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Abstract: Adipose tissue accumulation is an independent and modifiable risk factor for cardiovascular
disease (CVD). The recent CVD European Guidelines strongly recommend regular physical exercise
(PE) as a management strategy for prevention and treatment of CVD associated with metabolic
disorders and obesity. Although mutations as well as common genetic variants, including the
brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, are associated with increased
body weight, eating and neuropsychiatric disorders, and myocardial infarction, the effect of
this polymorphism on adipose tissue accumulation and regulation as well as its relation to
obesity/thrombosis remains to be elucidated. Here, we showed that white adipose tissue (WAT) of
humanized knock-in BDNFVal66Met (BDNFMet/Met) mice is characterized by an altered morphology
and an enhanced inflammatory profile compared to wild-type BDNFVal/Val. Four weeks of voluntary
PE restored the adipocyte size distribution, counteracted the inflammatory profile of adipose tissue,
and prevented the prothrombotic phenotype displayed, per se, by BDNFMet/Met mice. C3H10T1/2
cells treated with the Pro-BDNFMet peptide well recapitulated the gene alterations observed in
BDNFMet/Met WAT mice. In conclusion, these data indicate the strong impact of lifestyle, in particular
of the beneficial effect of PE, on the management of arterial thrombosis and inflammation associated
with obesity in relation to the specific BDNF Val66Met mutation.

Keywords: BDNF; Val66Met polymorphism; adipose tissue; adipogenesis; arterial thrombosis;
physical exercise

1. Introduction

Despite the huge growth in knowledge and advances in the prevention and treatment of
cardiovascular disease (CVD), this pathology is still the leading cause of morbidity and mortality in the
world and is predicted to reach 23.3 million by 2030 [1]. It is well known that an important modifiable
risk factor for CVD mortality and morbidity is represented by excessive weight [2], and several follow-up
studies demonstrated that a body mass index (BMI) >25 (>75th percentile based on percentile curves
of BMI in the US reference population) is associated with a higher mortality rate [3,4]. Excessive body
weight may influence CVD through its effect on risk factors such as hypertension, glucose intolerance,
and dyslipidemia and may contribute through not already identified mechanisms [5]. In overweight
and obese patients, adipose tissue accumulation is associated with a low-grade inflammatory profile
and a higher secretion of cytokines and chemokines in the circulation compared to normal weight
people [6]. The resulting subclinical inflammation is associated, among others, with hypercoagulability
and increased thrombotic risk due to the enhanced platelet and leukocyte numbers and reactivities [7–9].
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International guidelines, including 2016 European Guidelines on CVD prevention in clinical
practice [10], strongly recommended regular physical exercise (PE) as management for the prevention
and treatment of CVD, in particular when related to obesity and metabolic disorders. Regular PE
reduces adipose-derived systemic inflammation, improves endothelial function, decreases platelet and
leukocyte activation, and halts the progression of coronary stenosis in both obese and normal-weight
individuals [8,11–14].

Starting from the discovery that several rare forms of obesity, called monogenic obesity, result
from a mutation in single genes primarily located in the leptin–melanocortin pathway [15,16], recent
evidence has identified additional selected genes associated with obesity, providing that the genetic
background can play a pivotal role in causing or triggering susceptibility to the pathology when
associated with environmental factors such as overeating and PE reduction [17,18]. Of note, brain-derived
neurotrophic factor (BDNF) is included among these genes. Genome-wide association studies (GWAS)
have shown a strong association between the BDNF locus and anorexia nervosa, bulimia nervosa [19],
or obesity [20,21]. Indeed, it is well known that BDNF plays an important role in energy metabolism
food intake and weight control [22,23].

In this context, the common human BDNF Val66Met variant through reduction of the
activity-dependent secretion and signaling of mature BDNF, is associated not only to neuro-psychiatric
disorders [24] and CVD [25] but also to eating disorders and obesity in humans [26–30]. Interestingly,
a knock-in mouse carrying the human BDNF Val66Met polymorphism has a significantly higher
body weight than wild-type littermates [31], associated with a proinflammatory and prothrombotic
phenotype [25]. The frequency of the Met allele has a wide range of values: in Asians, Met allele
frequency is nearly 50% heterozygous, while is about 20%–30% homozygous [32,33]. In the Caucasian
population the Met allele is less frequent, with a frequency of 20%–30% heterozygous and only about
4% homozygous [33,34].

The aim of the present study was to investigate the relationship between the BDNF Val66Met
polymorphism, obesity, and thrombosis, by analyzing the adipose tissue profile in BDNFMet/Met mice,
and to evaluate the ability of PE to affect adipose tissue and reduce the prothrombotic phenotype in
BDNF Val66Met knock-in mice. Finally, in vitro studies were performed to investigate the functional
relevance of BDNF Val66Met polymorphism on adipogenesis.

2. Materials and Methods

2.1. Mice

All experiments were performed in adult (3–4 months old) wild-type BDNFVal/Val and BDNFMet/Met

littermate mice, generated by Chen Z-Y et al. [31]. Only male mice were used to avoid the
potential impact of hormones involved in the ovarian cycle in adipose tissue present in female
mice. All experiments were approved by the National Ministry of Health-University of Milan
Committee and of DGSA (12/2015 and 349/2015). Surgical procedures were performed in mice
anesthetized with ketamine chlorhydrate (75 mg/kg; Intervet, Segrate, Milan, Italy) and medetomidine
(1 mg/kg; Virbac, Milan, Italy). Mice were housed under standard conditions (20–22 ◦C, 12 h light/dark
cycle, light on at 7 a.m.) with water and food ad libitum. All efforts were made to minimize animal
distress and to reduce the numbers of animals used in this study.

2.2. Voluntary Physical Exercise (PE) Protocol

Mice underwent voluntary PE protocol as previously described [35,36]. Briefly, BDNFVal/Val and
BDNFMet/Met mice were weighed and allocated randomly into running (RUN) and control (sedentary,
SED) groups in cages equipped with or without running wheels, respectively, for 4 weeks with free
access to food and water. Four sedentary control mice were housed in a standard polypropylene
mice cage. Four runner mice were housed in standard polypropylene rat cages, with free access to
two running wheels (12 cm diameter and 5.5 cm width). The greater dimensions of cages for runner
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mice were necessary for an adequate setup of running wheels. Running wheels were connected to an
electronic counter, and the total distance ran was recorded daily. The average distance ran by a single
mouse was calculated by dividing by 2 the total distance recorded per wheel (two running wheels ×
cage × four mice). The average distance ran by a single mouse, in our model, was comparable with the
average distance reported by others [35–38].

2.3. Arterial Thrombosis Model

Experimental arterial thrombosis was induced as previously described [39]. Briefly, the left carotid
artery of anesthetized mice was freely dissected, and a flow probe (model 0.7 VB, Transonic System,
Ithaca, NY, USA) connected to a transonic flowmeter (TransonicT106) was used to measure blood flow.
When blood flow was constant for 7 min (at least 0.8 mL/s), a strip of filter paper (Whatman N◦1)
soaked with FeCl3 (7% solution; Sigma-Aldrich, Saint Louis, MO, USA) was applied for 3 min, and the
flow was recorded for 30 min. An occlusion was considered to be total and stable when the flow was
reduced by >90% from baseline until the 30 min observation time.

2.4. Whole Blood Counts

Blood was collected by cardiac venipuncture into 3.8% sodium citrate (1:10 vol:vol) from
anesthetized mice, and white blood cells and platelets were counted optically.

2.5. Platelet–Leukocyte Aggregate Analysis

Platelet/leukocyte aggregates were analyzed as previously described [40]. Briefly, citrated blood
was stimulated with 5 µM ADP (Sigma-Aldrich, Saint Louis, MO, USA) for 5 min, red blood cells were
lysed by FACS Lysing solution, and samples were stained with anti-CD45 and anti-CD41 and analyzed
by flow FACS “Novocyte 3000”. A minimum of 5000 events were collected in the anti-CD45+ gate.

2.6. Cell Culture, Treatment, and Differentiation

The C3H10T1/2 cell line has been used to evaluate the effect of different compounds on adipogenesis
processes, as previously shown [41–43]. C3H10T1/2 cells (ThermoFisher Scientific, Paislay, Scotland,
UK) were cultured in DMEM medium supplemented with 100 U/mL penicillin (Gibco, Rodano,
Milan, Italy), 100 µg/mL streptomycin (Gibco, Rodano, Milan, Italy) and 10% FBS at 37 ◦C in 5%
CO2/95% air atmosphere. Cells were plated in 6-well plates at a concentration of 3.5 × 104 cells/mL,
and when they reached 80% confluence (day –2), they were treated with 10 ng/mL of ProBDNFVal
or ProBDNFMet synthetic peptide (Alomone Labs, Jerusalem, Israel) [44–46] to simulate the kinetics
of BDNF expression occurring in physiological conditions during adipogenesis [47]. Forty-eight
hours later (day 0), cells were treated with adipogenic commitment mix (5 µg/mL insulin, 2 µg/mL
dexamethasone, 0.5 mM IBMX, and 5 µM rosiglitazone; all from Cayman Chemical, Arcore, Italy).
Insulin (5 µg/mL) was added at days 3, 5, and 7, and complete differentiation of the cells was reached
at day 9.

2.7. Adipogenesis Evaluation by Flow Cytometry and Oil-Red-O

After ProBDNFVal or ProBDNFMet treatment, C3H10T1/2 cells were analyzed during adipogenesis
by flow cytometry, as previously described [48]. Briefly, at days 3, 5, and 9, cells were harvested in
ice-cold PBS, analyzed by flow cytometry, and, according to granularity (SSC-H), were divided into
four categories that correlated with the increased level of cell lipid accumulation after adipogenic
commitment. In particular, noninduced cells were detected in the R1 gate, while cells with increasing
granularity were identified in the regions from R2 to R4.

Oil-Red-O staining was performed as already described [49] on day 9. Lipid content was quantified
as absorbance at a wavelength of 518 nm using a Tecan Infinite M1000 plate reader spectrophotometer
(TECAN, Männedorf, Switzerland).
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2.8. Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)

Total RNA was isolated from mouse adipose tissue or C3H10T1/2 cells with TRIzol Reagent
(Sigma-Aldrich, Saint Louis, MO, USA) and a Direct-zol RNA extraction kit (Zymo Research, Irvine, CA,
USA) according to the manufacturer’s instructions. One microgram of RNA was reverse-transcribed
using an iScript Advanced cDNA Synthesis Kit (Bio-Rad Laboratories, Segrate, Milan, Italy).

Samples of cDNA were incubated in 15 µL Luna® Universal qPCR mix containing the specific
primers and fluorescent dye SYBR Green (New England Biolabs, Pero, Milan, Italy). RT-qPCR was
carried out in triplicate for each sample on the CFX Connect real-time System (Bio-Rad Laboratories,
Segrate, Milan, Italy) as previously described [39]. Gene expression was analyzed using parameters
available in CFX Manager Software 3.1 (Bio-Rad Laboratories, Segrate, Milan, Italy). qPCR was then
carried out using the primer sequences shown in Table S1. In particular, the expression of genes
relevant in adipogenesis, inflammation, and the BDNF pathway were assessed (Pparγ, C/ebp-α and
C/ebp-β, Adipoq, Fabp4, Adra2a, Il-6, Mcp-1, Tnf-α, Tgf-β, Pai-1, Tf, CD163, CD80, Sorl1, Sirt1, Bdnf,
TrkB full and TrkB-T1).

2.9. Adipose Tissue Histology and Quantification of Adipocyte Size and Number

Immunocytochemistry and the analysis of adipocytes were performed in inguinal (ingWAT) and
epididymal (epiWAT) white adipose tissue. Tissues were fixed overnight in 4% formalin, embedded in
paraffin, cut at 5 µm, and mounted on polarized slides [50]. Five sections at three different levels along
the whole length of epiWAT for each animal were analyzed. In particular, the mean values for each
group were obtained from a total of 90 sections (5 sections × 3 points × 6 animals/group). The tissue
contiguous to the epididymis were excluded from the analyses since its structure is different from that
of general adipose tissue [51].

The number and size of adipocytes were evaluated in hematoxylin and eosin stained sections
by counting five 5× microscopic fields for each tissue sample using the ImageJ-Macro Adipocytes
Tool. Images were taken with a Zeiss Axioskop (Carl Zeiss, Milan, Italy) equipped with an intensified
charge-coupled device (CCD) camera system (Photometrics, Tucson, AZ, USA).

2.10. Statistical Analysis

Statistical analyses were performed with GraphPad Prism 7.0 and SAS versus 9.4 software (SASA
Institute, Cary, NC, USA). Data were analyzed by Student’s t-test, two-way or three-way ANOVA with
or without repeated measures for main effects of genotype and treatment or time and stimuli, as reported
in every graph, followed by a Bonferroni post hoc analysis as appropriate. When data distribution was
not normal, the variables were included in the analyses after logarithmic transformation. Values of
p < 0.05 were considered statistically significant. Data are expressed as mean ± SEM.

3. Results

3.1. Characterization of the White Adipose Tissue Depots in BDNFMet/Met Mice

As previously shown, BDNFMet/Met mice have a significantly greater body weight compared to
wild-type BDNFVal/Val littermates (Figure 1A). In addition, we observed that the percentage of both
inguinal white adipose tissue (ingWAT) and epididymal white adipose tissue (epiWAT) on total body
weight were significantly enhanced in BDNFMet/Met mice compared to BDNFVal/Val (Figure 1B,C).
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Figure 1. Characterization of white adipose tissue depots in BDNFVal/Val and BDNFMet/Met mice. (A) 
Body weight, percentage of (B) inguinal (ingWAT) and (C) epidydimal (epiWAT) white adipose 
tissue on total mouse body weight. (i) Representative hematoxylin and eosin (H&E) staining images 
and (ii) analysis of the frequency distribution of adipocyte sizes in (D) ingWAT and (E) epiWAT. Size 
bar: 100 µm. Black arrow: large adipocytes, green arrow: medium adipocytes, and red arrow: small 
adipocytes. Data are expressed as mean ± SEM. n = 6 mice/group. (A–C) Student’s t-test and (D,E) 
two-way ANOVA followed by Bonferroni post hoc analysis. * p < 0.05, ** p < 0.01. 

The histological examination of adipose depots revealed no difference in the frequency 
distribution of adipocyte sizes in ingWAT, while the BDNFMet/Met mice showed enrichment in small-
size and a reduction in middle-size adipocytes in the epiWAT when compared to BDNFVal/Val (Figure 
1D,E). 

Then, the molecular signatures underlying the distinct morphological features of the epiWAT 
were investigated. Mutant mice had significantly lower levels of Pparγ, C/ebp-α and C/ebp-β genes 
involved in the adipogenic program, as well as Adipoq, but a similar expression of Fabp4 compared to 
BDNFVal/Val mice (Figure 2A). Interestingly, the BDNF Val66Met polymorphism affected also the 
expression of Adra2a, Sirt1, and Sorl1, genes involved in both adipose tissue energy balance and 
adipocyte morphology (Figure 2A–C). 

In addition, a significant increase in the expression of Il-6, Tnf-α, Tgf-β, Mcp-1, and Pai-1 in 
BDNFMet/Met mice compared to BDNFVal/Val was found, whereas similar levels of TF between the two 
groups were found (Figure 2B). The enhanced inflammatory profile of BDNFMet/Met epiWAT was 
associated with a greater expression of CD80, an M1 inflammatory macrophage marker, and with a 
reduction of CD163, an alternatively activated M2 macrophage marker (Figure 2B). 

Finally, BDNFMet/Met mice had a higher BDNF mRNA level in epiWAT, whereas no differences in 
the expression of both TrkB-full length and the truncated isoform TrkB-T1 were found (Figure 2C). 

Figure 1. Characterization of white adipose tissue depots in BDNFVal/Val and BDNFMet/Met mice.
(A) Body weight, percentage of (B) inguinal (ingWAT) and (C) epidydimal (epiWAT) white adipose
tissue on total mouse body weight. (i) Representative hematoxylin and eosin (H&E) staining images
and (ii) analysis of the frequency distribution of adipocyte sizes in (D) ingWAT and (E) epiWAT.
Size bar: 100 µm. Black arrow: large adipocytes, green arrow: medium adipocytes, and red arrow:
small adipocytes. Data are expressed as mean ± SEM. n = 6 mice/group. (A–C) Student’s t-test and
(D,E) two-way ANOVA followed by Bonferroni post hoc analysis. * p < 0.05, ** p < 0.01.

The histological examination of adipose depots revealed no difference in the frequency distribution
of adipocyte sizes in ingWAT, while the BDNFMet/Met mice showed enrichment in small-size and
a reduction in middle-size adipocytes in the epiWAT when compared to BDNFVal/Val (Figure 1D,E).

Then, the molecular signatures underlying the distinct morphological features of the epiWAT
were investigated. Mutant mice had significantly lower levels of Pparγ, C/ebp-α and C/ebp-β genes
involved in the adipogenic program, as well as Adipoq, but a similar expression of Fabp4 compared
to BDNFVal/Val mice (Figure 2A). Interestingly, the BDNF Val66Met polymorphism affected also the
expression of Adra2a, Sirt1, and Sorl1, genes involved in both adipose tissue energy balance and
adipocyte morphology (Figure 2A–C).

In addition, a significant increase in the expression of Il-6, Tnf-α, Tgf-β, Mcp-1, and Pai-1 in
BDNFMet/Met mice compared to BDNFVal/Val was found, whereas similar levels of TF between the
two groups were found (Figure 2B). The enhanced inflammatory profile of BDNFMet/Met epiWAT was
associated with a greater expression of CD80, an M1 inflammatory macrophage marker, and with
a reduction of CD163, an alternatively activated M2 macrophage marker (Figure 2B).

Finally, BDNFMet/Met mice had a higher BDNF mRNA level in epiWAT, whereas no differences in
the expression of both TrkB-full length and the truncated isoform TrkB-T1 were found (Figure 2C).
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However, at day 9, as provided by the oil-red-O staining, a similar accumulation of lipid droplets 
was detected in both samples (Figure 3C). 
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BDNFMet/Met mice, only Sorl1 was enhanced by ProBDNFMet treatment at late stages of differentiation 
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Figure 2. Gene expression profile of epidydimal white adipose tissue (epiWAT) in BDNFVal/Val and
BDNFMet/Met mice. mRNA levels of genes related to (A) adipogenesis, (B) inflammation, and (C)
BDNF/TrkB pathway in epidydimal white adipose tissue (epiWAT) of BDNFVal/Val and BDNFMet/Met

mice. Data are expressed as mean ± SEM. n = 6 mice/group. Student’s t-test. * p < 0.05, ** p < 0.01,
and *** p < 0.005.

3.2. Evaluation of the Role of Mutant BDNF Val66Met Protein on Adipogenesis

Next, in vitro studies were performed to investigate the role of the BDNF Val66Met protein on
adipogenesis. Pre-confluent C3H10Ts1/2 murine mesenchymal stem cells were exposed to ProBDNFVal
or to ProBDNFMet synthetic peptides before inducing the adipocyte differentiation program. Synthetic
peptide treatment did not affect cell number and morphology (Figure S1).

Notably, gene expression analysis at late (day 9) stages of differentiation showed that pretreatment
with the peptide carrying the Met mutation determined a significant down-regulation of adipogenic
genes, including Pparγ, C/ebpα and C/ebpβ mRNA levels (Figure 3A). In addition, ProBDNFMet
treatment decreased the percentage of cells with low granularity (noninduced; R1) and increased those
with high granularity (R4) both at 3 and 9 d post-induction (Figure 3B and Figure S2). However, at day
9, as provided by the oil-red-O staining, a similar accumulation of lipid droplets was detected in both
samples (Figure 3C).

In this experimental condition, among the genes that were previously modulated in epiWAT of
BDNFMet/Met mice, only Sorl1 was enhanced by ProBDNFMet treatment at late stages of differentiation
(day 9) (Figure 3A and Figure S3).
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3.3. Effect of Physical Exercise (PE) on Adipose Tissue Phenotype of BDNF Val66Met Mice 

According to international cardiovascular guidelines [10] that recommend regular PE as 
management for the prevention and treatment of CVD, we evaluated the potential beneficial effect of 
PE on adipose tissue and on prothrombotic phenotypes in BDNF Val66Met knock-in mice. 

BDNFVal/Val and BDNFMet/Met mice underwent 4 weeks of voluntary PE in cages equipped with a 
running wheel. As previously reported [35], no difference in the daily running distance was found 
between BDNFVal/Val and BDNFMet/Met mice (BDNFVal/Val: 6.676 ± 0.720 Km/d and BDNFMet/Met 6.657 ± 
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mice, compared to sedentary mice, whereas the morphology of adipose depots was modified as 
provided by histological analyses (Figure 4). 

PE induced a change in the profile of the frequency distribution of adipocyte sizes in the ingWAT 
of both genotypes; however, this effect was more evident in BDNFVal/Val than in BDNFMet/Met mice 
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Figure 3. Effect of proBDNFMet on adipogenic differentiation of C3H10T1/2 cells. (A) mRNA levels of
(i) Pparγ, (ii) C/ebp-α, (iii) C/ebp-β, and (iv) Sorl1. (B) Percentage of different cell populations based on
their granularity profile analyzed by flow cytometry (R1: noninduced, R2-R3: growing granularity,
and R4: high granularity) at day 3 (D3), day 5 (D5), and day 9 (D9) of differentiation, and (C) Oil-Red-O
staining absorbance measurement in C3H10T1/2 cells. Data are expressed as mean ± SEM. n = 5
independent experiments/group. (A) Two-way ANOVA followed by Bonferroni post hoc analysis.
(B,C) Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.005, and **** p < 0.001.

3.3. Effect of Physical Exercise (PE) on Adipose Tissue Phenotype of BDNF Val66Met Mice

According to international cardiovascular guidelines [10] that recommend regular PE as
management for the prevention and treatment of CVD, we evaluated the potential beneficial effect of
PE on adipose tissue and on prothrombotic phenotypes in BDNF Val66Met knock-in mice.

BDNFVal/Val and BDNFMet/Met mice underwent 4 weeks of voluntary PE in cages equipped with
a running wheel. As previously reported [35], no difference in the daily running distance was found
between BDNFVal/Val and BDNFMet/Met mice (BDNFVal/Val: 6.676 ± 0.720 Km/d and BDNFMet/Met 6.657
± 0.602 Km/d; p = 0.9837) in our experimental setting. In addition, we showed that PE did not affect
the percentage of ingWAT and epiWAT on the total body weight in both BDNFVal/Val and BDNFMet/Met

mice, compared to sedentary mice, whereas the morphology of adipose depots was modified as
provided by histological analyses (Figure 4).

PE induced a change in the profile of the frequency distribution of adipocyte sizes in the ingWAT
of both genotypes; however, this effect was more evident in BDNFVal/Val than in BDNFMet/Met mice
(Figure 4A).

Interestingly, in the epiWAT, BDNFVal/Val running mice displayed a significant enrichment in
small-size adipocytes and a reduction in medium-size ones compared to sedentary mice, whereas
BDNFMet/Met mice showed an opposite trend, even if less marked (Figure 4B).
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green arrow: medium adipocytes, and red arrow: small adipocytes. Data are expressed as mean ± 
SEM. n = 6 mice/group. Two-way ANOVA followed by Bonferroni post hoc analysis. * p < 0.05, ** p < 
0.01, and **** p < 0.001. 
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Figure 4. Impact of voluntary physical exercise (PE) on epiWAT morphology. (A) Inguinal (ingWAT)
and (B) epidydimal (epiWAT) white adipose tissue on total mouse body weight. (i) Representative
hematoxylin and eosin (H&E) staining images and (ii) analysis of the frequency distribution of adipocyte
sizes in (A) ingWAT and (B) epiWAT. Size bar: 100 µm. Black arrow: large adipocytes, green arrow:
medium adipocytes, and red arrow: small adipocytes. Data are expressed as mean ± SEM. n = 6
mice/group. Two-way ANOVA followed by Bonferroni post hoc analysis. * p < 0.05, ** p < 0.01,
and **** p < 0.001.

Notably, PE strongly influenced the gene expression profile of epiWAT. In particular, in BDNFVal/Val,
4 weeks of PE enhanced mRNA levels of Adipoq, whereas it did not modify the expression of genes
involved in the adipogenic program (Figure 5A and Figure S4) and in inflammation compared to the
sedentary mice. In BDNFMet/Met mice, PE was not sufficient to affect the expression of adipogenic
genes, but it was sufficient to improve the inflammatory profile, decreasing the expression of Il-6, Tnf-α,
Tgf-β, Mcp-1, and Pai-1, and to switch M1/M2 macrophage polarization, reducing the expression of
CD80 and increasing the expression of CD163, (Figure 5B).

In addition, the expression of Sorl1 was markedly reduced by PE in both BDNFVal/Val and
BDNFMet/Met mice, whereas Adra2a and Sirt1 were only slightly, but not significantly, decreased in
BDNFMet/Met running mice (Figure 5C and Figure S4).

Conversely, PE modulated the BDNF expression in the two groups of mice. In particular,
BDNF mRNA levels increased in BDNFVal/Val running mice and reduced in BDNFMet/Met running mice
when compared to their respective sedentary controls (Figure 5C). Of note, the expression of both TrkB
full length and the TrkB-T1 isoform were slightly, but not significantly, increased in both groups of
mice after PE (Figure S4).
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3.4. Effect of Physical Exercise (PE) on the Pro-Thrombotic Phenotype in BDNFMet/Met Mice

Finally, we investigated the ability of 4 weeks of PE to improve the prothrombotic phenotype
already observed in BDNFMet/Met [25], in terms of platelet and leukocyte aggregates and FeCl3-induced
arterial thrombosis.

As previously shown, in the BDNFMet/Met mice there was a higher number of circulating blood cells,
a higher platelet activation state, and enhanced arterial thrombosis [25]. PE restored the physiological
number of platelets and leukocytes, and the natural percentage of platelet/leukocyte aggregates in
response to ADP in BDNFMet/Met mice, without affecting significantly these parameters in BDNFVal/Val

mice (Figure 6A–C).
Application of FeCl3 to the carotid artery reduced the blood flow in all BDNFMet/Met sedentary

mice, leading to a stable occlusion in 100% of mice, whereas only a slight reduction was observed in
BNDFVal/Val mice. Of note, PE ameliorated arterial thrombosis, preventing completely the occlusion of
the carotid artery in BDNFMet/Met mouse group (Figure 6D). In addition, no statistical differences were
observed among sedentary BNDFVal/Val mice and running BNDFVal/Val and/or running BDNFMet/Met

mice in terms of carotid artery occlusion (Figure 6D). In line with these data, total occlusion (flow
reduction >90%) was reached only in sedentary BDNFMet/Met mice after an average time of 15 min
(Figure 6E).

Overall, these data show that a paradigm of 4 weeks of voluntary PE is able to prevent the
prothrombotic phenotype of BDNFMet/Met mice.
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4. Discussion

Although mutations, as well as genetic variants, including BDNF Val66Met polymorphism,
have been associated with increased body weight and eating disorders in both human and animal
models [19–23,31,35,52–55], the factors and mechanisms involved in the development of obesity in
presence of the BDNF Met homozygosity remain to be elucidated. It is only known that BDNF-to-TrkB
signaling is an important downstream target of MC4R-mediated signaling involved in the regulation
of energy balance and food intake [55–57].

Using a knock-in BDNF Val66Met mouse model, here we confirmed that BDNFMet/Met mice had
a higher body weight when compared to BDNFVal/Val [31], and we showed that this increase was related
to the enhanced percentage of epiWAT and ingWAT. In particular, adipocytes from epiWAT of mutant
mice had a different size distribution, with an enrichment in the percentage of small-sized adipocytes.
The presence of small adipocytes in epiWAT of BDNFMet/Met might trace back to hyperplasia or
expansion of the small cell population, which are mechanisms of defense that the adipose tissue
can undergo in obesity after a threshold of hypertrophy is reached [58–60]. This hypothesis is also
supported by the higher expression of Adra2a and Sorl1 found in epiWAT of BDNFMet/Met. Indeed,
overexpression of Adra2a in animal models has been associated with adipose tissue hyperplasia [61].
In addition, it is well known that the activation of Adra2a has an antilipolytic effect, and the increased
alpha/beta adrenoreceptor ratio as well as the gain of function mutations of Adra2 have been associated
with obesity in humans [62–64]. Similarly, upregulation of the expression of Sorl1, which encodes for
the protein Sorla, has been related to reduced lipolytic activity in adipocytes [65], and GWAS analyses
have associated Sorl1 with obesity in humans and in mouse models [21,66], suggesting its key role in
metabolic diseases.
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The adipose tissue accumulation found in BDNFMet/Met mice was accompanied by a higher
expression of the M1 proinflammatory marker CD80, of the monocyte chemoattractant protein-1
(Mcp-1) and of the mediators of inflammation such as Pai-1, Tnf-alpha, and Il-6, which is in line with the
well-established paradigm that overweight and obesity are related to adipose tissue inflammation [67].
In addition, the higher levels of these inflammatory transcripts, concomitant with the lower expression
of Adipoq measured in the epiWAT of BDNFMet/Met mice and the higher number of circulating leukocytes
and platelets as well as their activation state, might well summarize the relationship between adipose
tissue inflammation and thrombosis. Indeed, the inflammatory profile of adipose tissue in obese
subjects as well as the increased presence of these proteins in the circulation have a direct role in the
onset and progression of the pathology [68–70], enhancing platelet activation and ability of leukocytes
to produce, in turn, inflammatory factors such as Il-6, Tnf, and Cox-2 [9,68,71–74]. All these findings
thoroughly summarize data obtained in human adipose tissue samples. Indeed, a positive correlation
between proinflammatory cytokines, including IL-6, TNF-α and MCP-1, and adipocyte size was found.
Interestingly, the small adipocytes expressed anti-inflammatory factors such as IL-10 and IL-8 [75].

Of note, the reduced levels of Pparγ along with those of adiponectin found in BDNF mutant
mice might also contribute to the observed adipose tissue inflammation. It is well known that PPARγ,
alongside the role of master regulator of adipogenesis, is also involved in the regulation of adipose tissue
inflammation. In particular, it was demonstrated that PPARγ downregulates inflammatory adipokines
in WAT. Specifically, PPARγ activation downregulates the expression of inflammatory markers such as
MCP-1 and TNFα and, thus, reduces inflammation in activated macrophages [56,76–78]. Moreover,
PPARγ activation induces adiponectin expression, thus further contributing to the reduction of chronic
inflammation [79].

Remarkably, BDNF expression was markedly greater in epiWAT of mutant mice, supporting our
hypothesis that the BDNF Val66Met polymorphism contributes to adipose tissue pathophysiology.

Indeed, studies performed using BDNF-(si)RNA-mediated knockdown in the 3T3 cell line showed
a reduced adipogenic differentiation ability, supporting the hypothesis that BDNF expression is of
functional relevance for adipogenesis. In addition, it was reported that BDNF expression is dramatically
downregulated during adipocyte differentiation, and mature adipocytes only marginally contribute to
the production of BDNF in the adipose tissue [80].

Interestingly, we showed that the treatment of C3H10T1/2 cells with Pro-BDNFMet before cell
commitment well recapitulated the expression profile of genes that were found altered in the epiWAT
of mutant mice. Pro-BDNFMet reduced Pparγ and upregulated Sorl1 expression, and it increased the
percentage of mature adipocytes evaluated in the flow cytometry analysis, suggesting a direct role of
the BDNF Val66Met polymorphism in the regulation of adipogenesis. However, Pro-BDNFMet was not
able to affect Adipoq and Adra2a as well as Pai-1 expression, leading us to hypothesize a more complex
process that may involve the fraction stromal vascular cells. Indeed, it is suggested that mesenchymal
progenitor/stem cells, preadipocytes, endothelial cells, pericytes, T cells, and macrophages, and not
mature adipocytes, are the main source of adipokines and PAI-1 in adipose tissue. Of note, the stromal
vascular fraction in adipose tissue increases with an increasing degree of obesity [81].

Adipose tissue accumulation represents an independent and modifiable risk factor for CVD [5],
and regular PE was recently recognized and strongly recommended as a valuable management strategy
for the prevention and treatment of CVD and metabolic disorders from the European Guidelines of
cardiology [10,82].

In the present study, we provide evidence that, in mutant BDNFMet/Met mice, four weeks of PE was
sufficient to change epiWAT morphology and the inflammatory profile with a concomitant reversion
of the prothrombotic phenotype. In particular, the change in adipose tissue morphology observed
in BDNFMet/Met running mice was accompanied with a reduction in Sorl1 and Adra2a expression,
thus suggesting that PE might improve the metabolic profile of mutant mice, ultimately affecting
lipolysis [65,83,84].
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The beneficial effect of PE has been provided in animal studies and human trials, showing
an impact on both systemic [14,85] and specific reduction of visceral fat mass [86,87], protecting against
chronic inflammation-associated disease [88]. Several mechanisms have been proposed to explain the
beneficial anti-inflammatory effect of PE. By affecting AMPK and PGC-1α pathways, PE decreases
mitochondrial dysfunction and reduces oxidative stress [89,90], with the consequent reduction of
proinflammatory adipokines released from the visceral fat mass. Moreover, PE increased production of
anti-inflammatory molecules from skeletal muscle and leukocytes [91]. PE decreases Toll-like receptors
on monocytes and macrophages, thus preventing their infiltration into adipose tissue and inducing the
M1 to M2 macrophage switching to limit macrophage M1 polarization [88].

In line with this evidence, we showed that PE in BDNFMet/Met mice reduced the levels of
inflammation mediators, induced a switch in macrophage polarization, and decreased the number of
circulating leukocytes and platelets, modifications that, in turn, occur to improve the prothrombotic
phenotype observed in mutant mice. Interestingly, for the first time, we provide evidence that PE
influenced differently the expression of BDNF in the two genotypes, increasing and decreasing its levels
in BDNFVal/Val and BDNFMet/Met, respectively. These results might be related to the intrinsic adipose
tissue morphology of BDNFVal/Val and BDNFMet/Met mice, suggesting a strong relationship between
adipocyte dimension and BDNF levels. In fact, the great number of small adipocytes was associated
with high levels of BDNF (e.g., sedentary BDNFMet/Met and running BDNFVal/Val), and conversely,
low levels of transcript were measured in epiWAT when the mean adipocyte dimension was higher
(e.g., sedentary BDNFVal/Val and running BDNFMet/Met). The different involvement of the stromal
vascular cell fraction in sustaining the adipocyte turnover, as well as the potential contribution of
the peripheral nervous system, might explain the different mRNA levels of BDNF detected in our
experimental setting [92–94]. In this regard, the inability of PE to enhance BDNF transcripts in the
central nervous system of mutant mice [35] might have important consequences on the levels of
BDNF in the peripheral nervous system, thus affecting their levels in epiWAT. Interestingly, it is worth
mentioning that, contrary to data presented here related to CVD, the BDNF Val66Met polymorphism
impairs the beneficial neurobiological changes induced by physical exercise in mice [35].

5. Conclusions

Cardiovascular disease still represents the first cause of mortality worldwide, and obesity is
a well-known modifiable risk factor for this pathology. Of note, PE is highly recommended to manage
the prevention and treatment of CVD and obesity, showing beneficial cardiometabolic effects.

In human subjects, the BDNF Val66Met polymorphism is known to be related to adipose tissue
accumulation and cardiovascular risk.

Interestingly, our in vitro data well support the role of Pro-BDNFMet in adipogenesis, in line with
data obtained in the BDNFMet/Met WAT mice.

Taking advantage of a mouse model carrying the human BDNF Val66Met polymorphism,
we showed that 4 weeks of voluntary physical exercise was sufficient to induce positive morphological
changes and reduce the inflammatory profile of the adipose tissue.

These beneficial effects might be the bases of the observed reduction in the prothrombotic
phenotype detected in this animal model. Future studies are required to assess this relationship.

These data indicate the strong impact of lifestyle, in particular the beneficial effect of PE, on the
management of arterial thrombosis and obesity-associated inflammation in relation to genetic mutations
that predisposes one, per se, to these pathologies. Nevertheless, human studies need to support
these results.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/8/875/s1,
Figure S1: Cell number and morphology are not altered by ProBDNFVal and ProBDNFMet treatment. Figure S2:
Representative flow cytometry graphs showing gate selected for cell granularity analyses at day 3, 5 and 9.
Figure S3: Evaluation of the functional relevance of BDNF Val66Met protein on C3H10T1/2 cells adipogenic
differentiation. Figure S4: Impact of voluntary physical exercise on gene expression profile of adipose tissue.
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