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Abstract: The use of non-optimal preparations of mesenchymal stem cells (MSCs), such as extensively
expanded cells, might be necessary to obtain the large numbers of cells needed for many clinical
applications. We previously demonstrated that minimally expanded (early passage) MSCs can
be pre-activated as spheroids to produce potentially therapeutic factors in 3D cultures. Here, we
used extensively expanded (late passage) MSCs and studied their 3D-culture activation potential.
MSCs were culture-expanded as 2D monolayers, and cells from various passages were activated
by 3D culture in hanging drops with either fetal bovine serum (FBS)-containing media or a more
clinically-applicable animal product-free (xeno-free) media. Gene expression analyses demonstrated
that MSC spheroids prepared from passage 3, 5, and 7 cells were similar to each other but different
from 2D MSCs. Furthermore, the expression of notable anti-inflammatory/immune-modulatory
factors cyclooxygenase-2 (PTGS2), TNF alpha induced protein 6 (TNFAIP6), and stanniocalcin 1
(STC-1) were up-regulated in all spheroid preparations. This was confirmed by the detection of
secreted prostaglandin E2 (PGE-2), tumor necrosis factor-stimulated gene 6 (TSG-6, and STC-1. This
study demonstrated that extensively expanded MSCs can be activated in 3D culture through spheroid
formation in both FBS-containing and xeno-free media. This work highlights the possibility of
activating otherwise less useable MSC preparations through 3D culture generating large numbers of
potentially therapeutic MSCs.

Keywords: MSC; spheroid; 3D; anti-inflammatory; immunomodulatory; passage; culture-expansion;
xeno-free; TSG-6; PGE2

1. Introduction

The nonhematopoietic multipotent stromal cells first identified in bone marrow, commonly
referred to as MSCs (mesenchymal stem cells), are poised to transform cell-based therapies due
to their many beneficial properties [1]. Broadly defined, MSCs constitute a heterogenous subset
of plastic-adherent spindle-shaped cells capable of differentiating, with proper stimulus, into the
mesodermal cell types that form bone, cartilage, and adipose tissue [2–5]. These properties were
exploited in early MSC-based applications focused on regeneration of connective tissues [5,6] and to
determine the existence of similar cells throughout the body [7,8].

More recently, there has been considerable interest in harnessing the profound paracrine-mediated
immunomodulatory effects of MSCs [6,9–13]. In response to cytokines and other biochemical signals
liberated from injured tissues, MSCs, recruited to the injury site, secrete numerous factors that
collectively regulate the signaling pathways and cell types associated with inflammatory responses
and immunological phenotypes. These activities, in combination with their lack of class II major
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histocompatibility complex proteins (MHC) and costimulatory factors, potentially allow the cells
to evade alloreactive immune response [9–13]. Accordingly, MSCs are being explored as a viable
treatment option to attenuate tissue damage caused by severe inflammatory microenvironments, such
as those observed with graft-vs-host-disease, autoimmune disease, ischemic tissue injury, and organ
transplants [14,15].

Therapies utilizing MSCs often require ex vivo expansion to generate the large numbers of cells
needed for patients and to overcome limitations in tissue recovery [16]. Ex vivo expansion has been
particularly important for bone marrow MSCs, which remain the primary clinical source but only
constitute about 0.01% of all mononuclear cells in the bone marrow, a fraction that declines with age [17].

Typically, MSCs have been almost exclusively expanded on rigid tissue culture-treated polystyrene
as a two-dimensional (2D) monolayer [16]. These culture conditions were vital for the initial discovery
of MSCs [18] and for characterizing their multipotency [3,4]. While convenient and highly effective for
cell expansion, 2D cultures are highly artificial and overlook the importance of cell signaling networks
activated by cell–cell and cell–matrix interactions in native tissues [19].

Expansion under 2D or similar conditions alters the differentiation potential of MSCs [20,21] and
has been shown to be detrimental to the migratory and immunomodulatory capacity of the cells [22].
Extensive expansion has also been considered to cause inconsistent results in clinical studies capitalizing
on the immunomodulatory potential of the cells [23,24], raising questions as to the best methods for
preparing the cells prior to administration into patients [25]. With demands for MSCs increasing, finding
effective and economical ways to preserve the therapeutic properties of culture-expanded cells has
become critical. It has also become important to improve standardized methods for culturing the cells.

Over the past several years, we and others have studied MSCs in various 3D culture formats
in an attempt to recapitulate the cell–cell and cell–matrix interactions of native tissue. Culturing
the cells in 3D has been shown to enhance many of the therapeutic properties of MSCs including
their immunosuppressive, immunomodulatory, and anti-cancer effects [26] We previously showed
that MSCs spontaneously aggregate in 3D culture, forming spheroids primed to secrete a variety of
potentially therapeutic anti-inflammatory factors, such as prostaglandin E2 (PGE2), tumor necrosis
factor-stimulated gene 6 (TSG-6), and stanniocalcin 1 (STC-1) [25–28]. Importantly, the secretion of
these factors by MSCs in cultured spheroids mimics the activation of MSCs that aggregate in vivo
after injection into animals [29–31]. Moreover, the important roles for PGE2, TSG-6, and STC-1 in the
regulation of the monocyte/macrophage phenotype and function is of particular interest [28,31–40].

Here, we employed a 3D culture protocol consisting of suspending minimally expanded (early
passage) and extensively expanded (late passage) MSCs in hanging drops of fetal bovine serum
(FBS)-containing media and xeno-free (i.e., free of animal components) media, thus resulting in
activated MSCs in spheroids. Our results showed that the production of anti-inflammatory factors
PGE2, TSG-6, and STC-1 can be restored in late passage MSCs in 3D cultures. These results suggest
that the utilization of 3D culture techniques might circumvent issues surrounding the altered cellular
properties of extensively expanded MSCs.

2. Materials and Methods

2.1. MSC Culture

Human MSCs, obtained from bone marrow of three healthy adult males (24–37 years of age)
were provided as passage 1 cells by the Center for the Preparation and Distribution of Adult Stem
Cells at Texas A&M University Health Science Center (https://medicine.tamhsc.edu/centers/irm/msc-
distribution.html). The MSCs were isolated from a 1–4 mL bone marrow aspirate of the iliac crest.
Nucleated cells were obtained by density gradient centrifugation (Ficoll-Paque; GE Healthcare; Chicago,
IL, USA) and were resuspended in a complete culture medium (CCM) consisting of α-Minimum
Essential Medium (MEMα, Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
17% fetal bovine serum (FBS, Atlanta Biologicals, Flowery Branch, USA), 100 units/mL penicillin
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(Gibco), 100 µg/mL streptomycin (Gibco), and 2 mM L glutamine (Gibco). Cells were seeded in 175 cm2

flasks (Nunc, Thermo Fisher Scientific), and were subsequently cultured at 37 ◦C in a humidified
atmosphere with 5% CO2 for 24 h. Non-adherent cells were discarded, while adherent cells were
incubated 4–11 days until approximately 70% confluent. Cells were harvested with 0.25% trypsin and
1 mM ethylenediaminetetraacetic acid (EDTA, Gibco), and they were re-plated at 50 cells/cm2 in an
intercommunicating system of culture flasks (Nunc, Thermo Fisher Scientific). The cells were incubated
for 7–12 days until approximately 70% confluent, harvested with trypsin/EDTA, and frozen as passage
1 cells in MEMα containing 30% FBS and 5% dimethyl sulfoxide (DMSO; Sigma; St. Louis, MO, USA).
Prior to distribution, the passage 1 cells were characterized by the Center and reported to meet all
criteria for the MSC phenotype established by the International Society for Cellular Therapy [4]. Here,
frozen vials of the passage 1 MSCs from the three donors were thawed, suspended in CCM, and plated
on a 152 cm2 culture dish (Corning). After 24 h, cells were harvested using trypsin/EDTA and plated at
100 cells/cm2 for 7 days, with medium changes at days 3 and 6, before freezing as passage 2 cells. For
the experiments described here, a vial of passage 2 MSCs were recovered by plating the cells in CCM on
a 152 cm2 culture dish for 24 h. Cells were harvested with trypsin/EDTA, re-seeded at 100 cells/cm2 in
CCM, and incubated for 7 days with medium change at days 3 and 6. This was repeated until the cells
did not double in their number in 7 days. Triplicate counts of the cells after each passage were obtained
using a hemocytometer. Prior to use in experiments herein, MSC surface markers were corroborated
by flow cytometry (Supplemental Figure S1, Supplemental Table S1). For some experiments, MSCs
were cultured after passage 3, 5, 7, and 9 at a very high density of (Adh VH), 200,000 cells/cm2 at 714
cells/µL for 3 days to match the spheroid generation conditions.

2.2. Generation of Spheroids and Spheroid-Derived Cells

MSC spheroids were generated as previously described [26]. Briefly, MSCs from passages 3, 5, 7,
and 9 were plated in hanging drops on an inverted culture dish lid in 35 µL of a culture medium at
25,000 cells/drop. The lid was then rapidly re-inverted onto the culture dish that contained phosphate
buffered saline (PBS, Gibco) to prevent evaporation of the drops. The hanging drop cultures were
incubated for 3 days at 37 ◦C in a humidified atmosphere with 5% CO2. The MSCs in hanging
drops were cultured in two different media formulations, CCM (containing FBS) and a xeno-free (XF)
formulation comprising a StemPro XF (Life Technologies, Thermo Fisher Scientific) base medium
supplemented with clinical grade human serum albumin (HSA, 13 mg/mL) isolated from human
blood (Baxter, Deerfield, IL, USA) [25]. To obtain sphere-derived cells, spheroids were collected from
the tissue culture dish lid using a cell lifter (Corning, Tewksbury, MA, USA), washed in PBS, and
then incubated with trypsin/EDTA at 37 ◦C for approximately 10 min with pipetting every 2–3 min.
Spheroid-derived cells were collected by centrifugation at 453× g for 10 min.

2.3. Conditioned Media and Cell Lysate Harvest

Spheroids and conditioned media, from 3–4 separate experiments, were collected from the tissue
culture dish lid using a cell lifter and centrifuged at 453× g for 5 min. The supernatant was clarified by
centrifugation at 10,000× g for 10 min and stored at −80 ◦C. To obtain sphere cell lysates, spheres were
centrifuged at 453× g for 5 min, washed with PBS, centrifuged at 453× g for 5 min, and lysed with an
RLT buffer from an RNeasy Mini Kit (Qiagen, Germantown, MD, USA). For TSG-6 and STC-1 ELISA,
intact spheres from 3 day hanging drop cultures were transferred to 6-well low adherent dishes (Costar,
Corning) for 6 h in MEMα supplemented with 2% FBS, penicillin–streptomycin, and l-glutamine.

2.4. Microarrays

RNA was isolated from thawed cell lysates of P3 adherent monolayer MSCs (Adh), P3 spheroids
(Sph P3), P5 spheroids (Sph P5), and P7 spheroids (Sph P7), from 3 separate experiments with the
RNeasy Mini Kit. The isolated RNA was quantified with a Nanodrop spectrophotometer (Thermo
Fisher Scientific), and the RNA from 3 separate biological experiments were pooled at equal amounts
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(100 ng each) for total of 300 ng for each sample. Labeled amplified RNA (aRNA) was prepared
according to manufacturer’s instructions for the GeneChip 3′ IVT Express Kit (Affymetrix, Thermo
Fisher Scientific). A total of 15 µg of labeled aRNA was fragmented and hybridized (GeneChip
Hybridization Oven 640, Affymetrix) onto human arrays (HG-U133 Plus 2.0, Affymetrix), followed by
washing and staining (GeneChip Fluidics Station 450, Affymetrix) with a GeneChip Wash and Stain Kit
(Affymetrix). Arrays were scanned with a GeneChip Scanner (Affymetrix), and raw data files (CEL-files)
were transferred into a Transcriptome Analysis Console (TAC, 4.0, Applied Biosystems, Thermo Fisher
Scientific). Library files were obtained from NetAffx through the TAC software, and the data were
normalized using the robust multi-chip analysis (RMA) algorithm. Principal component analysis was
performed with the TAC using all the genes. For hierarchical clustering, the data were filtered using
only genes that were either up- or down-regulated at least 4-fold between any of the spheroid samples
and the monolayer sample, resulting in 1328 genes. To generate the Venn diagram, each spheroid
sample was compared to the monolayer sample, and genes that were either up- or down-regulated at
least 2-fold were used. The data were studied for pathways enriched in the differentially expressed
genes between the spheroid MSCs and the adherent monolayer MSCs using the WikiPathways feature
in the TAC software. The significance of a pathway was calculated using a 2 × 2 contingency in a
Fisher’s exact test (two sided). The p-values were then converted to −log10, resulting in significance
values. The data were also queried for the expression of potentially therapeutic molecules identified
previously [26] and the differentially expressed interleukin 1 (IL-1) signaling molecules we identified
in our previous work [27].

2.5. PGE2 ELISA

Conditioned medium samples (n = 4) were diluted to 1:50–1:100 for the determination of PGE2
concentration by the ELISA kit (R&D Systems, Minneapolis, MN, USA). Optical density was determined
on a plate reader (FLUOstar Omega; BMG Labtech, Cary, NC, USA) at an absorbance of 450 nm with a
wavelength correction at 540 nm to correct for the optical imperfections in the plate.

2.6. TSG-6/STC-1 ELISA

The level of secreted STC-1 (n = 4) was assessed using an ELISA kit (R&D Systems) following
procedures set forth by the manufacturer. The level of TSG-6 protein secreted by MSCs (n = 4)
was measured using an internal ELISA assay, as described previously [26,27]. Reagents for TSG-6
ELISA were purchased from R&D Systems unless otherwise indicated. Briefly, the wells of a 96-well
high-binding polystyrene plate were incubated overnight with 10 µg/mL of a TSG-6 monoclonal
antibody (clone A38.1.20; Santa Cruz Biotechnology, Dallas, TX, USA) diluted in PBS. Afterward, each
well was washed 3–4 times with 400 µL of a 1× wash buffer and then blocked in 200 µL of a PBS
solution containing 0.5% bovine serum albumin (BSA) for one hour. A conditioned medium and TSG-6
protein standards diluted in blocking buffer were applied to the appropriate wells and incubated
at room temperature (RT) for 2–3 h on a plate shaker (VWR International, Radnor, PA, USA). After
repeating the washes, biotinylated anti-human TSG-6 (0.5 µg/mL) in 100 µL of a blocking buffer was
applied to the wells and incubated on a plate shaker for 1–2 h. The wells were washed again followed
by 20 min incubation with streptavidin–horseradish peroxidase. TSG-6 and STC-1 proteins were
visualized using substrate solution containing stabilized hydrogen peroxide and tetramethylbenzidine.
The colorimetric reaction was terminated with 2N sulfuric acid. For all assays, optical density was
measured on a plate reader (FLUOstar OMEGA, BMG Labtech) at an absorbance of 450 nm with optical
imperfections corrected using a wavelength of 540 nm.

2.7. Macrophage Inflammatory Assay

The effect of the conditioned medium on inflammatory response was determined by the measuring
of selected cytokines produced by macrophages in response to lipopolysaccharide (LPS, Sigma)
stimulation, as described previously [26,28,30,41]. J774A.1 mouse monocytes/macrophages (ATCC,
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Manassas, VA, USA) were expanded on 15 cm petri dishes as loosely adherent cultures in high-glucose
Dulbecco’s Modified Eagle Medium (DMEM, Gibco) supplemented with 10% FBS, 100 units/mL
penicillin, and 100 µg/mL streptomycin. At approximately 80–90% confluency, the cells were collected
and stimulated in suspension with 100 ng/mL LPS for 5–10 min. The cells were then transferred
at 100,000 cells per well into 12-well plates containing a 1:200 diluted conditioned medium with
n = 4 for each condition. After 16 h, the medium was collected from the macrophage cultures and
centrifuged at 500× g for 5 min. The processed medium was used to measure macrophage production
of the pro-inflammatory cytokine TNFα and anti-inflammatory factor IL-10. Cytokine levels were
assessed using ELISA kits (R&D Systems) according to the manufacturers suggestions, as described
previously [26,28,30,41].

2.8. Statistical Methods

Data are expressed as mean ± SD and were analyzed using GraphPad Prism (8.2.0., GraphPad
Software, San Diego, CA, USA)). Data from three or more groups were analyzed using a one-way
ANOVA. The Tukey’s post hoc test was used to assess statistical significance between groups.
Statistical significance was defined as ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; and ***, p < 0.001, unless
otherwise indicated.

3. Results

3.1. MSC Proliferation Rate Declines When Cultured Extensively

Previous studies have demonstrated that when MSCs were extensively cultured (i.e., passaged
continuously), they entered senescence [20,22,42]. In here, we cultured MSCs in 2D as adherent
monolayer cultures starting from a low density (100 cells/cm2) and continuously passaged them every
seven days. All three MSC preparations (MSC donors) used showed a rapid decline in proliferation
rate after passage 7, 8, or 9 and less than one population doubling per seven days of culture at passage
10, 12, or 13, as demonstrated by the growth curves (Figure 1A). To better appreciate how the culture
expansion of a small (1 mL) bone marrow aspirate affects cell yields for clinical use, we generated
a cumulative population expansion graph. A conservative estimation was made that at the end of
passage 0—when the initial bone marrow culture reached approximately 70% confluency, 106 MSCs
existed. Using this estimation, the minimally expanded MSCs in passage 2 or 3 provided approximately
1010 cells, while MSCs in passages 7 and 8 provided nearly 1020 cells. The final achievable cell yield
could be up to 1025 for donor 2, as shown in Figure 1B. Importantly, since the proliferation rate of
MSCs appeared to decline rapidly after passages 7–9, for the purposes of this study, cells expanded to
passage 7–9 are considered as extensively expanded.

3.2. Spheroids Generated from Early Passage and Extensively Expanded MSCs Demonstrate Similar Gene
Expression Patterns

In our previous studies, we demonstrated that MSCs grown in hanging drops aggregated into
spheroids [25–28]. However, previous studies of 3D cultured MSCs had focused on minimally
expanded, or early passage cells, whereas in some therapeutic instances, the use of later passage
cultures might be necessary. In here, we generated MSC spheroids in hanging drops from adherent
monolayer MSCs at passages 3, 5, and 7, and we studied their gene expression profiles with microarrays.
Principal component analysis demonstrated that gene expression levels of MSC spheroids generated
from all three passages were very similar to each other (Figure 2A). This was further supported
by hierarchical clustering of the differentially expressed genes between the spheroids and adherent
monolayer MSCs (Figure 2B). A Venn diagram of differentially expressed genes demonstrated that
over 50% of these genes were shared by spheres from all three passages (Figure 3A). Spheroids from
each passage showed some genes that were differentially expressed in only that passage; however, the
number of genes was only 6–15% (Figure 3A). The microarray data suggested that passage 5 and 7
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MSC spheroids were slightly more similar to each other than to P3 spheroids, but they still shared
many gene expression patterns with the P3 spheroids (Figures 2 and 3A).Cells 2019, 8, x FOR PEER REVIEW 6 of 19 
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A further analysis of the genes differentially expressed between the adherent monolayer MSCs
and spheroid MSCs was conducted using WikiPathways. Many of the differentially expressed genes
were in pathways relating to metabolism of various biomolecules including glycosaminoglycans,
pyrimidines, sphingolipids, glycerophospholipids, amino acids, and arachidonic acid (Supplemental
Table S2). These results suggested that the MSCs were changing their metabolism preferences as they
aggregated into spheroids. Furthermore, pathways relating to cell cycle, adhesion, and extracellular
matrix were significantly represented in the differentially expressed genes, suggesting modifications in
the cell-to-cell and cell-to-matrix interactions as the MSCs assembled into spheroids (Supplemental
Table S2). In addition, various cell signaling pathways, such as IL-1 and senescence in cancer and the
senescence-associated secretory phenotype (SASP), were significantly presented in the differentially
expressed genes, thus suggesting major changes in cell communication (Supplemental Table S2). Many
of the genes up-regulated or down-regulated in the spheroids had very similar fold changes in all
passages when compared to the adherent monolayer MSCs. (Supplemental Table S3).
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Figure 2. Gene expression is similar in spheroids generated from both extensively expanded and early
passage MSCs. Spheroids were generated from passage 3, 5, and 7 MSCs and employed for gene
expression microarrays. (A) Principal component analysis of the microarray data. Cube characters are
spheroid MSCs from different passages and ball character is adherent monolayer MSCs. (B) Hierarchical
clustering of the differentially expressed genes between adherent monolayer MSCs and spheroid MSCs
from different passages. Red color indicates a high gene expression, and blue color indicates a low gene
expression. Scale demonstrates log2 gene expression value. Abbreviations: Adh, adherent monolayer
MSCs; PCA1, principal component 1; P3, passage 3; Sph, spheroid MSCs.

3.3. Spheroids Generated from Extensively Expanded MSCs Maintain the High Expression of Potentially
Therapeutic Genes

To study if the spheroids generated from extensively expanded MSCs still expressed high levels
of potentially therapeutic genes that we identified previously [26,28], we searched the microarray
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data for their gene expressions. Microarrays suggested that PTGS2 (COX2), TNFAIP6 (TSG6), STC1,
and TNSF10 (TRAIL) were all still highly expressed in spheroids generated from P5 and P7 MSCs
(Figure 3B) when compared to the adherent monolayer MSCs. Microarray data suggested that PTGS2,
TNFAIP6, and STC1 were even more up-regulated in spheroids generated from late passage cells
than spheroids from early passage when compared to the adherent monolayer MSCs (Figure 3B).
However, as suggested by the microarray data, the high TNSF10 expression got smaller as the MSCs
were passaged but was still up-regulated in P7 spheroids when compared to the adherent monolayer
MSCs (Figure 3B).
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Figure 3. Spheroids generated from extensively expanded MSCs maintain high expression of potentially
therapeutic molecules. Gene expression data were searched for differentially expressed genes between
adherent monolayer MSCs and spheroids from various passages. Furthermore, the expression of
potentially therapeutic genes and IL-1 signaling molecules were queried from the microarray data.
(A) Venn diagram of differentially expressed genes. (B) Expression of potentially therapeutic genes in
spheroid MSCs. (C) Expression of IL-1 signaling related genes in spheroid MSCs. Abbreviations: Adh,
adherent monolayer MSCs; P3, passage 3; Sph, spheroid MSCs.

We previously demonstrated the importance of IL-1 signaling in the up-regulation of the potentially
therapeutic genes in MSC spheroids [27]. Therefore, the microarray data were queried for the key IL-1
signaling related genes. The microarray data suggested that the up-regulation of IL-1B, IL-1A, IL-1R1,
and IRAK2 were maintained in spheroids generated from all passages (Figure 3C).
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3.4. MSC Spheroids Generated from Extensively Expanded Cells Secrete High Amounts of
Anti-Inflammatory/Immunomodulatory Factors

We had previously reported that MSC spheroids secreted high amounts of PGE2, TSG-6, and
STC-1 in FBS-containing and in a specific xeno-free media [25–28]. In here, MSC spheroids generated
from extensively expanded cells from three donors secreted high levels of PGE2 in both FBS-containing
media and xeno-free media (Figure 4A, Supplemental Figures S1A and S2A). To study if the high PGE2
production was maintained at least for short term in 2D after the 3D pre-activation, the obtained MSC
spheroids were enzymatically and mechanically dissociated. The resulting cells maintained a high
level of secretion of PGE2 even after transfer into 2D cultures (Figure 4B, Supplemental Figures S1B
and S2B). MSC spheroids also secreted high amounts of TSG-6 (Figure 5A, Supplemental Figures S3A
and S4A) and STC-1 (Figure 6A, Supplemental Figures S5A and S6A) in media supplemented with
FBS or in the xeno-free medium. The secretion of TSG-6 (Figure 5B, Supplemental Figures S3B and
S4B) and STC-1 (Figure 6B, Supplemental Figures S5B and S6B) was also maintained in 2D in cells
dissociated from spheroids generated in a serum containing media and xeno-free conditions.Cells 2019, 8, x FOR PEER REVIEW 10 of 19 
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density monolayers in fetal bovine serum (FBS)-containing and xeno-free media. The conditioned
medium was harvested for PGE2 ELISA. Spheroids were also dissociated and the resulting cells were
tested for their ability to maintain PGE2 secretion. (A) PGE2 secretion by spheroids and very high
density monolayer MSCs in FBS-containing media and xeno-free media at different passages. (B) PGE2
secretion by spheroid-derived cells from FBS-containing media and xeno-free media at different
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passages. Abbreviations: Adh VH, adherent very high density monolayer MSCs; CCM, complete
culture medium; P3, passage 3; Sph, spheroid MSCs; Sph DC, spheroid-derived MSCs; StemP HSA,
StemPro xeno-free media with human serum albumin.Cells 2019, 8, x FOR PEER REVIEW 11 of 19 
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Figure 5. Spheroids generated from extensively expanded MSCs secrete high amounts of tumor
necrosis factor-stimulated gene 6 (TSG-6). MSCs from various passages (3, 5, and 7) were cultured as
spheroids and as very high density monolayers in FBS-containing and xeno-free media. The conditioned
medium was harvested for TSG-6 ELISA. Spheroids were also dissociated and the resulting cells were
tested for their ability to maintain TSG-6 secretion. (A) TSG-6 secretion by spheroids and very high
density monolayer MSCs in FBS-containing media and xeno-free media at different passages. (B)
TSG-6 secretion by spheroid-derived cells from FBS-containing media and xeno-free media at different
passages. Abbreviations: Adh VH, adherent very high density monolayer MSCs; CCM, complete
culture medium; P3, passage 3; Sph, spheroid MSCs; Sph DC, spheroid-derived MSCs; StemP HSA,
StemPro xeno-free media with human serum albumin.
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Figure 6. Spheroids generated from extensively expanded MSCs secrete high amounts of stanniocalcin
1 (STC-1). MSCs from various passages (3, 5, and 7) were cultured as spheroids and as very high
density monolayers in FBS-containing and xeno-free media. The conditioned medium was harvested
for STC-1 ELISA. Spheroids were also dissociated and the resulting cells were tested for their ability
to maintain STC-1 secretion. (A) STC-1 secretion by spheroids and very high density monolayer
MSCs in FBS-containing media and xeno-free media at different passages. (B) STC-1 secretion
by spheroid-derived cells from FBS-containing media and xeno-free media at different passages.
Abbreviations: Adh VH, adherent very high density monolayer MSCs; CCM, complete culture medium;
P3, passage 3; Sph, spheroid MSCs; Sph DC, spheroid-derived MSCs; StemP HSA, StemPro xeno-free
media with human serum albumin.

3.5. MSC Spheroids Generated from Extensively Expanded Cells Maintain Their Ability to Suppress Stimulated
Macrophages

In our previous studies, we demonstrated that 3D pre-activated MSCs showed anti-inflammatory
effects both in vitro and in vivo [25–28]. More specifically, we showed that MSC spheroids could
suppress LPS-stimulated macrophages primarily through the secretion of PGE2 [28]. Since the
spheroids from extensively expanded MSCs still secreted high amounts of PGE2, their ability to
suppress LPS-activate macrophages was studied. Spheroids from both the FBS-containing cultures and
the xeno-free cultures secreted factors that suppressed the secretion of the pro-inflammatory cytokine
TNF-α (Figure 7A) and increased the secretion of the anti-inflammatory cytokine IL-10 (Figure 7B)
by the stimulated macrophages. Higher macrophage suppression was achieved by the conditioned
medium from the later passage cultures (Figure 7)
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Figure 7. Spheroids generated from extensively expanded MSCs exhibit anti-inflammatory properties.
MSCs from various passages (3, 5, and 7) were cultured as spheroids and as very high density monolayers
in FBS-containing and xeno-free media. Conditioned media from these cultures were applied
on lipopolysaccharide (LPS)-stimulated macrophages and anti-inflammatory effects were studied.
(A) Conditioned media effects on TNFα secretion by LPS-stimulated macrophages. (B) Conditioned
media effects on IL-10 secretion by LPS-stimulated macrophages. Compared to the appropriate media
control (i.e., CCM or StemP HSA). Statistical significance was defined as ns, p ≥ 0.05; and ***, p < 0.001,
Abbreviations: Adh VH, adherent very high density monolayer MSCs; CCM, complete culture medium;
Ctrl, control unstimulated macrophages; P3, passage 3; Sph, spheroid MSCs; StemP HSA, StemPro
xeno-free media with human serum albumin.

4. Discussion

MSCs are the progenitor cells of most tissues that have been studied in detail both in pre-clinical
and clinical settings [1,4,7,13,43,44]. Common to many MSC studies is the culture of MSCs in 2D under
xenogeneic conditions (i.e., conditions that involve tissues/cells belonging to a different species) and
the extensive expansion of the cells. These conditions can change the MSC characteristics and cause
problems when transferring basic research into the clinical setting [16,45,46]. Here, we demonstrated
culture conditions that promoted the activation of extensively expanded MSCs in FBS-containing and
xeno-free conditions. Furthermore, we showed that the potential anti-inflammatory effects of the MSC
spheroids and spheroid-derived cells are maintained in MSCs even after extensive culture expansion.
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The culture of cells in 2D on tissue culture plastic is the most common and convenient method to
expand cells such as MSCs [4]. MSCs are easily expandable under these conditions, especially when
the culture media contains FBS. However, 2D cultures do not mimic the in vivo niches of MSCs well
and may therefore change the cells and affect their usability [19,47]. Many of the changes have been
attributed to the lack of cell-to-cell contacts and the requirement of the use of enzymes and other
chemicals to break the tight binding between the cells and the plastic, which can lead into further
change and even damage of the cells. In 3D, cells are able to communicate with neighboring cells
better, and cell-to-cell and cell-to-matrix connections are formed easily [19,47]. MSCs and many other
cells spontaneously aggregate into 3D spheroids when culture under conditions in which plastic
adherence is not permitted [19,48]. The aggregation can be achieved through culture in hanging
drops, as demonstrated here, but also through other means such as non-adherent culture dishes,
rotating wall vessels, and precise printing techniques [19,49]. Hanging drop cultures are somewhat
labor intensive, but they are inexpensive and allow for the formation of uniform sized spheroids
through easy manipulation of the drop volume and cell concentration. We previously demonstrated
that MSCs aggregate into spheroids in hanging drops even under xeno-free conditions and activate
anti-inflammatory and immunomodulatory factors similarly to the FBS-containing hanging drop
cultures [25–28].

FBS is a common, easy to obtain, and relatively inexpensive media additive that provides ample
nutrients to growing cells. However, manufactured lots of FBS do not always work the same and
add xenogeneic molecules that can be internalized by the cells [50]. Xenogeneic molecules can act as
antigens when the cells are delivered into the patients and can therefore generate undesired immune
reactions, thus hampering the therapeutic use of the cells that have been expanded with FBS-containing
media [51]. In here, we continued our previous research regarding xeno-free 3D cultures and expanded
the studies using extensively cultured MSCs [25].

To obtain the large numbers of MSCs for therapeutic use, the cells must be extensively expanded
in culture [16,17]. As many research experiments typically use low-passage MSCs, many unknowns
persist regarding the characteristics and usability of late passage MSCs. However, some studies have
shown that MSCs enter replicative senescence after extensive culture and change their transcriptome,
leading into morphological and functional changes of the cells [16,21,42,52]. In here, we showed
that the MSC proliferation rate steadily declined following extensive expansion, suggesting the cells
entered senescence at various times, as supported by previous studies [42,52]. Throughout the
extensive expansion of the MSCs in the current study, cells were pre-activated in 3D for the study of
the transcriptomes and functional characteristics of the cells. Our results showed that the spheroids
generated from the MSCs at different passages were transcriptionally very similar and much closer
to each other than they were to the 2D cultured MSCs. This was somewhat surprising, as our study
employed MSCs from various donors and different passages, including late passage cells showing a
decline in proliferation rate. The results suggested that even a short 3D culture of 72 h was able to
change the characteristics of extensively expanded MSCs comparable to the early passage 3D cultures.

Our previous research had demonstrated the importance of up-regulated IL-1 signaling in 3D MSC
spheroids to the potential anti-inflammatory effects of the cells [27]. Here, spheroids generated from
different passage MSCs exhibited an increased expression of the IL-1 signaling molecules important
in activating the expression of the observed anti-inflammatory and immunomodulatory related
factors PTGS2 (COX-2), TNFAIP6 (TSG-6), and STC1. These results suggested that the short 3D
culture was able to activate the IL-1 signaling that controlled the expression of the aforementioned
factors. Furthermore, our results showed that the ability of 3D-culture-activated MSCs to secrete
high levels of PGE2, TSG-6, and STC-1 was maintained regardless of the passage of the 2D expanded
cells used to generate the spheroids. These findings were also demonstrated under xeno-free
conditions using the optimal FBS-free media formulation identified in our previous studies [25].
In addition to IL-1, several other inflammatory cytokines/pathways were upregulated by spheroid
MSCs, corroborating our data in prior reports [25–28]. Some of these inflammatory factors are
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components of the senescence-associate secretory phenotype (SASP), a secretory program rich in
cytokines and proteases that allow senescent cells to contribute to a variety of physiological and
pathological processes [53]. The critical role for the SASP cytokine IL-1, and perhaps other SASP factors,
in regards to MSC spheroid functionality is in agreement with the concept that pro-inflammatory
cytokines and other tissue-derived injury signals provide a critical stimulus for the MSC production
of immune-modulating agents [6,9–13]. MSC-derived cytokines, such as IL-6 and IL-8, have been
shown to help perpetuate the PGE2-modulating signal [54]. In addition, specific cytokines/chemokines
produced by MSCs have been suggested to attract monocytes and other inflammatory/immune cells,
thus allowing MSCs to target their immune-modulating activities [55]. We have also recently shown
that the SASP program could be important for spheroid MSCs to promote tumor dormancy in breast
cancer [56]. Taken together, the assortment of SASP factors produced by activated MSCs could provide
the cells with the tools needed to exert diverse functionality across of spectrum of physiological and
pathological processes, including the concept that spheroid MSCs have both immune-modulating and
anti-cancer effects.

To compare the various MSC preparations further, we conducted in vitro functional studies.
In these studies, the 3D activated MSCs showed significant anti-inflammatory effects in an in vitro
stimulated macrophage system. The conditioned media from the 3D MSC cultures suppressed
the secretion of the pro-inflammatory cytokine TNF-α while increasing the secretion of the
anti-inflammatory cytokine IL-10 by the stimulated macrophages. These results suggested that the
extensively expanded MSCs can be pre-activated in 3D cultures to secrete functional anti-inflammatory
molecules. Further research needs to be completed to test if the anti-cancer effects of the MSC spheroids
are maintained throughout the passaging process. Additionally, further studies are required for the
testing of the in vivo efficacy of the 3D spheroids generated from extensively expanded MSCs.

5. Conclusions

In this study, we showed a process to pre-activate extensively expanded MSCs through 3D culturing
to express and secrete important anti-inflammatory and immunomodulatory factors. Furthermore,
we demonstrated that the spheroids derived from various stages of the culture expansion were
very similar and were able to suppress stimulated macrophages in vitro. This study highlights
the possibility of activating otherwise less useable MSC preparations generating large numbers of
potentially therapeutic MSCs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/9/1031/s1,
Figure S1: Cell surface marker expression for a representative MSC donor. Table S1: Expression of the common
MSC markers for the donors in this study. Table S2: Selected WikiPathways enriched in differentially expressed
genes between adherent monolayer and spheroid cultures of MSCs. Table S3: The top 20 up-regulated and
down-regulated genes in MSC spheroids from different passages compared to adherent monolayer MSCs (fold
change). Figure S2: Spheroids generated from extensively expanded MSCs from donor 1 secrete high amounts of
PGE2. Spheroids and very high density monolayer MSCs were cultured in FBS-containing media and in xeno-free
media from MSCs after passages 3, 5, 7, and 9. The conditioned medium was harvested after three days for PGE2
ELISA. Spheroids were also dissociated, and the resulting cells were tested for their ability to maintain PGE2
secretion. (A) PGE2 secretion by spheroids and very high density monolayer MSCs in FBS-containing media and
xeno-free media at different passages. (B) PGE2 secretion by spheroid-derived cells from FBS-containing media
and xeno-free media at different passages. Figure S3: Spheroids generated from extensively expanded MSCs
from donor 2 secrete high amounts of PGE2. Spheroids and very high density monolayer MSCs were cultured in
FBS-containing media and in xeno-free media from MSCs after passages 3, 5, and 7. The conditioned medium was
harvested after three days for PGE2 ELISA. Spheroids were also dissociated, and the resulting cells were tested
for their ability to maintain PGE2 secretion. (A) PGE2 secretion by spheroids and very high density monolayer
MSCs in FBS-containing media and xeno-free media at different passages. (B) PGE2 secretion by spheroid-derived
cells from FBS-containing media and xeno-free media at different passages. Figure S4: Spheroids generated from
extensively expanded MSCs from donor 1 secrete high amounts of TSG-6. Spheroids and very high density
monolayer MSCs were cultured in FBS-containing media and in xeno-free media from MSCs after passages 3, 5, 7,
and 9. The conditioned medium was harvested after three days for TSG-6 ELISA. Spheroids were also dissociated,
and the resulting cells were tested for their ability to maintain TSG-6 secretion. (A) TSG-6 secretion by spheroids
and very high density monolayer MSCs in FBS-containing media and xeno-free media at different passages. (B)
TSG-6 secretion by spheroid-derived cells from FBS-containing media and xeno-free media at different passages.
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Figure S5: Spheroids generated from extensively expanded MSCs from donor 2 secrete high amounts of TSG-6.
Spheroids and very high density monolayer MSCs were cultured in FBS-containing media and in xeno-free
media from MSCs after passages 3, 5, and 7. The conditioned medium was harvested after three days for TSG-6
ELISA. Spheroids were also dissociated, and the resulting cells were tested for their ability to maintain TSG-6
secretion. (A) TSG-6 secretion by spheroids and very high density monolayer MSCs in FBS-containing media
and xeno-free media at different passages. (B) TSG-6 secretion by spheroid-derived cells from FBS-containing
media and xeno-free media at different passages. Figure S6: Spheroids generated from extensively expanded
MSCs from donor 1 secrete high amounts of STC-1. Spheroids and very high density monolayer MSCs were
cultured in FBS-containing media and in xeno-free media from MSCs after passages 3, 5, 7, and 9. The conditioned
medium was harvested after three days for STC-1 ELISA. Spheroids were also dissociated, and the resulting cells
were tested for their ability to maintain STC-1 secretion. (A) STC-1 secretion by spheroids and very high density
monolayer MSCs in FBS-containing media and xeno-free media at different passages. (B) STC-1 secretion by
spheroid-derived cells from FBS-containing media and xeno-free media at different passages. Figure S7: Spheroids
generated from extensively expanded MSCs from donor 2 secrete high amounts of STC-1. Spheroids and very
high density monolayer MSCs were cultured in FBS-containing media and in xeno-free media from MSCs after
passages 3, 5, and 7. The conditioned medium was harvested after three days for STC-1 ELISA. Spheroids were
also dissociated, and the resulting cells were tested for their ability to maintain STC-1 secretion. (A) STC-1
secretion by spheroids and very high density monolayer MSCs in FBS-containing media and xeno-free media at
different passages. (B) STC-1 secretion by spheroid-derived cells from FBS-containing media and xeno-free media
at different passages.
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