) to improve the accuracy of text
classification [44]. In our study, first of all, we constructed two spliced matrices by combining the
integrated miRNA similarity and the integrated disease similarity to the known miRNA–disease
associations, respectively. Then, we used the two spliced matrices as the input of the variational
autoencoder (VAE). The VAE learned latent representations and distributions of the input data, and then
sampled from the learned distribution to reconstruct the original input data [45]. After completing
the training process, we can apply the optimal VAE model to score for unknown miRNA–disease
pairs. In this article, three kinds of cross validation scheme and three types of case studies were
used to evaluate our model. In global and local leave-one-out cross validation (LOOCV), VAEMDA
obtained AUCs of 0.9118 and 0.8652, respectively. By carrying out 100 times five-fold cross validation,
VAEMDA obtained an average AUC of 0.9091 and standard deviation of 0.0065. In global and local
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leave-one disease-out cross validation (LODOCV), VAEMDA obtained AUCs of 0.8250 and 0.8237.
In case studies, VAEMDA was applied to three high incidence cancers (i.e., esophageal neoplasm
(EN), hepatocellular carcinoma (HC) and breast neoplasm (BN)). The results showed that 45, 50,
and 48 of the top 50 potentially associated miRNAs of the three investigated diseases were verified by
databases and experimental literature, respectively. In conclusion, VAEMDA can become an effective
tool for predicting miRNA–disease associations and could assist in biological experiments and clinical
related studies.

2. Materials and Methods

2.1. Data Preparation

This section is divided into a total of six parts to introduce the data used in this article including
human miRNA–disease associations, disease semantic similarity 1, disease semantic similarity 2,
miRNA functional similarity, Gaussian interaction profile kernel similarity for miRNAs and diseases
and integrated similarity for miRNAs and diseases.

Human miRNA–disease associations: We downloaded them from the HMDD v2.0 database [46]
involving 495 miRNAs, 383 diseases, and 5430 known miRNA–disease associations verified by
biological experiments. We used nd and nm to denote the number of diseases and miRNAs, respectively.
To clearly illustrate the relationship between miRNAs and diseases, an adjacency matrix A with a size
of nm rows and nd columns was constructed in which the element A(m(i), d( j)) is equal to 1 if miRNA
m(i) and disease d( j) were verified to be related, otherwise 0.

Disease semantic similarity 1: We used MeSH descriptors from the National Library of Medicine
(http://www.nlm.nih.gov/) to achieve directed acyclic graphs (DAGs) of diseases. Based on the
assumption that the larger parts the DAGs of two diseases share in common, the larger semantic
similarity value between the two diseases, we made full use of the method in previous study [28] to
calculate the disease semantic similarity between different diseases. Then, we can get a nd× nd disease
semantic similarity matrix SS1.

Disease semantic similarity 2: Considering that different disease terms in the same layer of
DAG may appear in the different numbers of disease DAGs, we adopted another method in previous
study [28] to calculate the disease semantic similarity between different diseases. As a result, we obtained
a disease semantic similarity matrix SS2.

MiRNA functional similarity: In our study, miRNA functional similarity scores were calculated
by the method in previous study [47]. We downloaded the similarity scores from the website of
http://www.cuilab.cn/files/images/cuilab/misim.zip and constructed a miRNA functional similarity
matrix FS.

Gaussian interaction profile kernel similarity for miRNAs and diseases: Under the assumption
that diseases associated with the same miRNA are more likely to be similar, and vice versa, we used
adjacency matrix A mentioned above to calculate Gaussian interaction profile kernel similarity for
diseases according to the previous method [48]. KD was used to represent the nd × nd Gaussian
interaction profile kernel similarity matrix for diseases. Then, we used the same method to calculate
Gaussian interaction profile kernel similarity for miRNAs. KM represented the nm × nm Gaussian
interaction profile kernel similarity matrix for miRNAs.

Integrated similarity for miRNAs and diseases: In order to obtain the nd× nd integrated disease
similarity matrix SD, we combined disease semantic similarity 1, disease semantic similarity 2 and
Gaussian interaction profile kernel similarity of diseases according to the method in previous study [30].
Similarly, we integrated miRNA functional similarity and Gaussian interaction profile kernel similarity
of miRNAs to construct the nm× nm integrated miRNA similarity matrix SM.

http://www.nlm.nih.gov/
http://www.cuilab.cn/files/images/cuilab/misim.zip
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2.2. VAEMDA

In this paper, we developed a computational model named VAEMDA to predict potential
miRNA–disease associations (motivated by the study of Titus et al. [45]). The implementation process
of VAEMDA can be divided into three steps. The flowchart of VAEMDA is shown in Figure 1.

Firstly, based on data collection and similarity calculation, we can get the adjacency matrix A,
integrated similarity matrix SM and integrated similarity matrix SD.

Secondly, we utilized matrix A, SM, and SD to construct two spliced matrices, which were treated
as the training data of VAEMDA. Specifically, matrix A and matrix SM were spliced into the matrix
SSM with a size of nm rows and nd + nm columns, where the first nd columns belong to matrix A and
the last nm columns come from matrix SM. We constructed another nd × (nm + nd) matrix SSD by
splicing matrix AT and matrix SD, where the first nm columns come from matrix AT and the last nd
columns belong to matrix SD. Moreover, the purpose of constructing spliced matrix SSM and SSD is
to combine the integrated miRNA similarity matrix and the integrated disease similarity matrix with
the adjacency matrix of miRNA–disease association network, respectively.

Thirdly, we utilized the VAE model to learn potential associations between miRNAs and diseases.
VAEMDA contains two VAE models named VAE1 and VAE2 respectively, where we used spliced
matrix SSM to train VAE1 and used spliced matrix SSD to train VAE2. Both VAE1 and VAE2 consist
of an Adam optimizer [49], rectified linear units [50], batch normalization in the encoding stage,
and sigmoid activations in the decoding stage. VAE1 and VAE2 also have the same loss function,
consisting of two parts: one is the data reconstruction error, which can measure the error between the
original data and the reconstructed data, and the other is the Kullback–Leibler divergence, which can
measure the difference between the distribution of potential variables and the standard normal
distribution. Both VAE1 and VAE2 were built in Keras (Version 2.0.6) [45] with a Tensorflow backend
(Version 1.2.1) [51]. According to the optimal parameters in previous study [45], we trained VAE1
and VAE2 with the following values: batch size = 20, learning rate = 0.001, standard deviation = 1,
epochs = 50, train/validation = 9/1. As described in Step 3 of Figure 1, based on the characteristics of
our training samples, we determined the number of hidden layers (i.e., three hidden layers) and the
number of neurons in each hidden layer (i.e., 300 neurons in hidden layer 1100 neurons in hidden
layer 2300 neurons in hidden layer 3). In addition to the three hidden layers, the VAE in our model
also contains the input layer (878 dimensions) and the output layer (878 dimensions). The process of
transforming from the input layer to the hidden layer 2 is defined as the encoder (i.e., the process from
input layer to hidden layer 1 and another process from hidden layer 1 to hidden layer 2), in which the
VAE in our model can learn the distribution characteristics of training data. The process of transforming
from the hidden layer 2 to the output layer is defined as the decoder (i.e., the process from hidden
layer 2 to hidden layer 3 and another process form hidden layer 3 to output layer), in which the
VAE in our model can regenerate the input data and supplement missing values in the input data.
We utilized SSM and SSD to train VAE1 and VAE2, respectively until the loss function of the two VAE
models converged. After completing the training, we can score for unknown miRNA–disease pairs
with VAE1 and VAE2. Taking full advantage of miRNA integrated similarity and disease integrated
similarity, we calculated the average of two scoring matrices to obtain the final association scores
between miRNAs and diseases.
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Figure 1. Flowchart of potential miRNA–disease association prediction based on the computational
model of VAEMDA: (1) Data preparation, where integrated similarity for miRNAs/diseases (SM/SD)
were calculated and the adjacency matrix A representing human miRNA–disease associations was
constructed. (2) Construct two spliced matrices, where adjacency matrix A and integrated similarity
matrix SM for miRNAs were spliced into matrix SSM. At the same time, adjacency matrix AT and
integrated similarity matrix SD for diseases were spliced into matrix SSD. (3) Score for miRNA–disease
pairs by trained VAE1 and trained VAE2, where spliced matrix SSM and spliced matrix SSD were
applied to train VAE1 and VAE2, respectively. We calculated the average of two scoring matrices to
obtain final association scores between miRNAs and diseases.

3. Results

3.1. Performance Evaluation

We adopted LOOCV and five-fold cross validation to evaluate the performance of VAEMDA,
based on HMDD v2.0 [46] involving 5430 known miRNA–disease associations between 383 diseases
and 495 miRNAs. In our research, LOOCV contains global and local LOOCV. In global LOOCV, we took
each sample among 5430 known miRNA–disease associations in turn as the test sample. Simultaneously,
the remaining 5429 known miRNA–disease associations and all unknown miRNA–disease disease
pairs were regarded as training samples. Then, the trained VAEMDA was applied to score for all
unknown miRNA–disease pairs and the test sample. Through comparing the scores of each test sample
with all unknown miRNA–disease pairs, we would get the rank of the test sample. Yet, in local LOOCV,
the rank of the test sample can be achieved by comparing the scores of the test sample with unknown
miRNA–disease pairs involving the investigated disease.

In five-fold cross validation, all known miRNA–disease associations were randomly divided into
five subsets with equal size. Then, each subset containing 1086 known miRNA–disease associations
was selected as the test sample in turn. Besides, the other four subsets and all unknown miRNA–disease
pairs were considered as training samples. In the same way as LOOCV, the trained VAEMDA was
used to score for test samples and all unknown miRNA–disease pairs. Through comparing the scores
of each test sample with all unknown miRNA–disease pairs, the rank of each test sample could be
achieved. Due to random division of samples, we performed five-fold cross validation 100 times.

In LOOCV and five-fold cross validation, with each change of the adjacency matrix between
miRNAs and diseases, we would recalculate the Gaussian interaction kernel similarity every time.
The rank exceeding the given threshold would indicate a successful prediction made by the model
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and vice versa. Then, we drew a receiver operating characteristics (ROC) curve at different thresholds
with the true positive rate (TPR) as the X-axis and the false positive rate (FPR) as Y-axis. Moreover,
we evaluated the predictive performance of computational model through calculating the area under
the ROC curve (AUC). An AUC of 1 means a perfect performance whereas an AUC of 0.5 implies a
random performance.

As shown in Figure 2, in global LOOCV, the AUC of VAEMDA (0.9118) was higher than HDMP
(0.8366), MaxFlow (0.8624), MDHGI (0.8945), NCPMDA (0.9073), BNPMDA (0.9028), NSEMDA (0.8899),
RFMDA (0.8891) and IMCMDA (0.8380). In local LOOCV, our model also got the largest AUC (0.8652)
compared to HDMP (0.7702), MiRAI (0.6299), MaxFlow (0.7774), MIDP (0.8196), MDHGI (0.8240),
NCPMDA (0.8584), BNPMDA (0.8380), NSEMDA (0.8353), RFMDA (0.8323) and IMCMDA (0.8034).
In 5-fold cross validation, we repeated this procedure for 100 times to achieve a sound estimate of the
average prediction accuracy of VAEMDA and obtained an AUC of 0.909 ± 0.0065, surpassing that for
NCPMDA (0.8763 ± 0.0008), BNPMDA (0.8980 ± 0.0013), MDHGI (0.8794 ± 0.0021), NSEMDA (0.8878
± 0.0014), RFMDA (0.8818 ± 0.0014), MaxFlow (0.8579 ± 0.001), IMCMDA (0.8367 ± 0.0005) and HDMP
(0.8342 ± 0.0010). Global LOOCV was not applicable to MiRAI, because association scores given by
this model were highly positively correlated with the number of known associated miRNAs of the
investigated disease. Further, for a disease with more known associated miRNAs, the association
scores predicted by MiRAI tended to be higher. These led to the incomparability of association scores
predicted by MiRAI between different diseases. In addition, the core of MiRAI was collaborative
filtering that suffers from data sparsity problem. The reason why global LOOCV was not applicable
to MIDP is that the method was based on random walk which was a local approach and could not
simultaneously make predictions for all diseases [52].
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prediction models (NCPMDA, BNPMDA, MDHGI, NSEMDA, RFMDA, MaxFlow, IMCMDA, HDMP,
MiRAI and MIDP) in terms of ROC curves and AUCs based on global and local LOOCV. As a result,
VAEMDA outperformed other models by achieving an AUC of 0.9118 in global LOOCV and an AUC
of 0.8652 in local LOOCV.

Similarly, in global LODOCV and local LODOCV, we divided all known miRNA–disease
associations into 383 subsets, each of which contained all known associations between miRNAs and
one investigated disease. When global LODOCV was used to evaluate the performance of VAEMDA,
we treated all known associations in each subset as the test samples in turn. The rest 382 subsets and all
unknown miRNA–disease pairs were considered as training samples. Then, the trained VAEMDA was
implemented to score for all unknown miRNA–disease pairs and test samples. Through comparing
the scores of each test sample with all unknown miRNA–disease pairs, we would get the rank of
each test sample. Unlike global LODOCV, the rank of each test sample would be obtained by means
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of comparing the scores of each test sample with unknown miRNA–disease pairs involving the
investigated disease in local LODOCV. In global and local LODOCV, VAEMDA obtained AUCs of
0.8250 and 0.8237, respectively.

3.2. Case Studies

To further validate the performance of our model in predicting new miRNA–disease associations,
we conducted three different types of case studies on three important diseases.

In the first type of case study on EN, based on known associations in HMDD v2.0, VAEMDA was
implemented to score for candidate miRNAs of EN and the top 50 potentially EN-related miRNAs
were selected to make further validation. According to the survey [53], it was estimated that 17,650
new cases of EN would appear and 16,080 persons would die from EN in the United States in 2019.
Recently, some researchers have shown that the overexpression of miR-377 inhibits the initiation,
growth, and angiogenesis of EN, whereas the silencing of miR-377 has opposite effects [54]. The finding
indicates that miR-377 might serve as a promising non-invasive diagnostic and prognostic biomarker in
the clinical treatment of EN [54]. Further, it has been observed that SOX4 silences miR-31 to indirectly
promote proliferation and invasion of EN cells [55]. The result of the first type of case study showed
that 10 out of the top 10, 19 out of the top 20, and 45 out of the top 50 predictions were confirmed by
databases (dbDEMC, miR2Disease) and the literature (see Table 1).

Table 1. Prediction of the top 50 potential EN-related miRNAs.

miRNA Evidence miRNA Evidence

hsa-mir-195 dbDEMC hsa-mir-144 dbDEMC
hsa-mir-221 dbDEMC hsa-mir-30d dbDEMC

hsa-mir-146b dbDEMC hsa-mir-7 dbDEMC
hsa-mir-125b dbDEMC hsa-mir-337 unconfirmed
hsa-mir-200b dbDEMC hsa-mir-107 dbDEMC; miR2Disease

hsa-mir-9 dbDEMC hsa-mir-30c dbDEMC
hsa-mir-29b dbDEMC hsa-mir-378a unconfirmed
hsa-mir-24 dbDEMC hsa-mir-513a unconfirmed

hsa-mir-106b dbDEMC hsa-mir-16 dbDEMC
hsa-mir-30a dbDEMC hsa-mir-204 26722467
hsa-mir-429 dbDEMC hsa-mir-367 dbDEMC
hsa-mir-206 dbDEMC hsa-mir-422a dbDEMC
hsa-mir-182 dbDEMC hsa-let-7g dbDEMC
hsa-mir-103a unconfirmed hsa-mir-127 dbDEMC

hsa-let-7e dbDEMC hsa-mir-142 dbDEMC
hsa-mir-27b dbDEMC hsa-mir-198 dbDEMC

hsa-mir-193b dbDEMC hsa-mir-125a dbDEMC
hsa-mir-224 dbDEMC hsa-mir-23a dbDEMC
hsa-mir-10b dbDEMC hsa-mir-197 dbDEMC

hsa-mir-1 dbDEMC hsa-mir-96 dbDEMC
hsa-mir-424 dbDEMC hsa-mir-20b dbDEMC
hsa-mir-708 27092874 hsa-mir-133b dbDEMC
hsa-mir-32 dbDEMC hsa-mir-191 dbDEMC
hsa-mir-17 dbDEMC hsa-mir-132 dbDEMC

hsa-mir-222 dbDEMC hsa-mir-103b unconfirmed

The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs.
The evidences for the associations were either dbDEMC and miR2Disease or more recent experimental literatures
with the corresponding PMIDs.

In the second type of case study, we want to illustrate the ability of VAEMDA in identifying
associated miRNAs for new diseases without any known related miRNAs. Taking HC as the example,
we set all the known associations between miRNAs and HC as unknown ones so that HC could be
treated as a new disease. Then, VAEMDA was performed to score for all HC-miRNA pairs and the top
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50 potentially HC-related miRNAs were selected to make further validation. The American Cancer
Society forecasted that the number of deaths caused by HC in the United States would reach 31,780 in
2019 [53]. Globally, the incidence of breast cancer is still rising by 0.2–0.8% every year [56]. In recent
years, some medical researchers have found that, compared with normal people, the expression of
miR-1296 is reduced in HC patients [57]. Increasing the expression of miR-1296 would inhibit migration,
invasion and EMT progress of HC cells [57]. Therefore, it was concluded that the expression level of
miR-1296 might serve as a prognostic biomarker in HC [57]. In this type of case study, it was observed
that 10 out of the top 10, 20 out of the top 20 and 50 out of the top 50 predicted miRNAs were verified
by databases (dbDEMC, miR2Disease and HMDD v2.0) and the literature (see Table 2).

Table 2. Prediction of the top 50 potential HC-related miRNAs.

miRNA Evidence miRNA Evidence

hsa-mir-484 HMDD v2.0 hsa-mir-608 HMDD v2.0
hsa-mir-148a dbDEMC; miR2Disease; HMDD v2.0 hsa-mir-218 HMDD v2.0
hsa-mir-29b dbDEMC; HMDD v2.0 hsa-mir-21 miR2Disease; HMDD v2.0
hsa-let-7b miR2Disease; HMDD v2.0 hsa-mir-490 HMDD v2.0

hsa-mir-181b dbDEMC; miR2Disease; HMDD v2.0 hsa-mir-301a HMDD v2.0
hsa-mir-483 HMDD v2.0 hsa-mir-10b HMDD v2.0
hsa-mir-96 miR2Disease;HMDD v2.0 hsa-mir-638 28529597

hsa-mir-34b 28337312 hsa-mir-221 dbDEMC; miR2Disease; HMDD v2.0
hsa-let-7e dbDEMC; miR2Disease; HMDD v2.0 hsa-mir-326 HMDD v2.0

hsa-mir-320e HMDD v2.0 hsa-mir-362 HMDD v2.0
hsa-mir-1271 HMDD v2.0 hsa-mir-26 HMDD v2.0
hsa-mir-30c miR2Disease; HMDD v2.0 hsa-mir-320b HMDD v2.0
hsa-mir-26a dbDEMC; miR2Disease; HMDD v2.0 hsa-mir-320d HMDD v2.0

hsa-mir-450b HMDD v2.0 hsa-mir-1202 HMDD v2.0
hsa-mir-629 HMDD v2.0 hsa-mir-519e HMDD v2.0
hsa-mir-409 HMDD v2.0 hsa-mir-187 HMDD v2.0
hsa-mir-503 HMDD v2.0 hsa-let-7g miR2Disease; HMDD v2.0
hsa-mir-320c HMDD v2.0 hsa-mir-92 dbDEMC; HMDD v2.0
hsa-mir-219 miR2Disease; HMDD v2.0 hsa-mir-302b HMDD v2.0

hsa-mir-181d dbDEMC; HMDD v2.0 hsa-mir-125a dbDEMC; miR2Disease; HMDD v2.0
hsa-mir-491 HMDD v2.0 hsa-let-7d miR2Disease; HMDD v2.0
hsa-let-7a dbDEMC; miR2Disease; HMDD v2.0 hsa-mir-345 HMDD v2.0

hsa-mir-526a HMDD v2.0 hsa-mir-527 HMDD v2.0
hsa-mir-450a HMDD v2.0 hsa-mir-34c HMDD v2.0

hsa-let-7f miR2Disease; HMDD v2.0 hsa-let-7c dbDEMC; miR2Disease; HMDD v2.0

The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs.
The evidences for the associations were dbDEMC, miR2Disease and HMDD v2.0 or more recent experimental
literatures with the corresponding PMIDs.

Based on the known associations in HMDD v1.0, we implemented the third type of case study
to verify the generalization ability of VAEMDA (i.e., the prediction ability when VAEMDA was
applied to different datasets). Here, taking BN as the investigated disease, the result showed that
there are 10, 20 and 48 out of the top 10, 20 and 50 predicted BN-related miRNAs confirmed by
databases (dbDEMC, miR2Disease and HMDD v2.0) and literatures (see Table 3). Among the top
50 predicted miRNAs, we selected the first-ranked hsa-let-7b and the second-ranked hsa-let-7g to
further illustrate the specific process of their associations with diseases. Xu et al. [58] have proven
that p62 expression was elevated in BN stem cells, and increasing the expression of has-let-7b in BN
stem cells can inhibit the expression of p62. This may provide a new therapeutic approach for BN
treatment [58]. Moreover, cancer-associated fibroblasts (CAFs) can promote tumorigenesis, growth,
invasion, and metastasis of BN [59]. Through conducting pathway analysis, Zhao et al. [59] found that
hsa-let-7g was down-regulated in CAFs, suggesting that hsa-let-7g can induce BN by affecting CAFs.
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Table 3. Prediction of the top 50 potential BN-related miRNAs.

miRNA Evidence miRNA Evidence

hsa-let-7b dbDEMC; HMDD v2.0 hsa-mir-126 dbDEMC; miR2Disease; HMDD v2.0
hsa-let-7g dbDEMC; HMDD v2.0 hsa-mir-135a dbDEMC; HMDD v2.0

hsa-mir-92b dbDEMC hsa-mir-128b miR2Disease
hsa-mir-16 dbDEMC; HMDD v2.0 hsa-mir-24 dbDEMC; HMDD v2.0
hsa-let-7i dbDEMC; miR2Disease; HMDD v2.0 hsa-mir-191 dbDEMC; miR2Disease; HMDD v2.0
hsa-let-7e dbDEMC; HMDD v2.0 hsa-mir-182 dbDEMC; miR2Disease; HMDD v2.0

hsa-mir-223 dbDEMC; HMDD v2.0 hsa-mir-27a dbDEMC; miR2Disease; HMDD v2.0
hsa-mir-99a dbDEMC hsa-mir-26a dbDEMC; miR2Disease; HMDD v2.0
hsa-mir-100 dbDEMC; HMDD v2.0 hsa-mir-195 dbDEMC; miR2Disease; HMDD v2.0
hsa-mir-92a HMDD v2.0 hsa-mir-150 dbDEMC

hsa-mir-196b dbDEMC hsa-mir-454 28795052
hsa-mir-99b dbDEMC hsa-mir-183 dbDEMC; HMDD v2.0
hsa-mir-142 25406066 hsa-mir-30e unconfirmed
hsa-mir-203 dbDEMC; miR2Disease; HMDD v2.0 hsa-mir-342 dbDEMC; HMDD v2.0
hsa-mir-18b dbDEMC;HMDD v2.0 hsa-mir-372 dbDEMC
hsa-mir-181a dbDEMC; miR2Disease; HMDD v2.0 hsa-mir-95 dbDEMC

hsa-let-7c dbDEMC;HMDD v2.0 hsa-mir-409 HMDD v2.0
hsa-mir-335 dbDEMC; miR2Disease; HMDD v2.0 hsa-mir-31 dbDEMC; miR2Disease; HMDD v2.0

hsa-mir-130a dbDEMC hsa-mir-192 dbDEMC
hsa-mir-199b dbDEMC; HMDD v2.0 hsa-mir-96 dbDEMC; miR2Disease; HMDD v2.0
hsa-mir-29c dbDEMC; miR2Disease; HMDD v2.0 hsa-mir-323 unconfirmed
hsa-mir-23b dbDEMC;HMDD v2.0 hsa-mir-181d dbDEMC; miR2Disease
hsa-mir-101 dbDEMC; miR2Disease; HMDD v2.0 hsa-mir-15b dbDEMC
hsa-mir-224 dbDEMC;HMDD v2.0 hsa-mir-32 dbDEMC
hsa-mir-373 dbDEMC; miR2Disease; HMDD v2.0 hsa-mir-378 25120807

The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs.
The evidences for the associations were dbDEMC, miR2Disease and HMDD v2.0 or more recent experimental
literatures with the corresponding PMIDs.

In conclusion, from the above evaluation results, we can clearly see that VAEMDA shows reliable
performance in both cross validation and case studies. With the continuous experimental research on
miRNA–disease associations, we believe that more and more potential miRNA–disease associations
predicted by our model could be confirmed in the future.

4. Discussion

It is important for clinical diagnoses and treatments of diseases to discover disease-associated
miRNAs. In this paper, we developed an unsupervised computational model called VAEMDA
to predict potential associations between miRNAs and diseases. The implementation process of
our model can be divided into three parts. The first part was to construct two spliced matrices.
Through respectively combining the integrated miRNA similarity and the integrated disease similarity
with the miRNA–disease associations, we constructed two spliced matrices that were regarded as the
input of our model. The second part was to build and optimize the model. After constructing the VAE
deep learning framework, we utilized the Adam strategy to optimize our model based on training
data (i.e., the two spliced matrices). The third part was to use trained VAEMDA to score for candidate
miRNA–disease pairs and obtain potential miRNA–disease associations. To evaluate the performance
of VAEMDA, we carried out three kinds of cross validation and three types of case studies on EN,
HC and BN. The AUCs of VAEMDA were 0.9118 and 0.8652 in global LOOCV and local LOOCV,
respectively, which exceeded ten previous models. In 100 times five-fold cross validation, VAEMDA
obtained the average AUC of 0.9091 and standard deviation of 0.0065, which reflected the stability
of VAEMDA in prediction to some extent. Further, the AUCs of VAEMDA were 0.8250 and 0.8237
in global LODOCV and local LODOCV. In case studies, based on the association scores predicted by
VAEMDA, we selected the top 50 potential associated miRNAs for each disease, most of which were
confirmed by databases and experimental literatures. Three types of case studies on three different
important diseases further illustrated the excellent performance of VAEMDA.
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VAEMDA shows more reliable performance over previous methods because of the following
four factors. First, the unsupervised model of VAEMDA does not need negative samples. Therefore,
VAEMDA can avoid the noise introduced by randomly selecting negative samples. Second, the core
of VAEMDA is the deep learning framework named VAE that is a kind of generation models.
Generation models have great advantages in dealing with data loss problems. We constructed two
spliced matrices as the training data of our model, and a part of the data in each spliced matrix
is missing. Therefore, the feature of our training data fully exerts the role of VAE, which makes
VAMEDA more reliable. Third, as a data-driven deep learning model, VAEMDA repeatedly adjust a
weighted combination of input features until the model identifies the best possible reconstruction of
the input data. Further, the reconstruction process of original data in VAEMDA can be treated as a
high dimensional interaction space in which the latent dimensions capture the complex associations
between miRNAs and diseases. Fourth, in VAE, the process of reconstructing the original data has
a confrontational relationship with the process of calculating the Kullback–Leibler loss. In detail,
the process of reconstructing original data is continuously to reduce noise, while the process of
calculating the Kullback–Leibler loss will continuously generate Gaussian noise. This kind of
confrontational relationship actually avoids the over-fitting of VAEMDA during the training process
and improves the robustness and generalization ability of VAEMDA.

However, VAEMDA still has a lot of room for improvement. In this paper, the miRNA and
disease similarity calculation might not be the perfect method. In the future, we expect more biological
information to be added to fine-tune the similarity measure. In addition, in the HMDD v2.0 database,
the known miRNA–disease associations account for less than 3% of all miRNA–disease pairs. In the
future, as more and more novel miRNA–disease associations are discovered, we believe the predictive
accuracy and stability of VAEMDA can be improved. Moreover, although deep learning models have
been used in some areas and achieved good results, this kind of model still lacks interpretability due
to the nonlinear nature of the model architecture, and VAEMDA is no exception. We are currently
working to make VAEMDA more interpretive, accessible, and useful to biologists.
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