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Abstract: Semen exosomes (SE) from HIV-uninfected (HIV−) individuals potently inhibit HIV
infection in vitro. However, morphological changes in target cells in response to SE have not
been characterized or have the effect of HIV infection or the use of illicit substances, specifically
psychostimulants, on the function of SE been elucidated. The objective of this study was to evaluate
the effect of HIV infection, psychostimulant use, and both together on SE-mediated regulation of
monocyte function. SE were isolated from semen of HIV− and HIV-infected (HIV+) antiretroviral
therapy (ART)-naive participants who reported either using or not using psychostimulants. The SE
samples were thus designated as HIV−Drug−, HIV−Drug+, HIV+Drug−, and HIV+Drug+. U937
monocytes were treated with different SEs and analyzed for changes in transcriptome, morphometrics,
actin reorganization, adhesion, and chemotaxis. HIV infection and/or use of psychostimulants had
minimal effects on the physical characteristics of SE. However, different SEs had diverse effects on the
messenger RNA signature of monocytes and rapidly induced monocyte adhesion and spreading. SE
from HIV infected or psychostimulants users but not HIV−Drug− SE, stimulated actin reorganization,
leading to the formation of filopodia-like structures and membrane ruffles containing F-actin and
vinculin that in some cases were colocalized. All SE stimulated monocyte chemotaxis to HIV
secretome and activated the secretion of matrix metalloproteinases, a phenotype exacerbated by HIV
infection and psychostimulant use. SE-directed regulation of cellular morphometrics and chemotaxis
depended on the donor clinical status because HIV infection and psychostimulant use altered SE
function. Although our inclusion criteria specified the use of cocaine, humans are poly-drug and
alcohol users and our study participants used psychostimulants, marijuana, opiates, and alcohol.
Thus, it is possible that the effects observed in this study may be due to one of these other substances
or due to an interaction between different substances.
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1. Introduction

HIV encodes pathogenic proteins, such as gp120, Nef, and Tat, that modulate cellular architecture
and behavior. Such modulations are implicated in HIV-induced pathological processes, including
immune activation that persist during combination antiretroviral therapy (cART) and contribute to
serious non-AIDS events. Although cART has dramatically reduced HIV/AIDS-related pathologies
and mortality [1], use of illicit substances (mostly psychostimulants) is a major barrier to combating
the HIV pandemic [2–5]. Psychostimulants such as cocaine have been linked to exacerbated HIV
disease progression and HIV-associated disorders [6–13]. In addition to its ability to promote risky
behavior [14], cocaine impairs antiviral mechanisms [8,15], thus increasing the risk of HIV acquisition.
The combination of behavioral alteration and psychostimulant-mediated impairment of antiviral
mechanisms continues to be a major obstacle in combating the global HIV/AIDS pandemic. The risk
of exacerbated HIV disease progression and/or HIV-associated disorders among those who use
psychostimulants and who are also infected with HIV is present in those adherent to cART [16–18].

Aside from the brain, peripheral tissues, including lymphocytes, monocytes, and the male
urogenital organs, are responsive to psychostimulants due to the presence of dopamine transporters
(DAT) and dopamine receptors (DR) [19–21]. In particular, DRD1 and DRD2 are expressed in male
genital tissues such as the testis [22] and cocaine induces ultrastructural changes in the testis [23] and
negatively affects testicular physiology as well as spermatogenic processes [23,24]. Similar to its function
in the central nervous system, the function of dopamine in myeloid cells is mediated primarily by DRs,
which are expressed in human monocytes and macrophages [25–27]. Myeloid cell DRs are functional
and have been implicated in HIV infection and substance use disorders [28]. Although peripheral cells
have been linked to increased viral replication in the presence of psychostimulants [29,30], how HIV
and/or psychostimulants alter monocyte function is not completely understood.

Recently, acellular mechanisms regulating host functions have been discovered to occur through
extracellular vesicles, in particular, exosomes, which are conveyors of bio-information [31–33].
Exosomes have been implicated in the modulation of immune responses [34,35] and microbial
pathogenesis, including HIV infection [36–45]. Other biological processes, such as extracellular
matrix (ECM) reorganization, epithelial barrier regulation, inflammatory cell recruitment, microglial
migration [46], and regulation of HIV transcription [44], have been associated with exosomes [47].
Given that exosomes are released by various cell types into all body fluids [35,36,48–53], it is likely
that HIV infection and/or psychostimulant-mediated effects on peripheral tissues may be imprinted
in exosomes and that such exosomes may reprogram host gene expression and function. In a recent
study, we showed that SEs from HIV-uninfected donors who do not use psychostimulants selectively
modifies HIV-induced activation of host transcription factors [44].

In the present study, our goal was to evaluate the effect of HIV infection, psychostimulant use,
and co-occurring HIV/psychostimulant use on SE-mediated regulation of monocyte function. We used
monocytes as a model because monocytes are present in nearly every tissue, including the brain that
has little or no T cell colonization. Moreover, monocytes differentiate into HIV target cells—dendritic
cells and macrophages. Finally, monocytes are the first cells recruited to sites of inflammation, are one
of the immune cell types present in semen [54,55], and are important target cells for mucosal HIV
transmission [56], as well as HIV-associated neurocognitive disorders [57].
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2. Materials and Methods

2.1. Ethics

This study involves the use of existing human specimens (semen) and, therefore, is not human
subjects’ research. De-identified semen samples were obtained from participants in the Multicenter
AIDS Cohort Study (MACS), a prospective cohort study of the natural history of HIV infection in
men who have sex with men which was initiated in 1984 in 4 US sites and obtained semen samples
from study participants semiannually from 1984 to 1987. The semen samples were stored at −80 ◦C
until analysis in the present study. The participants included HIV− and HIV+ men who, at the time
of collection, reported using or not using illicit substances. Studies were conducted according to
University regulations approved by The University of Iowa and Stony Brook University Institutional
Review Boards (IRB # 201608703). HIV-1-negative donors had no history of HIV, hepatitis B virus
(HBV), or hepatitis C virus (HCV) infections. HIV-1-infected donors were ART-naive.

2.2. Semen Samples

A total of 64 samples from four clinical groups (HIV-uninfected and not illicit substance users,
HIV−Drug−; HIV-uninfected and self-reported illicit substance users, HIV-Drug+; HIV-infected and
not illicit substance users, HIV+Drug−; and HIV-infected and self-reported use of illicit substances,
HIV+Drug+). A participant was classified as an illicit substance user only if they reported using
cocaine (taken by any route); in other words, if a participant reported using other substances without
cocaine, they were excluded (Table 1). Sixteen participants in each group were analyzed. The samples
were received frozen on dry ice from the MACS. The samples were collected between 1984 and 1987,
and participants were between 20 and 65 years old.

2.3. Cells

U937 monocytic cells were obtained from the American Type Culture Collection (ATCC) and
maintained in complete Roswell Park Memorial Institute (RPMI) media (Corning, Thermofisher, Grand
Island, NY, USA). HIV-1 LAV-infected HeLa CD4+ cells from which HIV secretome was collected
were obtained from the National Institutes of Health (NIH) Aids Reagent Program and maintained
in complete Dulbecco’s Modified Eagle Medium (DMEM) media. RPMI and DMEM media were
supplemented with 10% fetal bovine serum (FBS) (Atlanta Biologicals, Flowery Branch, GA, USA)
that was exosome-depleted by ultracentrifugation (100,000× g, 2 h, 4 ◦C), 1% Penicillin-streptomycin
(Thermofisher, Grand Island, NY, USA), 1 µg/mL Amphotericin B (Thermofisher, Grand Island, NY,
USA), 2 mM sodium pyruvate (Corning, Corning, NY, USA), 1% of glutamate (Thermofisher, Grand
Island, NY, USA), and 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer
(Fisher Biotech, Fair Lawn, NJ, USA) at pH 8. NucBlue™ Live ReadyProbes™ reagent was purchased
from EasyProbes (Thermofisher, Grand Island, NY, USA). Cell Viability Imaging Kit (Blue/Green) was
obtained from Genecopoeia (Rockville, MD, USA), and Type I collagen was purchased from Corning
(Corning, NY, USA).
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Table 1. Description of psychostimulants and alcohol use by study participants.

Specimen ID

Hash/
Marijuana
Since Last

Visit

Ever Used
Hash/

Marijuana

Poppers
Since
Last
Visit

Ever
Used

Poppers

Crack/
Cocaine Use

Since Last
Visit

Ever
Used

Crack or
Cocaine

Uppers
Since
Last
Visit

Ever
Used

Uppers

Ecstasy
Since
Last
Visit

Ever
used

Ecstasy

Heroin/
Opiates

Since Last
Visit

Ever Used
Heroin/
Opiates

PCP
Since
Last
Visit

Downers
Since
Last
Visit

Ethyl
Chloride

Since
Last
Visit

Unspecified
Drug Since
Last Visit

N. of
drinks/wk
Since Last

Visit

Alcohol Use
Since last

Visit
(drinks/wk)

Drinking Since
Last Visit

HIV−Drug−

A1 N N N N N N N N N N N N N N N N 0.866 1–3 Low/moderate
A2 N N N N N N N N N N N N N N N N 0.347 1–3 Low/moderate
A3 N N N N N N N N N N N N N N N N 0 0 None
A4 N N N N N N N N N N N N N N N N 0 0 None
A5 N N N N N N N N N N N N N N N N 2.25 1–3 Low/moderate
A6 N N N N N N N N N N N N N N N N 0.245 1–3 Low/moderate
A7 N N N N N N N N N N N N N N N N 0.245 1–3 Low/moderate
A8 N N N N N N N N N N N N N N N N 2.25 1–3 Low/moderate
A9 N N N N N N N N N N N N N N N N 5.25 4–13 Low/moderate
A10 N N N N N N N N N N N N N N N N 0 0 None
A11 N N N N N N N N N N N N N N N N 0 0 None
A12 N N N N N N N N N N N N N N N N 5.25 4–13 Low/moderate
A13 N N N N N N N N N N N N N N N N 0 0 None
A14 N N N N N N N N N N N N N N N N 2.25 1–3 Low/moderate
A15 N N N N N N N N N N N N N N N N 2.25 1–3 Low/moderate
A16 N N N N N N N N N N N N N N N N 0.866 1–3 Low/moderate

HIV−Drug+

B1 Y Y Y Y Y Y N N N N N N N N N N 24.5 >13 Moderate/heavy
B2 Y Y Y Y Y Y N N N N N N N N N N 2.25 1–3 Low/moderate
B3 Y Y N Y Y Y N N N N N N N N N N 10.5 4–13 Low/ moderate
B4 Y Y N Y Y Y N N N N N N N N N N 12.25 4–13 Moderate/heavy
B5 Y Y N Y Y Y N N N N N N N N N N 0.809 1–3 Low/moderate
B6 Y Y N Y Y Y Y Y N N N N N N N N 12.25 4–13 Moderate/heavy
B7 Y Y N Y Y Y Y Y N N N N N Y N N 5.25 4–13 Moderate/heavy
B8 Y Y N Y Y Y N Y N N Y Y N Y N N 5.25 4–13 Moderate/heavy
B9 Y Y N Y Y Y N Y N N N N N N N N 10.5 4–13 Low/moderate

B10 Y Y Y Y Y Y N Y N N N N N Y N N 12.25 4–13 Moderate/heavy
B11 N Y N Y Y Y N Y N N N N N N N N 2.25 1–3 Low/moderate
B12 Y Y N Y Y Y N Y N Y N N N N N N 2.02 1–3 Moderate/heavy
B13 Y Y N Y Y Y N N N N N Y N N N N 5.25 4–13 Low/moderate
B14 Y Y N Y Y Y N N N N N Y N N N N 12 4–13 Binge
B15 Y Y Y Y Y Y Y Y Y Y N N N Y Y N 56 >13 Binge
B16 Y Y N Y Y Y N N N Y N N N N N N 0.866 1–3 Low/moderate

HIV+Drug−

C1 N Y N Y N N N Y N N N N N N N N 5.25 4–13 Low/moderate
C2 N Y N Y N N N N N N N N N N N N 5.25 4–13 Low/moderate
C3 N Y N Y N Y N Y N Y N N N N N N 2.25 1–3 Low/moderate
C4 N N N Y N N N N N N N N N N N N 0 0 None
C5 N Y N N N N N N N N N N N N N N 0.866 1–3 Low/moderate
C6 N Y N Y N N N N N N N N N N N N 2.25 1–3 Low/moderate
C7 N Y N Y N N N N N N N N N N N N 5.25 4–13 Low/moderate
C8 N Y N Y N N N N N N N N N N N N 0 0 None
C9 N N N N N N N N N N N N N N N N 0 0 None

C10 N Y N Y N Y N Y N N N N N N N N 0 0 None
C11 N N N N N N N N N N N N N N N N 0 0 None
C12 N N N N N N N N N N N N N N N N 0.866 1–3 Low/moderate
C13 N N N N N N N N N N N N N N N N 5.25 4–13 Low/moderate
C14 N Y N Y N N N N N N N N N N N N 0.347 1–3 Low/moderate
C15 N Y N Y N Y N N N N N N N N N N 0 0 None
C16 N Y N Y N N N N N N N N N N N N 0 0 None
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Table 1. Cont.

Specimen ID

Hash/
Marijuana
Since Last

Visit

Ever Used
Hash/

Marijuana

Poppers
Since
Last
Visit

Ever
Used

Poppers

Crack/
Cocaine Use

Since Last
Visit

Ever
Used

Crack or
Cocaine

Uppers
Since
Last
Visit

Ever
Used

Uppers

Ecstasy
Since
Last
Visit

Ever
used

Ecstasy

Heroin/
Opiates

Since Last
Visit

Ever Used
Heroin/
Opiates

PCP
Since
Last
Visit

Downers
Since
Last
Visit

Ethyl
Chloride

Since
Last
Visit

Unspecified
Drug Since
Last Visit

N. of
drinks/wk
Since Last

Visit

Alcohol Use
Since last

Visit
(drinks/wk)

Drinking Since
Last Visit

HIV+Drug+

D1 Y Y Y Y Y Y Y Y Y Y N N N N Y N 12.25 4–13 Moderate/heavy
D2 Y Y N Y Y Y N Y Y Y N Y N N N Y 10.5 4–13 Low/moderate
D3 Y Y Y Y Y Y N Y N Y N N N N N N 24.5 >13 Moderate/heavy
D4 Y Y Y Y Y Y N N N N N N N N N N 24.5 >13 Moderate/heavy
D5 Y Y N Y Y Y N Y N Y N N N N N N 24.5 >13 Moderate/heavy
D6 Y Y Y Y Y Y Y Y Y Y N N N Y Y N 24.5 >13 Moderate/heavy
D7 Y Y N Y Y Y N Y N N N N N N N N 2.25 1–3 Low/moderate
D8 Y Y Y Y Y Y N Y N Y N N N N N N 2.25 1–3 Low/moderate
D9 Y Y Y Y Y Y N N N N N N N N N N 5.25 4–13 Low/moderate
D10 N Y N Y Y Y N Y N Y N N Y N N N 38.5 >13 Binge
D11 Y Y Y Y Y Y Y Y N N N N Y Y N N 10.5 4–13 Low/moderate
D12 Y Y Y Y Y Y Y Y N Y N N N N Y N 56 >13 Binge
D13 Y Y N Y Y Y N Y N N N Y Y N N N 12.25 4–13 Moderate/heavy
D14 Y Y Y Y Y Y Y Y N N N N N N N N 5.25 4–13 Moderate/heavy
D15 Y Y Y Y Y Y N Y N Y N Y N N N N 12 4–13 Binge
D16 Y Y N N Y Y Y Y N N N N Y N N N 2.02 1–3 Moderate/heavy

Y = Yes; N = No.
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2.4. Isolation of Exosomes

64 semen samples from four clinical groups (n = 16/group) were liquefied at room temperature
for 30 min and subsequently centrifuged at 10,000× g for 30 min to remove cellular debris and large
vesicles. Clarified seminal plasmas were transferred to new tubes. For Nano Tracking Analysis (NTA)
experiments, six pools of samples in each group, each pool from 2 participants (100 µL/sample), were
used. Samples were pooled to obtain sufficient volume needed for efficient separation and analysis.
For the rest of the experiments, 4 pooled samples (n = 16, 50 µL/sample) per clinical group were
used. Exosomes were purified by size exclusion chromatography (SEC), where clarified seminal
plasma was loaded onto Sephadex G-50 fine beads (GE-Healthcare, Pittsburgh, PA, USA) packed in a
22 cm × 1 cm Econo-column (Bio-Rad, Hercules, CA, USA). Elution was achieved by gravity using
Phosphate Buffered Saline (PBS, Corning, NY, USA). Fractions of 200 µL were collected, and elution
profiles were determined by absorbance measurements at 280 nm and 600 nm. The first peak which
corresponds to semen exosomes (SE) was collected, and the protein content was measured by the
Bradford Assay (Bio-Rad, Hercules, CA, USA). Of note, HIV could not be efficiently separated from
semen exosomes using the Optiprep (Iodixanol)-based density gradient centrifugation method. While
a good gradient prior to centrifugation was obtained, a satisfactory purification was not achieved due
to the fact that the gold-standard exosomal marker AChE, as well as the exosomal markers CD9, CD63,
and HSP70, along with the viral protein reverse transcriptase (RT) were found across the gradients.
This is not surprising since HIV and exosomes overlap in size, density, and charge, and HIV is known
to incorporate exosomal markers such as CD9, CD81 [58], and CD63 [59], while exosomes in turn
also contain viral proteins [60] and RNA [61]. Immunocapture purification could not be used either
because this mechanism depends on the use of antibodies against either host or viral proteins which
are present in exosomes and HIV. Moreover, the “release” mechanism of exosomes trapped on the
antibody-bead complex was inefficient. Thus, the inclusion of exosomal proteins in HIV and HIV
proteins in exosomes hindered separation of these vesicles but also highlighted the need to assess the
vesicles in their near-native state to understand their effect on host cells.

2.5. Nanoparticle Tracking Analysis (NTA)

Exosome size and concentration were measured by NTA using ZetaView PMX 110 (Particle
Metrix, Mebane, NC, USA) and the corresponding software ZetaView v8.04.02. Samples were diluted
appropriately in ultrapure water and measured under the same settings (temperature 25 ◦C, sensitivity
92, shutter speed 70, and frame rate 30 fps). Data acquisition for size and concentration was performed
in triplicate measurements, and each replicate corresponded to 11 positions with two cycles of reading
at each position. The system was aligned and calibrated with 102-nm polystyrene standard beads.
After automated analysis of the 11 positions and removal of any outlier position, the median number
(X50) was used to report the particle size. The measured concentration was normalized to the volume
of plasma and reported in particles/mL of seminal plasma. For zeta potential, measurements were
performed in ultrapure water (pH 5.8) and data were acquired in quintuplicate. Each replicate
corresponded to two cycles of reading.

2.6. Transmission Electron Microscopy (TEM)

Microscopic analysis of exosome samples was performed as previously described [36,38]: 200 µL
of purified SE were buffer exchanged with Tris buffer (pH = 7.5, 1 M) and concentrated through
a 0.5-mL centrifugal filter (10,000 NMWL) into 50 µL; 10 µL of concentrated SE was applied on to
carbon-coated copper grids (Pellco Easiglow, 0.2 mpar, 30 mA, 40 s, negative) and allowed to sit for
30 s. Excess samples were removed with filter paper. The grids were washed with distilled deionized
water (ddH2O) twice, stained with 0.7% Uranyl Formate solution for 20 s, and then allowed to air dry.
Images were viewed and collected using a FEI Tecnai12 BioTwinG 2 electron microscope. The samples
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were captured with an AMT XR-60 CCD Digital Camera system. The size of particles from TEM images
were quantified by ImageJ.

2.7. Reverse Transcriptase (RT) Assay

HIV RT activity was determined with an EnzCheck Reverse Transcriptase Assay kit (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s protocol. Briefly, 30 µg (~6 × 109 particles) of
purified SE (6 pools of 2 donors each for HIV+Drug− and HIV+Drug+ groups) were lysed with 6 µL
Triton X-100 in a total volume of 50 µL per well, to which 20 µL of poly(A)-oligo(dT) in a polymerization
buffer were added. Assay was performed in a 96-well black plate in triplicates. An equivalent volume
of PBS was used as the negative control. RT standard curve was prepared with serial dilution (0, 0.625,
1.25, 2.5, and 5 µg/mL) of Murine Leukemia Virus (MLV) recombinant RT.

2.8. ELISA Assays

HIV p24 ELISA (Xpressbio, Frederick, MD, USA) and cocaine ELISA (Abnova, Taipei, Taiwan,
China) were conducted by following the manufacturers’ protocols. Briefly, for HIV p24 ELISA, a total
of 30 µg purified SE (~6 × 109 particles) from HIV+ groups were tested in 6 pools of 2 donors each.
An equivalent volume of PBS was used as the negative control. The same procedure was adopted
for cocaine metabolite ELISA, with Drug+ groups being tested (6 pools of 2 donors each per group)
in triplicate. The detection limit of the ELISA kit for HIV p24 and cocaine were 1.7 pg/mL and
1 ng/mL, respectively.

2.9. RNA Purification

Collagen coating of tissue culture plates was described previously [62]. Briefly, 6-well tissue
culture plates were pre-coated with 50 µg/mL of collagen for 2 h at 37 ◦C, after which 1 mL of 2 mg/mL
bovine serum albumin (BSA, Research Products International, Mount Prospect, IL, USA) was added to
block nonspecific sites. Two million U937 cells treated with vehicle (PBS) or 100 µg/mL of SE from each
of the four clinical groups were plated and incubated for 18 h at 37 ◦C and 5% CO2. Each treatment
included three replicates. Subsequently, total RNA was extracted using the miRNeasy Mini Kit (Qiagen,
Hilden, Germany) following the manufacturer’s protocol. An on-column DNAse digestion step
(RNase-Free DNase set, Qiagen) was added after the first buffer wash step. The yield, quality, and size
distribution of RNA isolated from the cells were determined using the Bioanalyzer instrument (Agilent,
Santa Clara, CA, USA). Six hundred ng of the RNA from each treatment group was applied to an RNA
Nano Chip, and the RNA profiles were detected and analyzed on the Agilent 2100 Bioanalyzer with
2100 Bioanalyzer expert software (v B.02.08.S1648 (SR 1)). The electropherogram traces and “gel-like”
images were exported from the instrument’s software and presented in Supplementary Figure S1.
Isolated RNA was used for microarray analysis or for cDNA synthesis and subsequent real-time
quantitative PCR (RT-qPCR) analysis.

2.10. Microarray Analysis, Data Mining, and Data Visualization

150 ng of total RNA was prepared for microarray analysis using the GeneChip™ WT PLUS
Reagent Kit (Applied Biosystems, Foster City, CA) according to manufacturer’s protocol. The samples
were hybridized (16 h) to Clariom™ S Human Arrays (Applied Biosystems, Foster City, CA) in a
GeneChip™Hybridization Oven 645 (Applied Biosystems™). The arrays were washed and stained
using the GeneChip™ Hybridization, Wash and Stain Kit (Applied Biosystems, Foster City, CA) in
a GeneChip™ Fluidics Station 450 according to manufacturer’s protocol. The arrays were scanned
in a GeneChip™ Scanner 3000 7G (Applied Biosystems, Foster City, CA). Quality control and initial
analysis, including scatterplots of differentially expressed genes (DEGs), Venn analysis, and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were performed using Transcriptome
Analysis Console (TAC) v 4.0.0.25 (Applied Biosystems, Foster City, CA). Clustered heatmaps were
plotted using heatmapper [63] (www.heatmapper.ca), with the average linkage method and Euclidean

www.heatmapper.ca
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distance measurement method. The lists of SE, SE-Drug, and SE-HIV DEGs that were obtained from a
TAC analysis were subjected to data mining in a Web-based Gene Set Analysis Toolkit (WebGestalt [64],
www.webgestalt.org), from which biological process and molecular function and cellular component
gene ontology (GO) terms were obtained.

2.11. Primer Design and Real-Time Quantitative PCR (RT-qPCR) Data Validation

Primers were designed using the Thermofisher oligoperfect program (https://www.thermofisher.
com/us/en/home/life-science/oligonucleotides-primers-probes-genes/custom-dna-oligos/oligo-
design-tools/oligoperfect.html). Primers were in silico validated using the University of California,
Santa Cruz (UCSC) in silico-pcr program (http://mgc.ucsc.edu/cgi-bin/hgPcr). The designed primers
are listed in Table 2. Five µg total RNA was used for cDNA synthesis using the High Capacity cDNA
Reverse Transcription Kit (Applied Biosystems, Thermofisher). The cDNA was stored at −20 ◦C until
use. The thermal cycler program and expression calculation was setup in a 7500 FAST real-time PCR
system (Applied Biosystems, Thermofisher), and the fold change in gene expression was calculated
using the standard ∆∆CT method.

Table 2. Primer sequences.

Gene Symbol Forward Primer Reverse Primer

PTPRC AATCTCCCTAGGCAGAGGCA CCTCCCTCATGTGGCCAATT
ADGRG3 AGCGTATCACATGGCGAGAG CCTGAGGGGAGGAGATTGGA

RELB GATGGAGTCTCGCTCTGTCG ATCCCAGCACTTTGAGAGGC
IL1B ATGATGGCTTATTACAGTGGCAA GTCGGAGATTCGTAGCTGGA
CD86 TATGGGCCGCACAAGTTTT TCCTGTGGGCTTTTTGTGAT

MMP19 GAGGACTGGAGGCTGGAGTA TGAAGGAGGGAGAGGGATGG
MMP9 TGAGGTGGTAGGATCGCTGA ATGCCAGATCTCTGACCCCT
MMP1 AGTGGCCCAGTGGTTGAAAA CCACATCAGGCAC
ELF1 TCCCAGCTATTCAGGAGGCT CCCAAAGTTGCAGTGCAGTC
USP3 ATCCTCCCACCTCAGTCTCC AGGCTGAGGTGGAGGATCAT

BBS4 GATGGAGTCTCGCTCTGTCG AAATTAGCCGGGAGTGGTGG
TSC1 CTTGAGCTGGTGAGTGAGCA GCGCTTGGCACTATTACTGC

EXOC4 CTGCCTCTGTACACGTGTGT CGAGACAGCGAGACTCCATC
FGFR1 CAAAGGGGTGTGCGTTTCAG TGGAGATGGGGTGGGAGTAG
TFAP4 CAGCGATTTCCGAATGCCTG CAGCCTGGGCAACATAGTGA
ELK3 GTTTGTGACAGGCAGCACTG CCTGGGGAGAGAAGGGATCA
FOSB TTTTCTCCTCCGCCTGTGTC TCACACTCTCACACTCGCAC
FOS GCCCATTCCATCCCAACTCA TGCCATCACCTCCATTCACC

FOXJ2 TAGAGGAGGGTGGGGTGATG AGCCAGGCTCATAGTCAGGA

ERG GACAACACAGCCAGCACTTG CAGTTGTGCAAGTGTTCCCG
CREB1 TGCTGCACACATCATCCCAT TAGATGGAGCTGGAGGCCTT
VTN TCCCTGCCCATAGCTACAGT AGGATCTCCCAGCATGAGGT

ATXN2L GAGGGATGACTGGGAGGACT CTAGTCCCTGCCCTAGGTGT
EGR1 CAGACCAGAAGCCCTTCCAG TGGGTTTGATGAGCTGGGAC
YARS CCTGTGTAAAGGCCCGGATT CACAAACACGTGCTCACCAG
CD9 CCCACAAGGATGAGTTGATT CAGCTTGTTGTAGGTGTCCTTG

POGZ GTGCAGGACGTTGTCAACAC GCCTCTCAAAGTGCTGGGAT

2.12. Collagen Adhesion Assay

Flat-bottom 96-well plate were pre-coated with 50 µL of 50 µg/mL of Type I collagen (Corning,
Corning, NY, USA) for 2 h at 37 ◦C; 40 µL of 2 mg/mL Bovine Serum Albumin (BSA) was used to block
the nonspecific sites. Incoming U937 cells (10,000 cells/well) treated with 100 µg/mL of SE or with
equivalent volume of vehicle (PBS control) were added to the pre-coated wells and allowed to adhere
for 18 h at 37 ◦C. Non-adhered cells were gently washed off with PBS three times. The adhered cells
were labeled with NucBlue™ for 20 min at room temperature, and the wells were imaged (4× objective)

www.webgestalt.org
https://www.thermofisher.com/us/en/home/life-science/oligonucleotides-primers-probes-genes/custom-dna-oligos/oligo-design-tools/oligoperfect.html
https://www.thermofisher.com/us/en/home/life-science/oligonucleotides-primers-probes-genes/custom-dna-oligos/oligo-design-tools/oligoperfect.html
https://www.thermofisher.com/us/en/home/life-science/oligonucleotides-primers-probes-genes/custom-dna-oligos/oligo-design-tools/oligoperfect.html
http://mgc.ucsc.edu/cgi-bin/hgPcr
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in their entirety in the DAPI channel (360 nm/460 nm excitation/emission) using a Lionheart FX
Automated Microscope (BioTek, Winooski, VT, USA). The captured images were then stitched, and the
cell numbers were calculated using Gen5 ImagePrime. Values were represented as the number of total
adhered cells in each well. Each treatment included four repeated wells.

2.13. Evaluation of Cell Viability and Proliferation

A total of 10,000 U937 cells per well were seeded in a collagen-coated 96-well plate with 100 µg/mL
of SE or equivalent volume of PBS for 18 h at 37 ◦C. All cells were collected after treatment and tested
for viability by the Trypan Blue (Life Technologies, Carlsbad, CA, USA) exclusion and Live/Dead
Cell Stain (Cell Viability Imaging Kit, GeneCopoeia, Rockville, MD, USA) methods. Cell proliferation
was determined by counting the total number of live cells. The experiments were repeated 3 times,
and each experiment included three replicates.

2.14. Immunofluorescence-Based Analysis of Cytoskeletal Changes and Focal Adhesion

U937 cells were plated (10,000 cells/well) on a 96-well glass bottom dish (Cellvis, Mountain View,
CA, USA) coated with Type I collagen and treated with 100 µg/mL of respective SE. The plate was
centrifuged at 200× g for 8 min to facilitate cellular adherence to the bottom of the well and incubated at
37 ◦C for 18 h. Following incubation, cells were washed with PBS and fixed with 4% paraformaldehyde
(PFA) in PBS for 15 min. Cells were then permeabilized by incubation in 0.1% TritonX-100 for 10 min.
AlexaFluor 594 Phalloidin (Thermofisher, Grand Island, NY, USA) and Alexa Fluor 488 Vinculin
(Thermofisher, Grand Island, NY, USA) were applied in a 1:40 dilution for 1 h, followed by a 5-min
DAPI stain. Images were acquired using a Lionheart FX Automated Microscope (Biotek, Winooski,
VT, USA). Representative 10× and 60× images were acquired manually for five fields of view per
well. Image procession was performed using Gen5 ImagePrime. Quantification of cellular size, area,
and circularity was performed by Gen5 ImagePrime via masking of phalloidin. A circularity metric
was created by inputting the equation C = 4πA/P2, where C is the circularity, A is the area of the cell,
and P is the perimeter of the cell (https://imagej.nih.gov/ij/plugins/circularity.html).

2.15. Colocalization Analysis

60× fluorescent images of U937 cells treated with vehicle or SE (100 µg/mL) and stained with Alexa
Fluor 594 Phalloidin and Alexa Fluor 488 Vinculin captured on a Lionheart FX Automated Microscope
were imported into ImageJ (http://imagej.nih.gov/) for colocalization analysis. An open source ImageJ
plugin “EzColocalization” (http://sites.imagej.net/EzColocalization/plugins/) was used to quantify
colocalization of actin (phalloidin) and vinculin at regions of cell–cell contact and membrane protrusions.
Regions of interests (ROIs) were selected via an ROI manager. Using EzColocalization, Pearson
correlation coefficient (PCC) and Threshold overlap score (TOS, linear) quantifications were performed
for 7 representative fields of view per SE treatment and vehicle. PCC and TOS (linear) values for each ROI
were exported into GraphPad Prism for further analysis. One-way ANOVA was performed to determine
the significance of SE treatment relative to the vehicle. Colocalization heatmaps were generated using the
ImageJ plugin “Colocalization Colormap” (https://sites.google.com/site/colocalizationcolormap/home).

2.16. Chemotaxis

Migration assays were conducted in a 10-well chemotaxis chamber (Neuroprobe Inc., Gaithersburg,
MD, USA). Basal chambers were filled with media containing 0% FBS (serum-free), 30% FBS,
or conditioned media from HIV-1 LAV-infected HeLa CD4+ cells (HIV secretome). A polycarbonate
polyvinylpyrrolidone-free filter with a pore size of 5 µm was then placed over the lower chambers,
and 285 µL of U937 cell suspensions (500,000 cells per well) that were pretreated for 24 h with either
vehicle or 100 µg/mL SE from the 4 clinical groups in equal volumes of serum-free media were placed on
the filter. The chambers were incubated for an additional 20 h at 37 ◦C in a 5% CO2 incubator. The apical
chamber cells were carefully harvested, membranes were thoroughly rinsed, and basal chamber cells

https://imagej.nih.gov/ij/plugins/circularity.html
http://imagej.nih.gov/
http://sites.imagej.net/EzColocalization/plugins/
https://sites.google.com/site/colocalizationcolormap/home
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were harvested by piercing the membrane in the basal chamber. Cell suspensions were mixed with
Trypan Blue dye, and total cell numbers and viability were quantified via hemocytometer counting.

2.17. Gelatin and Casein Zymography

After the 24 h serum starvation for migration assays, the conditioned media was harvested on ice.
Following a 2000× g centrifuge step for 10 min, the media was mixed with a 4× Laemmli sample buffer
(Bio-rad, Hercules, CA, USA) with the absence of boiling or 2-mercaptoethanol. Ten percent SDS-PAGE
gels (0.75 mm thick) containing 0.1% gelatin in the resolving gel were prepared. Equal volumes of
samples were loaded into the lanes, and electrophoresis was performed (Mini-PROTEAN Bio-Rad).
Gels were removed from their cassettes, rinsed in distilled water, and incubated with a 1× Zymogram
Renaturation Buffer (Bio-Rad) for 30 min with gentle agitation to remove SDS and to renature the
proteins. Gels were then transferred to a 1× Zymogram Development Buffer (Bio-rad) for 30 min at
room temperature, followed by replacement with fresh development buffer and incubated for 24 h
at 37 ◦C to allow proteolytic digestion of the gelatin substrate. Gels were then rinsed with distilled
water and stained with Coomassie blue for 30 min. Destaining was carried out with 50% methanol and
10% acetic for 1 h. Zones of gelatin degradation were imaged using an Odyssey CLx Imaging system
(LI-COR Biosciences, Lincoln, NE, USA). The area of destained bands (zones of gelatin degradation)
was then measured with ImageJ analyzing software and normalized to the value of vehicle treated
samples. B-casein zymography was performed as described for gelatin zymography, aside from the
inclusion of a 40 mA gel pre-running step performed prior to sample loading.

2.18. Statistical Analysis

The expression analysis settings for the microarray analysis were as follows: Gene-Level Fold
Change < −2 or > 2, Gene-Level p-Value < 0.05, and ebayes ANOVA Method. The matrix correlation
analysis was performed using GraphPad Prism software (v 8.1.2). Graphpad Prism was also used
to plot all the graphs and to determine the statistical significance in this study. For a two-group
comparison, unpaired t-test with Welch’s correction was used to determine the differences between
the groups. For a four-group comparison, ordinary one-way ANOVA test with Dunnett’s correction
was used in this study to determine the differences between SE groups as compared to HIV−Drug−.
* p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001, and ns, nonsignificant.

2.19. Data Availability

The authors declare that all data supporting the findings of this study are available within the
article. Microarray data have been deposited in the Gene Expression Omnibus (GEO) under accession
code GSE129506.

3. Results

3.1. Biophysical Characterization of SE from Study Participants

Ultraviolet–visible spectroscopy (UV–Vis) analysis of SE profiles indicated that the fractions
eluted in the void peak were enriched in vesicles, whereas the vesicle-free proteins eluted in the
latter peak (Figure 1A). Comparison of the profiles from the different clinical groups (n = 6) showed
subtle differences in the height of the peaks (Figure 1A). The first peak, designated as SE, was
collected and analyzed for protein concentration. No significant differences were observed in each
of the SEs with protein concentrations ranging from 6.86 to 8.55 mg/mL of plasma (Figure 1B). NTA
revealed subtle differences in SE size and concentration (Figure 1C) while the mean size of SE from
HIV+Drug− was significantly different from the other groups (Figure 1D), the mean concentration
was not different (Figure 1E). Since the electrical properties of the exosomal surface measured as
ζ-potential is determined by the surface molecules on exosome membranes, we examined the effect
of HIV infection and psychostimulant use on the ζ-potential of SE. Mean ζ-potential of HIV−Drug−,
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HIV−Drug+, and HIV+Drug− SE were not significantly different. In contrast, the ζ-potential of
SE from HIV+Drug+ participants were significantly different from the HIV−Drug− SE (Figure 1F).
TEM-based analysis showed no significant differences in SE morphology and size (Figure 1G,H).
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Figure 1. Physical characterization of semen exosomes (SE) from different clinical groups: (A) Exosomes
were isolated from semen specimens obtained from donors in different clinical groups—HIV−Drug−,
HIV−Drug+, HIV+Drug−, and HIV+Drug+. Seminal plasma from different participants were pooled,
and the exosomes were purified by size exclusion chromatography (SEC). Six pools of clarified seminal
plasma (n = 2, 100 µL/donor) from each of the four clinical groups were purified by size exclusion
chromatography (SEC), and fractions were collected. UV–Vis was used to monitor absorbance at 280 nm
and turbidity at 600 nm, indicative of the presence of proteins and lipid-containing vesicles, respectively.
The dotted curve and filled curve represent absorbance profiles at 280 nm (protein) and 600 nm (lipid),
respectively. The gray vertical rectangle highlights exosome fraction. (B) Purified SE fractions were
pooled, and total protein concentration was determined by Bradford assay. Nano Tracking Analysis
(NTA) measurements of the different SE physical properties: (C) size distribution profile, (D) NTA-based
particle mean size, (E) mean particle concentration, and (F) Mean zeta potential (ζ-potential, mV).
(G) Negative-stain TEM images of purified SE from the four clinical groups: The insets correspond to
zoomed areas indicated by the arrow. All scale bars = 100 nm. (H) TEM-based mean particle size from
Figure 1G determined with Image J. Assessment of HIV proteins: (I) HIV reverse transcriptase (RT) and
(J) HIV p24. A total of 30 µg purified SE (~6 × 109 particles) from HIV+ groups (6 pools of 2 donors each)
were tested in triplicate. An equivalent volume of PBS was used as the negative control. (K) Cocaine
metabolite ELISA. A total of 30 µg purified SE (~6 × 109 particles) from Drug+ groups (6 pools of
2 donors each) were tested in triplicate. Equivalent volume of Phosphate Buffered Saline (PBS) was
used as a negative control. The numbers in the graphs of Figure 1B,D–F,H indicate mean values. Error
bars indicate SEM of 6 biological replicates. For a two-group comparison, unpaired t-test with Welch’s
correction was used to determine the differences between the groups. For a four-group comparison,
ordinary one-way ANOVA test (Dunnett’s correction) was used to determine the differences between
the SE groups as compared to HIV−Drug−. * p < 0.05, ** p < 0.01, and ns, nonsignificant.

3.2. HIV Proteins and Cocaine Metabolite (Benzoylecgonine) Are Associated with SE

RT assay and HIV p24 ELISA were used to assess the level of viral proteins associated with SE.
The results showed mean values of 9.03 and 11.49 RT unit/mL for the HIV+Drug− and HIV+Drug+

groups, respectively (Figure 1I), whereas p24 mean values were 4.17 and 4.4 pg/mL for the HIV+Drug−
and HIV+Drug+ groups, respectively (Figure 1J). Furthermore, the ELISA assay showed that detectable
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levels of cocaine metabolite benzoylecgonine is associated with SE, albeit below the assay detection
limit of 1 ng/mL. Although the reasons for low levels of HIV proteins and benzoylecgonine in SE are
unknown, it could be that the proteins and metabolites may be low in SE or that they are degraded,
given the age of the seminal samples (~32 years) and the short half-life of benzoylecgonine, which is
about 24 h for a single dose and a maximum of 10 days for chronic users [65]. It is also possible that SE
do not carry this specific cocaine metabolite—benzoylecgonine. However, we were unable to assess
other viral proteins and cocaine metabolites due to limited semen samples. Our data suggest that both
HIV proteins and cocaine metabolite may be associated with SE.

3.3. The effect of SE Stimulation on Gene Expression Signature of Collagen-Cultured Monocytes

Since HIV infection and psychostimulant use did not significantly change the biophysical properties
of SE, we examined the effect of SE from the different clinical backgrounds on the gene expression profile
of monocytes cultured atop collagen as the substrate. We selected collagen as a relevant ECM because
collagen is the most abundant matrix protein and HIV stimulates local production of collagen [66],
which provides activating signals to myeloid cells, drives sustained inflammation, and alters the
architecture of lymphoid tissues [67,68]. Figure 2A shows the distribution of all genes stimulated by
the different SE in comparison to vehicle-treated cells. The correlation matrix, including all genes
(21448) within the five treatment groups regardless of significance, shows that, in general, HIV−Drug−
SE have minimal effect on the gene expression pattern of monocytes. However, psychostimulant use
and/or HIV infection altered monocyte gene expression pattern (Figure 2B). Since monocytes express
DRs which mediate cellular response to dopamine [69], we analyzed microarray data for levels of DR
following treatment with the different SE. The results showed that monocytes express mRNA of DR
variants (Figure 2C), although none of the SE significantly altered DR mRNA levels.

The effect of SE stimulation on monocytes gene expression profile was further delineated by
identifying the differentially expressed genes (DEGs) shown in Table 3. Two-way Venn-filtration
identified genes commonly altered by SE, regardless of the clinical group (Figure 2D). This analysis
showed an overlap of 30 SE DEGs. Hierarchical clustered heatmap (Figure 2E) and a bar graph of fold
change analysis (Figure 2F) was used to visualize the relationship between the genes, the direction of
gene regulation, and the type of SE that elicited the regulation. In comparison to steady state levels of
gene expression observed in vehicle-treated cells, 17 genes were upregulated by SE while 13 genes were
suppressed by SE (Figure 2F). These results revealed specific gene expression signatures imprinted
by SE from different clinical backgrounds. Among these DEGs are MMP1 and MMP19, which are
proteins linked to the breakdown of extracellular matrix (ECM) in normal physiological (embryonic
development, reproduction, and tissue remodeling) [70] and disease processes (arthritis, cancer
metastasis, and HIV pathogenesis) [71,72]. In addition, the pro-inflammatory proteins CCL3, S100A8,
and C5aR1 [73–75]; inflammatory regulators FPR1, FPR3, and TNFAIP6 [76,77]; cell proliferation,
differentiation, and transformation regulatory proteins FOSB and FOS [78]; and transcription factors
EGR1 and EGR3 [79] were also among the DEGs dysregulated by the different SEs.

Table 3. Summary of the DEG in the four clinical groups (n = 3) as compared to vehicle 1.

Genes Passed
Filter Criteria 1

% of Total
Genes 2

Upregulated Downregulated

# of Genes % of DEG # of Genes % of DEG

HIV−Drug− 293 1.37 177 60.41 116 39.59
HIV−Drug+ 497 2.32 92 18.51 405 81.49
HIV+Drug− 641 2.99 179 27.93 462 72.07
HIV+Drug+ 647 3.02 240 37.09 407 62.91

1 Filtration criteria FC < −2 or FC > 2 and p-value < 0.05 (Benjamini and Hochberg correction for multiple
observations); 2 Total number of genes = 21448.
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Figure 2. Microarray analysis of monocytes (n = 15) treated with vehicle or SE from different clinical
groups (triplicate per treatment): (A) Scatter plots of the different SE treatments compared to the vehicle
control. Red and green dots correspond to the significantly up- and downregulated genes, respectively.
Gray dots correspond to the unchanged genes. (B) Correlation matrix of all genes (21448) showing a
differential pattern in monocyte gene expression. (C) Gene expression levels of dopamine receptors as
determined by microarray analysis. Differences were not significant with the set filtration criteria of
fold change (FC) < −2 or FC > 2 and p-value < 0.05 (Benjamini and Hochberg correction for multiple
observations). (D) Venn diagram analysis showing 30 differentially expressed genes (DEGs) common
to all SE (HIV−Drug−, HIV−Drug+, HIV+Drug−, HIV+Drug+) treatments. The bold fonts in the
Venn diagrams are the numbers of interest. (E) Hierarchical clustering heatmap showing the overall
expression of the 30 SE-DEG. (F) Bar graph showing the fold change of each of the 30 SE-DEGs as
compared to vehicle.

3.4. SE from Psychostimulant Users or HIV-Infected Participants Dysregulate Monocyte Gene Expression

Two-way Venn-filtration was used to identify DEGs in cells treated with SE from HIV−Drug+ and
HIV+Drug+ participants designated as SE-Drug DEGs (Figure 3A). Our analysis revealed that SE-Drug
differentially regulated 52 genes, which is more than the 30 SE DEGs (Figure 2D–F). The relationship
between the different genes induced by SE-Drug can be visualized using a hierarchical clustering
heatmap (Figure 3B). Figure 3C shows individual genes within each of the SE-Drug DEGs and
their expression patterns. A total of 9 genes were upregulated by SE-Drug while 43 genes were
downregulated. Noteworthily, among the upregulated SE-Drug DEGs was collagen alpha-1(XVI)
chain (COL16A1), known to be involved in inducing MMP9 secretion through AP-1 activation [80],
in mediating cell attachment, in inducing integrin-mediated cellular reactions such as cell spreading
and alterations in cell morphology [81,82], and in promoting glioma cell adhesion [83] and invasion [84].
Conversely, HUS1 Checkpoint Clamp Component B (HUS1B), which overexpression has been shown to
induce cell death [85], was potently suppressed by Drug-SE. We used a similar approach to characterize
gene expression changes induced by SE from HIV+Drug− and HIV+Drug+ participants (SE-HIV).
The analysis identified 149 (65 upregulated and 84 downregulated) SE-HIV DEGs (Figure 3D), of which
the hierarchical clustering (Figure 3E) revealed subtle differences between the two SE-HIV (HIV+Drug−
and HIV+Drug+) groups compared to vehicle control. Fold differences and direction of gene expression
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between the SE-HIV groups are shown in Figure 3F. Among the 65 upregulated SE-HIV DEGs were
inflammatory molecules, such as CCL4L1 and Resistin (RETN), transcription factors (RELB and MXD1),
and antiviral molecules such as Interferon-induced antiviral RNA-binding protein (IFIT1) [86], whereas
among the top downregulated SE-HIV DEGs was Tuberous Sclerosis 1 (TSC1), which is a tumor
suppressor gene that maintains HIV-1 latency by negatively regulating the AKT-mTORC1 pathway [87].Cells 2019, 8, x FOR PEER REVIEW 14 of 37 
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Figure 3. Microarray analysis of SE-treated monocytes showing the effect of psychostimulant use and
HIV infection on SE function: (A) Venn diagram showing 52 DEGs exclusive to the alterations induced
by treatment with HIV−Drug+ and HIV+Drug+ SE (SE-Drug). (B) Hierarchical clustering heatmap
showing the overall and direction of expression of the 52 SE-Drug. (C) Bar graph showing the fold
change of the 52 SE-DEGs as compared to vehicle. (D–F) Similar analyses as in Figure 3A–C showing
149 HIV exclusive DEGs in cells treated with HIV+Drug− and HIV+Drug+ SE (SE-HIV). The bold
fonts in the Venn diagrams are the numbers of interest.
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3.5. Gene Ontology (GO) Analysis

We used GO enrichment analyses to predict the possible biological roles of the identified DEGs
(Figure 4A–F). Tables 4–6 summarize the top 10 GO Terms enriched in three ontologies—biological
processes (Figure 4A,C,E and Table 4), molecular function (Figure 4B,D,F and Table 5), and cellular
component (Table 6). Furthermore, Table 7 listed the top 10 KEGG pathways identified by Webgestalt
analysis. KEGG pathway by count, as determined by TAC software, identified focal adhesion as one of
the top 10 common pathways in cells treated with SE from the four clinical groups (Table 8).
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Figure 4. Gene Ontology (GO) terms and PCR validation of selected DEGs: Biological processes and
molecular functions of selected DEGs as determined by the overrepresentation analysis method from
the web-based GEne SeT AnaLysis Toolkit. (A,B) SE, (C,D) SE-Drug, and (E,F) SE-HIV. Colored fonts are
validated genes with blue as downregulated and red as upregulated genes. (G,H) RT-qPCR validation
of selected DEGs in Figure 4A–F (blue and red fonts). Ordinary one-way ANOVA test (Dunnett’s
correction) was used to determine the differences between the SE groups as compared to HIV−Drug−.
Error bars indicate standard deviation of three technical replicates. * p < 0.05, and nonsignificant labels
were not shown for clarity.
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Table 4. Top 10 biological process GO terms from Webgestalt analysis 1.

Gene Set Description # of Genes
in Pathway

DEG in
Pathway

Enrichment
Score p-Value

SE-DEGs

GO:0036230 granulocyte activation 500 8 8.775 2.01 × 10−6

GO:0060326 cell chemotaxis 289 6 11.386 1.10 × 10−5

GO:0002446 neutrophil mediated immunity 496 7 7.740 2.25 × 10−5

GO:0097305 response to alcohol 231 5 11.870 5.40 × 10−5

GO:0050900 leukocyte migration 419 6 7.853 8.85 × 10−5

GO:0032103 positive regulation of response to external stimulus 293 5 9.358 1.66 × 10−4

GO:0001525 angiogenesis 487 6 6.757 2.02 × 10−4

GO:2000147 positive regulation of cell motility 493 6 6.674 2.15 × 10−4

GO:0002521 leukocyte differentiation 496 6 6.634 2.23 × 10−4

GO:0009636 response to toxic substance 499 6 6.594 2.30 × 10−4

SE-Drug DEGs

GO:1902115 regulation of organelle assembly 209 4 8.856 1.02 × 10−3

GO:0140029 exocytic process 84 2 11.017 1.41 × 10−2

GO:0043254 regulation of protein complex assembly 447 4 4.141 1.51 × 10−2

GO:0071826 ribonucleoprotein complex subunit organization 245 3 5.666 1.56 × 10−2

GO:0006289 nucleotide-excision repair 110 2 8.413 2.35 × 10−2

GO:0006520 cellular amino acid metabolic process 318 3 4.365 3.07 × 10−2

GO:0031023 microtubule organizing center organization 134 2 6.906 3.38 × 10−2

GO:0071800 podosome assembly 20 1 23.136 4.24 × 10−2

GO:0051383 kinetochore organization 21 1 22.034 4.44 × 10−2

SE-HIV DEGs

GO:0045576 mast cell activation 61 5 10.646 1.05 × 10−4

GO:0071824 protein-DNA complex subunit organization 242 9 4.830 1.05 × 10−4

GO:0002764 immune response-regulating signaling pathway 485 12 3.214 3.55 × 10−4

GO:0002285 lymphocyte activation involved in immune response 172 7 5.286 3.66 × 10−4

GO:0036230 granulocyte activation 500 12 3.117 4.67 × 10−4

GO:0006959 humoral immune response 242 8 4.294 5.63 × 10−4

GO:0002526 acute inflammatory response 154 6 5.060 1.22 × 10−3

GO:0001525 angiogenesis 487 11 2.934 1.33 × 10−3

GO:0002683 negative regulation of immune system process 416 10 3.122 1.39 × 10−3

1 Parameters for the enrichment analysis were as follows: Enrichment method: Over-representation Analysis (ORA), organism: hsapiens, enrichment categories:
geneontology_ Biological_Process_noRedundant, minimum number of IDs in the category: 5, maximum number of IDs in the category: 2000, False discovery rate (FDR) method: Benjamini
and Hochberg, significance level: Top 10.
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Table 5. Top 10 molecular function GO terms from Webgestalt analysis 1.

Gene Set Description # of Genes in
Pathway

DEG in
Pathway

Enrichment
Score p-Value

SE−DEGs

GO:1990841 promoter-specific chromatin binding 46 2 26.787 2.48 × 10−3

GO:0019199 transmembrane receptor protein kinase activity 81 2 15.212 7.51 × 10−3

GO:0019838 growth factor binding 138 2 8.929 2.07 × 10−2

GO:0001653 peptide receptor activity 149 2 8.270 2.39 × 10−2

GO:0001228 DNA-binding transcription activator activity, RNA
polymerase II-specific 444 3 4.163 3.36 × 10−2

GO:0008237 metallopeptidase activity 185 2 6.661 3.57 × 10−2

GO:1901567 fatty acid derivative binding 27 1 22.819 4.30 × 10−2

GO:0017171 serine hydrolase activity 208 2 5.924 4.41 × 10−2

GO:0043177 organic acid binding 212 2 5.812 4.57 × 10−2

GO:0035035 histone acetyltransferase binding 29 1 21.245 4.61 × 10−2

SE−Drug
DEGs

GO:0140098 catalytic activity, acting on RNA 350 3 3.912 4.02 × 10−2

GO:0016701 oxidoreductase activity, acting on single donors with
incorporation of molecular oxygen 28 1 16.299 5.96 × 10−2

GO:0060090 molecular adaptor activity 194 2 4.705 6.69 × 10−2

GO:0050839 cell adhesion molecule binding 478 3 2.864 8.53 × 10−2

GO:1990841 promoter-specific chromatin binding 46 1 9.921 9.61 × 10−2

GO:0097110 scaffold protein binding 58 1 7.868 1.20 × 10−1

GO:0000049 tRNA binding 59 1 7.735 1.22 × 10−1

GO:0070491 repressing transcription factor binding 73 1 6.252 1.48 × 10−1

GO:0015631 tubulin binding 321 2 2.843 1.55 × 10−1

SE−HIV DEGs

GO:0019865 immunoglobulin binding 23 3 16.235 7.93 × 10−4

GO:0001228 DNA−binding transcription activator activity, RNA
polymerase II−specific 444 11 3.084 8.52 × 10−4

GO:0016209 antioxidant activity 84 4 5.927 4.63 × 10−3

GO:0070888 E-box binding 50 3 7.468 7.50 × 10−3

GO:0016684 oxidoreductase activity, acting on peroxide as acceptor 55 3 6.789 9.76 × 10−3

GO:0001227 DNA-binding transcription repressor activity, RNA
polymerase II−specific 267 6 2.797 2.05 × 10−2

GO:0060589 nucleoside-triphosphatase regulator activity 348 7 2.504 2.19 × 10−2

GO:0005496 steroid binding 92 3 4.059 3.78 × 10−2

GO:0015026 coreceptor activity 43 2 5.789 4.66 × 10−2

1 Parameters for the enrichment analysis were as follows: Enrichment method: ORA, organism: hsapiens, enrichment categories: geneontology_Molecular_Function_noRedundant,
minimum number of IDs in the category: 5, maximum number of IDs in the category: 2000, FDR method: Benjamini and Hochberg, significance level: Top 10.
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Table 6. Top 10 cellular component GO terms from Webgestalt analysis 1.

Gene Set Description # of Genes in
Pathway

DEG in
Pathway

Enrichment
Score p-Value

SE−DEGs

GO:0030667 secretory granule membrane 293 5 9.554 1.26 × 10−4

GO:0042581 specific granule 160 3 10.498 2.69 × 10−3

GO:0070820 tertiary granule 163 3 10.305 2.84 × 10−3

GO:0101002 ficolin-1-rich granule 183 3 9.179 3.93 × 10−3

GO:0031012 extracellular matrix 496 4 4.515 1.02 × 10−2

GO:0031904 endosome lumen 36 1 15.552 6.24 × 10−2

GO:1903293 phosphatase complex 47 1 11.913 8.08 × 10−2

GO:0005788 endoplasmic reticulum lumen 306 2 3.659 1.02 × 10−1

GO:0001533 cornified envelope 65 1 8.614 1.10 × 10−1

GO:0005766 primary lysosome 155 1 3.612 2.44 × 10−1

SE−Drug
DEGs

GO:0030496 midbody 171 3 8.419 5.10 × 10−3

GO:0005681 spliceosomal complex 176 3 8.180 5.52 × 10−3

GO:0090734 site of DNA damage 66 2 14.543 8.19 × 10−3

GO:0099023 tethering complex 67 2 14.326 8.43 × 10−3

GO:0016607 nuclear speck 383 3 3.759 4.36 × 10−2

GO:0044450 microtubule organizing center part 178 2 5.392 5.23 × 10−2

GO:0035770 ribonucleoprotein granule 214 2 4.485 7.24 × 10−2

GO:0005770 late endosome 242 2 3.966 8.95 × 10−2

GO:0001917 photoreceptor inner segment 49 1 9.794 9.74 × 10−2

SE−HIV DEGs

GO:0030667 secretory granule membrane 293 8 3.127 3.98 × 10−3

GO:0005766 primary lysosome 155 5 3.694 1.14 × 10−2

GO:0042629 mast cell granule 22 2 10.411 1.55 × 10−2

GO:0000790 nuclear chromatin 341 7 2.351 2.92 × 10−2

GO:0016605 PML body 99 3 3.470 5.55 × 10−2

GO:0005801 cis-Golgi network 60 2 3.817 9.64 × 10−2

GO:0045177 apical part of cell 375 6 1.832 1.09 × 10−1

GO:0034399 nuclear periphery 133 3 2.583 1.10 × 10−1

GO:0042383 sarcolemma 134 3 2.564 1.12 × 10−1

1 Parameters for the enrichment analysis were as follows: Enrichment method: ORA, organism: hsapiens, enrichment categories: geneontology_Cellular_Component_noRedundant,
minimum number of IDs in the category: 5, maximum number of IDs in the category: 2000, FDR method: Benjamini and Hochberg, significance level: Top 10.
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Table 7. Top 10 KEGG pathways from Webgestalt analysis 1.

Gene Set Description # of Genes in
Pathway

DEG in
Pathway

Enrichment
Score p-Value

SE−DEGs

hsa04657 IL-17 signaling pathway 93 4 17.374 6.69 × 10−5

hsa05150 Staphylococcus aureus infection 56 3 21.640 3.25 × 10−4

hsa05323 Rheumatoid arthritis 90 3 13.465 1.31 × 10−3

hsa04928 Parathyroid hormone synthesis, secretion and action 106 3 11.432 2.10 × 10−3

hsa04080 Neuroactive ligand-receptor interaction 277 4 5.833 4.13 × 10−3

hsa05031 Amphetamine addiction 68 2 11.881 1.20 × 10−2

hsa04917 Prolactin signaling pathway 70 2 11.541 1.27 × 10−2

hsa04610 Complement and coagulation cascades 79 2 10.226 1.59 × 10−2

hsa05132 Salmonella infection 86 2 9.394 1.87 × 10−2

hsa05142 Chagas disease (American trypanosomiasis) 102 2 7.920 2.58 × 10−2

SE−Drug
DEGs

hsa04914 Progesterone−mediated oocyte maturation 99 2 9.181 1.95 × 10−2

hsa04931 Insulin resistance 107 2 8.494 2.25 × 10−2

hsa04114 Oocyte meiosis 124 2 7.330 2.96 × 10−2

hsa03040 Spliceosome 133 2 6.834 3.37 × 10−2

hsa04910 Insulin signaling pathway 137 2 6.634 3.56 × 10−2

hsa04150 mTOR signaling pathway 151 2 6.019 4.25 × 10−2

hsa01523 Antifolate resistance 31 1 14.659 6.61 × 10−2

hsa00260 Glycine, serine and threonine metabolism 40 1 11.361 8.46 × 10−2

hsa00970 Aminoacyl-tRNA biosynthesis 44 1 10.328 9.26 × 10−2

SE−HIV DEGs

hsa05150 Staphylococcus aureus infection 56 5 9.836 1.41 × 10−4

hsa04380 Osteoclast differentiation 128 5 4.303 5.93 × 10−3

hsa05202 Transcriptional misregulation in cancer 186 6 3.554 6.58 × 10−3

hsa05322 Systemic lupus erythematosus 133 5 4.142 6.95 × 10−3

hsa00515 Mannose type O-glycan biosynthesis 23 2 9.580 1.82 × 10−2

hsa04115 p53 signaling pathway 72 3 4.590 2.73 × 10−2

hsa05166 Human T-cell leukemia virus 1 infection 255 6 2.592 2.75 × 10−2

hsa00410 Beta-Alanine metabolism 31 2 7.108 3.19 × 10−2

hsa04710 Circadian rhythm 31 2 7.108 3.19 × 10−2

1 Parameters for the enrichment analysis were as follows: Enrichment method: ORA, organism: hsapiens, enrichment categories: pathway_KEGG, minimum number of IDs in the
category: 5, maximum number of IDs in the category: 2000, FDR method: Benjamini and Hochberg, significance level: Top 10.
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Table 8. Top 10 KEGG pathways by count as determined by Transcriptome Analysis Console (TAC) software 1.

Pathway #Total #Up #Down Significance p-Value

HIV-Drug-

PI3K-Akt Signaling Pathway 20 13 7 0 1
Focal Adhesion-PI3K-Akt-mTOR-signaling pathway 20 13 7 0.21 0.62234

VEGFA-VEGFR2 Signaling Pathway 20 12 8 0.9 0.127165
Nuclear Receptors Meta-Pathway 20 11 9 0.09 0.811647

Regulation of toll-like receptor signaling pathway 19 10 9 2.84 0.001437
MAPK Signaling Pathway 18 9 9 0.47 0.3394

miR-targeted genes in muscle cell—TarBase 17 7 10 0.93 0.116256
miR-targeted genes in lymphocytes—TarBase 17 7 10 2 0.009973

Toll-like Receptor Signaling Pathway 15 9 6 2.96 0.001086
Olfactory receptor activity 15 12 3 1 0.100786

HIV-Drug+

PI3K-Akt Signaling Pathway 35 8 27 0.11 0.783262
miR-targeted genes in lymphocytes—TarBase 34 3 31 1.89 0.012864
miR-targeted genes in muscle cell—TarBase 32 3 29 0.87 0.136266

Focal Adhesion-PI3K-Akt-mTOR-signaling pathway 30 8 22 0.03 0.922794
Olfactory receptor activity 24 8 16 1.82 0.015221

Nuclear Receptors Meta-Pathway 24 6 18 0.8 0.157659
VEGFA-VEGFR2 Signaling Pathway 22 7 15 0.08 0.827347

miR-targeted genes in epithelium—TarBase 22 3 19 1.72 0.01896
Genes related to primary cilium development (based on CRISPR) 21 1 20 2.73 0.001861

Ciliary landscape 21 0 21 0 1

HIV+Drug-

miR-targeted genes in lymphocytes—TarBase 46 8 38 0.87 0.134124
Nuclear Receptors Meta-Pathway 41 17 24 0.43 0.372732

PI3K-Akt Signaling Pathway 40 14 26 0.14 0.728467
miR-targeted genes in muscle cell—TarBase 38 8 30 0.74 0.183176

MAPK Signaling Pathway 37 11 26 1.18 0.065447
Focal Adhesion-PI3K-Akt-mTOR-signaling pathway 35 15 20 0.11 0.783054

VEGFA-VEGFR2 Signaling Pathway 35 12 23 1.01 0.097823
miR-targeted genes in epithelium—TarBase 29 7 22 1.06 0.087395

Breast cancer pathway 26 8 18 1.54 0.029057
Circadian rhythm related genes 26 7 19 0.3 0.50212

HIV+Drug+

Nuclear Receptors Meta-Pathway 43 29 14 0.67 0.211976
PI3K-Akt Signaling Pathway 42 17 25 0.31 0.487261

miR-targeted genes in lymphocytes—TarBase 42 9 33 1.42 0.038159
Focal Adhesion-PI3K-Akt-mTOR-signaling pathway 37 16 21 0.28 0.520416

VEGFA-VEGFR2 Signaling Pathway 36 18 18 1.2 0.062498
miR-targeted genes in muscle cell—TarBase 34 10 24 1.38 0.041842
miR-targeted genes in epithelium—TarBase 27 8 19 1.48 0.032898

MAPK Signaling Pathway 26 11 15 0.08 0.838897
TGF-beta Signaling Pathway 25 10 15 1.9 0.012623

Ciliary landscape 23 8 15 0.04 0.913439
1 Gene expression parameters were as follows: Gene-level fold change < −2 or > 2; gene-level p-value < 0.05, gene-level FDR < 0.05, ANOVA statistical analysis with eBayes correction.
The Pos/Neg Area Under the Curve (AUC) threshold was set to 0.7. Gene-level Signal Space Transformation-Robust Multi-Chip Analysis (SST-RMA) method was used for summarization.
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3.6. Validation of Microarray Data

A subset of DEGs linked to two ontology terms—biological processes and molecular functions
(Figure 4A–F, blue and red fonts)—were used for real-time quantitative PCR (RT-qPCR) validation using
the primers shown in Table 2. The results show overall agreement between RT-qPCR and microarray
results (Figure 4G), with subtle variation that may be attributed to assay differences. This validation
study confirms that many genes were indeed differentially regulated by SE and that HIV infection,
psychostimulant use, and HIV/psychostimulant use have the ability to regulate SE function.

3.7. SE from HIV-Infected Participants Who Used Psychostimulants Enhanced Monocyte Adhesion to Collagen

Since cell adhesion molecule binding is a molecular function GO term in gene expression analysis
and COL16A1 involved in cell adhesion [81–83] is upregulated by SE-Drug (Figure 3C), we assessed the
effect of SE on the adhesion of U937 monocytes to collagen. Monocyte adhesion occurred in untreated
cells, with reduced adhesion when a serum-free medium was used. Compared to vehicle-treated
cells, SE from all four clinical groups increased monocyte adhesion both in complete (Figure 5A) and
serum-free (Figure 5B) media. However, adhesion of monocytes treated with HIV+Drug+ SE was
the most enhanced. The increases in adhesion cannot be attributed to serum since similar increases
were observed in serum-free conditions (compare Figure 5A,B). Furthermore, the increase in the
number of adherent cells cannot be attributed to cell death or cell proliferation since none of the
SE had cytotoxic (Figure 5C,D) or proliferative (Figure 5E,F) effects on U937 cells under the same
experimental conditions.

3.8. SE from HIV-Infected and Psychostimulant Users Induce Actin Reorganization

To further understand the effects of SE on monocyte adhesion to collagen, we examined cell
morphology and cytoskeletal dynamics of SE-treated cells compared to vehicle-treatment. SE from
different clinical groups induced distinct changes in cell morphology and actin organization in
monocytes (Figure 6A). When unstimulated or HIV−Drug− SE-treated monocytes were allowed
to adhere to collagen-coated coverslips, the majority of cells maintained a cortical ring of actin
filaments (Figure 6A, columns 1 and 2). In the presence of SE-Drug and SE-HIV, monocytes displayed
considerable degrees of spreading and polarization (Figure 6A, columns 3 to 5) with actin localized
to membrane ruffles and areas of cell-to-cell contacts (Figure 6A, columns 3 to 5). SE-polarized
cells displayed asymmetric morphology suggestive of cell migration, with cell periphery displaying
membrane ruffles and filopodia-like structures (Figure 6A). We measured the dynamics of SE on
cell spreading by quantifying the cell size and cell area. Cells treated with vehicle had an average
size of 14.74 µm, with a spread cell area of 172.48 µm2 (Figure 6B,C). The size (14.58 µm) and area
(170.63 µm2) of cells treated with HIV−Drug− SE were similar to vehicle-treated cells. At variance,
HIV−Drug+, HIV+Drug−, and HIV+Drug+ SE significantly increased cell sizes to 16.65, 18.49,
and 20.5 µm respectively, and cell areas to 221.33, 274.16, and 333.70 µm2 respectively (Figure 6B,C).
To further assess monocyte morphometrics, we traced the cell membrane (Figure 6D) and determined
monocyte circularity. Monocytes are circular cells, and the circularity of cells treated with vehicle was
highest at 0.71, with 1 being a perfect circle. In contrast, average cell circularity increased to 0.76 in
cells treated with HIV−Drug− SE. However, treatment of monocytes with HIV−Drug+, HIV+Drug−,
or HIV+Drug+ SE decreased monocyte circularity to 0.65, 0.63, and 0.58 respectively (Figure 6E).
These data further support the induction of membrane ruffles and filopodia-like structures in monocytes
treated with SE-Drug or SE-HIV and suggest that infection with HIV or use of psychostimulants alter
the function of SE. Noteworthy is that filopodia and other thin membrane protrusions are sensitive to
PFA fixation [88]. Since our cells were fixed, we may have underestimated the extent of membrane
protrusions on the cells. Thus, studies of the effect of SE on monocyte morphometrics using unfixed
living cells is warranted and not conducted in the present study due to limited semen specimens from
all clinical groups. However, our data suggest that SE-Drug and SE-HIV induce monocytes to polarize.
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particles/mL) SE from each clinical group and cultured atop collagen coated 96 well plate for 18 h in 
either complete media or serum free media. Subsequently, non-adhered cells were washed three times 
with PBS and adhered cells were stained with NucBlue. The entire well was imaged using LionHeart 
FX. The total number of adhered cells was determined using Gen5 Imaging software. Quantification 
of adherent monocytes in complete RPMI (A) and serum-free RPMI (B). Error bars indicate standard 
deviation of 4 independent wells per treatment. Analysis of monocyte viability by Live/Dead Stain 
(C) and Trypan Blue exclusion (D). Cell proliferation as determined by counting total live cells by 
Live/Dead Stain (E) or Trypan Blue stain (F). Error bars indicate standard deviation of three 
independent wells. Ordinary one-way ANOVA test (Dunnett’s correction) was used to determine the 

Figure 5. Monocyte adhesion to collagen is increased by SE from HIV-infected participants
with comorbid psychostimulant use: 10,000 cells were treated with vehicle PBS or 100 µg/mL
(~2 × 1010 particles/mL) SE from each clinical group and cultured atop collagen coated 96 well plate
for 18 h in either complete media or serum free media. Subsequently, non-adhered cells were washed
three times with PBS and adhered cells were stained with NucBlue. The entire well was imaged
using LionHeart FX. The total number of adhered cells was determined using Gen5 Imaging software.
Quantification of adherent monocytes in complete RPMI (A) and serum-free RPMI (B). Error bars
indicate standard deviation of 4 independent wells per treatment. Analysis of monocyte viability by
Live/Dead Stain (C) and Trypan Blue exclusion (D). Cell proliferation as determined by counting total
live cells by Live/Dead Stain (E) or Trypan Blue stain (F). Error bars indicate standard deviation of
three independent wells. Ordinary one-way ANOVA test (Dunnett’s correction) was used to determine
the differences induced by the different SE treatments as compare to vehicle. * p < 0.05, ** p < 0.01,
*** p < 0.005, **** p < 0.001, and ns, nonsignificant.

3.9. SE from HIV Infected and Psychostimulant Users Enhance Monocyte Chemotaxis

Given the reported enhanced adhesion of monocytes to endothelial surfaces in the context of
HIV infection [89,90] and our observation that SE-Drug and SE-HIV modified monocyte cytoskeleton
and exacerbated their adhesion to collagen, we sought to gain further insights into the effect of SE
from psychostimulant users and HIV-infected subjects on monocyte motility. In general, while all SE
induced chemotactic migration, HIV+Drug+ had the highest induction. In comparison to vehicle,
HIV−Drug− SE modestly induced monocyte chemotaxis to HIV secretome, but chemotaxis was
significantly higher in cells treated with SE from HIV+Drug− (20-fold increase), HIV−Drug+ (~19-fold
increase), and HIV+Drug+ (~33-fold increase), in that order (Figure 7A). The differences in chemotaxis
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is independent of cell viability (Figure 7B), suggesting that HIV infection and psychostimulants use
may reprogram SE to induce monocyte motility.Cells 2019, 8, x FOR PEER REVIEW 26 of 37 

 
Figure 6. Altered monocyte morphometrics following treatment with SE from participants who used 
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plated atop collagen, treated with vehicle and different SEs as indicated in the figure, and stained 
with phalloidin to visualize actin membrane structures. Cells treated with SE-Drug or SE-HIV had 
distinct changes in morphology and exhibited significant membrane ruffles and filopodia-like 
extensions. White arrows indicate areas of increased F-actin localization. Green arrows indicate 
filopodia-like structures. Yellow arrows indicate membrane ruffles. Scale bar = 30 µm. The membrane 
tracing was used to assess monocyte circularity. The white box corresponds to the enlarged area. Scale 
bar is 200 µm. (B) Scatterplot of cell size. (C) Scatterplot of cell area. (D) Ten times representative 
membrane tracing (with fill) images of vehicle and different SE treatments obtained with the 
Lionheart FX Gen5 software. (E) Scatter plot of cell circularity. Calculations were performed by 
Lionheart FX Gen5 software. Ordinary one-way ANOVA (Dunnett’s correction) was used to 
determine the significance of SE treatments relative to vehicle. * P < 0.05, ** P < 0.01, *** P < 0.005, **** 
P < 0.001, and ns, nonsignificant. 
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Figure 6. Altered monocyte morphometrics following treatment with SE from participants who used
psychostimulants and/or were infected with HIV: (A) 60× fluorescence images of U937 monocytes
plated atop collagen, treated with vehicle and different SEs as indicated in the figure, and stained with
phalloidin to visualize actin membrane structures. Cells treated with SE-Drug or SE-HIV had distinct
changes in morphology and exhibited significant membrane ruffles and filopodia-like extensions.
White arrows indicate areas of increased F-actin localization. Green arrows indicate filopodia-like
structures. Yellow arrows indicate membrane ruffles. Scale bar = 30 µm. The membrane tracing was
used to assess monocyte circularity. The white box corresponds to the enlarged area. Scale bar is
200 µm. (B) Scatterplot of cell size. (C) Scatterplot of cell area. (D) Ten times representative membrane
tracing (with fill) images of vehicle and different SE treatments obtained with the Lionheart FX Gen5
software. (E) Scatter plot of cell circularity. Calculations were performed by Lionheart FX Gen5
software. Ordinary one-way ANOVA (Dunnett’s correction) was used to determine the significance of
SE treatments relative to vehicle. * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001, and ns, nonsignificant.

3.10. HIV Infection and Psychostimulant Use Enhanced Secretion of SE that Activated
Matrix Metalloproteinases

Various gelatinolytic degradative areas corresponding to active and pro MMP2 and MMP9, along
with other MMP species were observed in secretomes of SE-treated cells compared to vehicle-treated
cells (Figure 7C). The highest gelatinolytic activity measured by the total degradative area was 3.4-fold
compared to vehicle-treated cells, and this activity was observed in th secretomes of cells treated with
HIV−Drug+ SE (Figure 7D). Similarly, secretomes from SE-treated cells contain caseinolytic enzymes
(Figure 7E). For both gelatin and casein zymographs, the cleared bands indicate areas of enzymatic
activities while the arrows/brackets indicate various MMP species based on the correspondence of
their size (kDa) to known MMP sizes. Casein zymography is technically challenging and less sensitive
than gelatin zymography (compare Figure 7C,E). This is partly because of the migration pattern
of casein which results in two clearly defined zones in the gel (Figure 7E, less and excess casein),
the lower part that contains excess casein and the upper part with less casein. This is problematic
because some MMPs, such as the pro (~28 kDa) and active (~20 kDa) forms of MMP7, migrate
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near the casein-migration boundary and were difficult to distinguish. While gelatin zymography
predominantly detects MMP2 and MMP9 activities, casein is a preferential substrate for MMP3,
MMP7, MMP12, and MMP13 [91–93]. Quantitation of select caseinolytic degradative areas showed
that HIV−Drug+ SE-treated cells produced increased amounts of high molecular weight caseinolytic
complexes (Figure 7F) with subtle differences in MMP7 (Figure 7G). Collectively, these results provide
evidence of SE-induced migration and ECM-modifying MMPs that degrade gelatin (denatured form
of collagen) and β-casein. However, whether SE-mediated cell migration and activation of MMPs play
a role in immune surveillance, viral pathogenesis, maintenance, and/or disruption of barrier integrity
remains to be determined. It also remains to be determined what role, if any, SEs play in activating
lipases and other proteases.
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unmigrated cells in the apical chamber at the end of the experiment expressed as % of viable cells. (C) 
Representative (n = 3) gelatin Zymograph of conditioned media (secretome) from monocytes treated 
with the various SE prior to loading into migration chambers. The area within the square box is 
enlarged below to highlight active MMP9. (D) Image J quantification (total densitometry) of total 

Figure 7. Monocyte chemotaxis and secretion of matrix-modifying enzymes are potentiated by SE from
HIV-infected and HIV-uninfected participants with co-occurring psychostimulant use: 500,000 U937
cells were treated with vehicle PBS or 100 µg/mL SE from the 4 clinical groups in serum-free media
for 24 h before addition to the apical side of a chemotaxis chamber, containing 0% FBS (serum-free),
30% exosome-depleted FBS, or conditioned media from HIV-1 LAV-infected HeLa CD4+ cells (HIV
secretome). The chambers were incubated for 20 h at 37 ◦C in a 5% CO2 incubator. The basal chamber
cells were harvested and quantified by Trypan Blue hemocytometer counting. (A) Monocytes treated
with the different SE were assessed for chemotaxis toward clarified supernatants collected from
HIV-infected cells (HIV secretome), and the numbers of monocytes that migrated into HIV secretome
in the basal compartment of the migration chamber are shown. (B) Viability of unmigrated cells in the
apical chamber at the end of the experiment expressed as % of viable cells. (C) Representative (n = 3)
gelatin Zymograph of conditioned media (secretome) from monocytes treated with the various SE prior
to loading into migration chambers. The area within the square box is enlarged below to highlight active
MMP9. (D) Image J quantification (total densitometry) of total gelatinolytic activity of each zymogram
lane presented as the total area of proteolytic activity. Data represent the mean of triplicate experiments,
and error bars are standard error of the mean. (E) Representative (n = 3) β-casein zymography
of the same conditioned media used in gelatin zymography. Image J quantification (densitometry
measurement) of Figure 7F’s (F) high molecular weight caseinolytic complex and (G) MMP7 activities
of each zymogram lane presented as area of proteolytic activity. Experiments were repeated three times
with similar trends. Ordinary one-way ANOVA (Dunnett’s correction) test was used to determine
the significance of different SE treatments relative to vehicle. * p < 0.05, ** p < 0.01, *** p < 0.005,
**** p < 0.001, and ns, nonsignificant.
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HIV infection and psychostimulant use promote secretion of SE that enhanced formation of
focal adhesions and adherence junctions: Since formation of focal adhesion (FA) is integral to cell
adhesion and migration, we examined the effects of SE on FA using the general adhesion proteins
vinculin and F-actin, which form part of the cell’s cytoskeleton. While vinculin localized to cell-to-cell
contacts (adherence junctions, AJ) in all treatments (Figure 8A, row 3), SE-Drug and SE-HIV promote
the appearance of increased FA localization to membrane protrusions (Figure 8B, row 3). Vinculin is
known to be activated downstream of cell surface receptors and binds talin and F-actin to provide a
physical link between the actin cytoskeleton and integrins [94]. Thus, we examined the colocalization
of F-actin with vinculin. Increased areas of F-actin•Vinculin were observed at AJs in all treatments
(Figure 8A, row 4), with increased F-actin•Vinculin colocalization in AJs in cells treated with SE-Drug
and SE-HIV (Figure 8C,D). Moreover, a preponderance of SE-Drug and SE-HIV treated cells contain
F-actin•Vinculin in areas of cell protrusions (Figure 8B, row 4), but no significant difference was
observed (Figure 8E,F). Although the role of SE in cell-to-matrix and cell-to-cell adhesions is yet to
be determined, the increased detection of vinculin at areas of cell-to-matrix and cell-to-cell contacts
suggest possible SE-mediated recruitment of vinculin to FAs and AJs in monocytes. These findings
suggest that the SE-induced adhesive and protrusive modules may be functionally linked by the actin
network to facilitate mechanotransduction as well as to provide cues between cells.
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Figure 8. SE induced F-actin•Vinculin colocalization in monocytes. Representative 60× fluorescence
images of U937 cells stained with phalloidin and vinculin to visualize (A) F-actin•Vinculin colocalization
in adherence junctions. (B) F-actin•Vinculin colocalization in cell protrusions. Scale bar = 30 µm.
Pearson correlation coefficient (PPC) and threshold overlap score (TOS, linear) plots corresponding to
the images in Figure 8A,B for comparison of F-actin•Vinculin colocalization in adherence junctions
(C,D) and cell protrusions (E,F). Purple arrows indicate vinculin in AJs (Figure 8A) or in areas of cell
protrusion (Figure 8B). Yellow arrows indicate F-actin•Vinculin complex in AJs (Figure 8A) and areas
of cell protrusions (Figure 8B). Ordinary one-way ANOVA (Dunnett’s correction) was used to assess
statistical significance relative to vehicle. * p < 0.05, ** p < 0.01, *** p < 0.005, and ns, nonsignificant.

4. Discussion

In this study, we show that SEs are present in the semen of HIV-uninfected and HIV-infected
participants independent of psychostimulants use. We also highlight the association of viral protein—RT
and cocaine metabolite—benzoylecgonine with SE and show that SEs from study participants
reprogrammed monocyte gene expression, morphometrics, and function.
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Transcriptomics analysis of monocytes plated atop collagen and treated with SE from HIV−/+

and Drug−/+ groups showed that, in general, SE contain factors, such as COL16A1 and MMPs known
to regulate cell adhesion [81–83] (Figures 2F and 3C), cell chemotaxis (Figure 4A), and metalloprotease
activity (Figure 4B). Furthermore, SE-Drug suppressed the expression of HUS1B, linked to the induction
of cell death [85]. Amongst other observations was the result that SE-HIV suppressed the expression
of TSC1, a protein known to maintain HIV in a latent state via the AKT-mTORC1 pathway [87].
These transcriptomic results support the observation that SE-Drug and SE-HIV promote monocyte
adhesion, cytoskeletal reorganization, and chemotactic migration.

Categorization of DEGs in each treatment into GO and KEGG functional terms identified a
common theme—FA as a potential SE-regulated function (Table 8). FAs are large protein complexes
that physically connect the ECM to the cytoskeleton of the cells and are integral to cell adhesion,
signaling, actin cytoskeleton dynamics, and cell migration while SE induced monocyte adhesion to
collagen, HIV infection, and/or psychostimulant use resulted in the secretion of SE-Drug and SE-HIV
that potentiated monocyte adhesion to collagen (Figure 5). Indeed, HIV infection of lymphocytes
and monocytes resulted in increased adhesion of the infected cells to vascular endothelium and ECM
molecules [95], and treatment of monocytes with HIV Tat protein increased monocyte adhesion to
endothelial monolayers [96].

Analyses of monocyte morphometrics and migration revealed that, in the presence of HIV infection
and psychostimulant use, SE profoundly altered monocytes by increasing membrane ruffling and
formation of filopodium-like structures. These changes resulted in variable modification of cell size and
cell area by the different SEs; however, SE from HIV+Drug+ participants induced the most significant
changes. These observations suggest that the ability of SE to regulate actin cytoskeleton dynamics,
formation of membrane structures, FA, AJ, and localization of F-actin and vinculin to structures similar
to the leading edge of migrating cells [97] and at cell–cell junctions depend on the microenvironment
secreting the SE. On the basis of these observations, it is therefore possible that exosomes may modify
FAs and AJs in response to changes in their microenvironment.

While FA bridges cells to ECM, AJ links neighboring cells and the actin–myosin cytoskeleton.
These processes play a role in physiologic and pathologic signaling and cell migration and invasion
during morphogenetics, tissue repair, and barrier disruption events [98,99]. In the center of these
cell-to-cell and cell-to-ECM interactions is the actin machinery [100], which we found profoundly
colocalized with vinculin in FA and AJ (Figure 8). Thus, elevated vinculin incorporation in the adhesion
complexes may explain the observed enhanced firm adhesion of SE-Drug- and SE-HIV-treated
monocytes to collagen and migration of monocytes to HIV secretome.

The components of FA and AJ include scaffolding molecules, GTPases, and enzymes (kinases,
phosphatases, proteases, and lipases). We found that, in comparison to vehicle-treated cells, monocytes
treated with SE < SE-HIV < SE-Drug, in this order, released bioactive enzymes with enhanced
gelatinolytic and caseinolytic activities. Amongst the enzymes identified by their molecular weight
and banding pattern were gelatinolytic MMP2 and MMP9 and caseinolytic MMP7. However, other
enzymes regulated by SE are yet to be identified.

MMPs are vital to normal immune response to infection because they degrade the ECM
for leukocyte migration and modulate the activity of cytokines, chemokines, and defensins.
However, MMPs have been implicated in the upregulation of adhesion molecules [101] and in
the immunopathology associated with tissue damage, metastasis, and microbial dissemination, such as
bacterial meningitis, endotoxic shock, mycobacterial infection, and hepatitis B and HIV infection [102].
Our observation that SE-Drug and SE-HIV induced high levels of gelatinolytic and caseinolytic MMPs
points to the potential that the use of psychostimulants and infection with HIV may change the
function of SE. Indeed, it has been shown that HIV infection is associated with an altered production
and secretion of MMPs which contribute to HIV-induced immunopathology, dysregulation of T-cell
dynamics, leukocyte trafficking, and viral dissemination [72]. It is possible that the elevated MMP
activity in HIV-infected cells may be related to HIV-associated immune activation, viral dissemination,
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and the development of HIV-associated diseases. In our studies, we observed that treatment of
monocytes with SE from all clinical groups increased monocyte adhesion to collagen, with SE-Drug
and SE-HIV producing the greatest increases (Figure 5). Indeed, HIV infection of lymphocytes and
monocytes results in increased adhesion of the infected cells to vascular endothelium and ECM
molecules [103] and treatment of monocytes with HIV Tat protein increased monocyte adhesion to
endothelial monolayers [104]. It has been shown that MMPs, especially MMP9, promotes the ability of
HIV-infected mononuclear cells to traverse artificial basement membrane barriers [105,106]. Similar to
our observation of induction of MMP expression by SE, MMP9 is one of the immediate early genes
expressed after HIV infection of monocyte/macrophage [107]. HIV proteins Tat and gp120 proteins
upregulate MMP9 secretion from monocytes and T cells, while gp41-derived peptides stimulate MMP2
production [107,108]. Furthermore, elevated levels of MMP9 has been reported in vivo from patients
with HIV infection not receiving ART [109]. Thus, factors in SE in general and in SE-Drug and SE-HIV,
in particular, may play important roles in orchestrating monocytes dynamics in HIV infection and
substances abuse.

Finally, because of the potential role of MMP in HIV dissemination via transmigration of infected
cells [110] and HIV-associated pathologies (brain injury/neuronal damage, HIV-associated dementia
(HAD) [111–113], Kaposi’s sarcoma (KS) [114–116], HIV-associated nephropathy (HIVAN) [117],
and periodontal diseases [118,119]), understanding the role of SE-Drug and SE-HIV in the induction of
MMP enzyme activity may constitute a novel therapeutic approach for HIV infection.

Aside from the pathologic functions of monocytes, these cells perform systemic immune
surveillance and maintenance of macrophage populations through constitutive migration from
the bloodstream across the vascular endothelium. Thus, enhanced pathologic monocyte migration
may promote disease while the consequence of losing constitutive migration may include defective
cell-mediated immune responses. It remains to be determined whether alteration in monocyte
morphometrics and motility induced by SE, SE-Drug, and SE-HIV will be pathologic or protective
in primary monocytes. These interesting findings are limited by the possibility that HIV+Drug−
and HIV+Drug+ SE may contain HIV particles because the semen samples were obtained before the
advent of ART. Thus, HIV+ donors were almost certainly viremic. However, these limitations do
not negate the findings of this study, since HIV particles and exosomes are naturally present in the
semen of infected individuals. Hence, our findings highlight the possible events that may occur within
individuals who are infected with HIV and use or do not use psychostimulants. Another caveat of
this study is that the donors reported the use of multiple substances and alcohol. Thus, the observed
effects may be due to one of the other substances or due to an interaction between different substances.
Due to such complexities, well-controlled animal model studies are needed to determine drug-specific
effects. Nevertheless, the presented data should pave the path for future works that study the effects of
body fluids exosomes in the context of HIV infection and substance abuse.
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