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Abstract: Liquid biopsy technologies have the potential to transform cancer patient management
as it offers non-invasive diagnosis and real-time monitoring of disease progression and treatment
responses. The use of liquid biopsy for non-invasive cancer diagnosis can have pivotal importance
for the African continent where access to medical infrastructures is limited, as it eliminates the need
for surgical biopsies. To apply liquid biopsy technologies in the African setting, the influence of
environmental and population genetic factors must be known. In this review, we discuss the use of
circulating tumor cells, cell-free nucleic acids, extracellular vesicles, protein, and other biomolecules in
liquid biopsy technology for cancer management with special focus on African studies. We discussed
the prospect, barriers, and other aspects that pose challenges to the use of liquid biopsy in the
African continent.

Keywords: Africa; cancer; cell-free DNA; circulating tumor cell; circulating RNA; liquid biopsy;
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1. Introduction

Cancer is a growing public health threat globally. GLOBOCAN 2018 data showed an overall
increase in cancer cases worldwide with 18.1 million new cases and 9.6 million cancer deaths in
2018 [1]. Africa and Asia were showed to have a higher proportion of cancer mortality in relation to
the proportion of incident cases when compared with other regions of the world [1].

The incidence and mortality rate of cancer differ across regions and between sexes. Globally,
lung cancer had the highest incidence among males in 2018, with prostate cancer having the highest
mortality burden among African men. Breast cancer still has the highest incidence and mortality
burden among women worldwide [1]. The incidence and mortality rate of breast cancer have remained
relatively unchanged over the years in many developed countries. In many parts of Africa, Asia, and
South America the incidence of breast cancer is, however increasing rapidly, with Africa having the
highest age-standardized mortality rate globally [1–4].

The rising burden of cancer in Africa has been attributed to factors such as inadequate health
care facilities, poor access to quality and affordable health care, as well as inadequate infrastructure to
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support African-based research [5]. Furthermore, most cancers are diagnosed late in Africa which in
turn worsen the prognosis [6,7].

Tissue biopsy, the established method of cancer diagnosis, is invasive and can be accompanied
by various surgical complications. Tissue biopsy reflects a small section of the tissue and may miss
important diagnostic details. It may be inadequate for a complete genomic profile of a patient’s
tumors because regions within and between primary and metastatic tumors can have different genomic
mutations [8]. In a liquid biopsy, cancer is diagnosed or monitored by analyzing body fluids such as
blood, urine, or saliva [9]. Liquid biopsy is based on detecting tumor cells or tumor-derived molecules
(DNA, RNA, exosomes, and protein) that were released from tumors into circulation (Figure 1).
Improved diagnosis, early detection, and better monitoring of disease progression and treatment
response are imperative in Africa due to the overall rising burden of cancer throughout the continent.
Invasive diagnostic procedures are a barrier to overcome due to surgical risk, costs, limited access,
and poor compliance by the population. Therefore, development and implementation of non-invasive
liquid biopsy methodologies for cancer management are a top priority for the next decades for basic
and clinical scientists in Africa. In addition to being used in cancer management, liquid biopsy tests
are also clinically used to detect fetal chromosomal abnormalities during pregnancies and monitor
organ transplants [10].

There is presently an increasing number of studies on circulating tumor molecules in diagnosis
and prognosis of cancers. Studies on the role of circulating molecules in cancer diagnosis started
globally in the late 1990s [11–14] but African-based studies started only in late 2000 (Table 1). The
majority of African-based studies were done in Egypt, with a few other studies from Tunisia, South
Africa, Gambia, Cameroon, and Senegal (Table 1). Importantly, the causes of cancer differ in different
populations. Distinct pathogens, carcinogens, dietary habits, social conditions, and genetic background
may influence tumorigenesis depending on population and geographical settings. The genetic and
epigenetic variation from population to population may lead to ample variations in natural history
and clinical outcome across different populations. For example, some cancers, such as prostate cancers,
are more aggressive in the African population [15]. Also, more cancers in Africa and Asia are related
to infective pathogens than in other continents. This requires that more African-based studies are
done to validate the applicability of circulating biomarkers and liquid biopsy technologies in diagnosis
and treatment of cancer in Africa. Host genetics, tumor genetics, and epigenetic variations need to be
explored and taken into account to identify population-specific cancer biomarkers in liquid biopsy
adapted and optimized for diagnostic use in African countries. The process of optimization of these
cutting-edge technologies should also imperatively aim at reducing costs and increasing affordable
access throughout the African continent.

There are three main types of circulating molecules investigated as tumor biomarkers through
liquid biopsy procedures: Circulating tumor cells (CTC), tumor-released nucleic acids like DNA and
RNA, and small extracellular vesicles or exosomes, Table 2. Here we aim at reviewing studies on the
role of circulating tumor molecules in the diagnosis and treatment of cancer, with a particular focus in
the African continent. This review will also discuss the prospect and challenges associated with the
use of circulating tumor molecules in liquid biopsy for diagnosis and treatment of cancer in Africa.
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Table 1. African-based studies on the role of circulating molecules in cancer diagnosis.

Samples Study Design Cancer Type Downstream Analysis Country References

CTC

Blood 75 BC patients
20 healthy controls Breast cancer

Circulating endothelial progenitor cells count
CD14, CD133 and VEGFR2 expression levels

(flow cytometry)
Egypt Montaser, et al. [16]

Blood 50 BC patients
14 healthy controls Breast cancer mRNA expression levels (qPCR) Egypt Elnagdy, et al. [17]

Blood 51 BC patients Breast cancer CTC and CSC count (flow cytometry) Egypt Sayed, et al. [18]

Peripheral blood
70 HCC patients
30 CHC patients

33 healthy controls
Liver cancer CTC and CSC countProtein expression levels

of CK19, CD133, CD90 (flow cytometry) Egypt Bahnassy, et al. [19]

Blood 50 HCC patients
20 healthy controls Liver cancer CTC count (flow cytometry) Egypt Mansour, et al. [20]

Blood 40 BC patients Breast cancer CTC and CSC count (flow cytometry) Egypt Zedan, et al. [21]

Blood 50 BC patients
30 healthy controls Breast cancer mRNA expression levels (qPCR) Egypt Ebeed, et al. [22]

Blood 36 CRC patients
18 healthy controls Colorectal cancer mRNA expression levels (qPCR) Egypt Teama and Agwa [23]

Blood
147 BC patients

94 healthy controls
(41 U.S. healthy volunteers)

Breast cancer mRNA expression levels (qPCR) Senegal Zehentner, et al. [24]

Peripheral blood 143 primary melanoma patients Melanoma The use of qPCR to determine the presence of
tyrosinase mRNA in peripheral blood South Africa Hanekom, et al. [25]

cfDNA

Plasma
195 HCC patients

263 CLD control patients
49 healthy controls

Liver cancer cfDNA mutational analysis using droplet
digital PCR

Cameroon, Central
African Republic Marchio, et al. [26]

Plasma 40 BC patients
10 healthy controls Breast cancer cfDNA quantification and Integrity index

using qPCR Egypt Hussein, et al. [27]

Serum
60 LC patients

40 COPD patients
40 healthy controls

Lung cancer cfDNA quantification and Integrity index
using qPCR Egypt Soliman, et al. [28]
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Table 1. Cont.

Samples Study Design Cancer Type Downstream Analysis Country References

Plasma
50 PCa patients
25 BPH patients

30 healthy controls
Prostate cancer cfDNA quantification and Integrity index

using qPCR Egypt Fawzy, et al. [29]

Serum 40 BC patients
40 healthy controls Breast cancer cfDNA quantification using qPCR Egypt Ibrahim, et al. [30]

Serum
50 CRC patients

10 colonic polyps’ patients
20 healthy controls

Colorectal cancer cfDNA quantification and Integrity index
using qPCR Egypt El-Gayar, et al. [31]

Plasma
50 BC patients

30 benign breast lesions
20 healthy controls

Breast cancer Quantification of cfDNA andmtDNA using
multiplex qPCR Egypt Mahmoud, et al. [32]

Plasma

120 cancer patients
120 patients with benign

diseases
120 healthy controls

Breast, Lung, Colon and
Liver cancers

cfDNA quantification and Integrity index
using qPCR Egypt Zaher, et al. [33]

Plasma
42 BC patients

30 benign lesion patients
27 healthy controls

Breast cancer cfDNA quantification and Integrity index
using qPCR Egypt Hashad, et al. [34]

Serum
25 HCV-related HCC patients

25 chronic HCV patients
15 healthy controls

Liver cancer cfDNA quantification and Integrity index
using qPCR Egypt El-Shazly, et al. [35]

Plasma 28 HCC patients Liver cancer Methylation profile determined for five genes
using qPCR Egypt Iyer, et al. [36]

Serum 20 NHL patients
20 healthy controls

non-Hodgkin’s
lymphoma

cfDNA quantification using Fluorometric
assay Egypt Hosny, et al. [37]

Serum
76 HCC patients
110 CLD patients

69 healthy controls
Liver cancer cfDNA quantification and sequencing of the

positive RFLP fragments using nested PCR Egypt Hosny, et al. [38]

Plasma
216 HCC patients

121 liver cirrhosis patients
408 healthy controls

Liver cancer cfDNA quantification and sequencing using
nested PCR Gambia Kirk, et al. [39]
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Table 1. Cont.

Samples Study Design Cancer Type Downstream Analysis Country References

Plasma 29 HCC patients Liver cancer cfDNA quantification and sequencing using
nested PCR Gambia Szymanska, et al. [40]

Plasma 12 PCa patients
10 healthy controls Prostate cancer cfDNA quantification and parallel tagged

sequencing South Africa van der Vaart, et al. [41]

Plasma 1 BC patient
1 healthy control Breast cancer Cloning and sequencing of cfDNA South Africa van der Vaart and

Pretorius [42]

miRNA

Serum

65 LC patients
29 pulmonary tuberculosis

patients
29 pneumonia

37 healthy controls

Lung cancer Expression levels of miR-21, miR-155, miR-182,
and miR-197 assessed using qPCR Egypt Abd-El-Fattah, et al. [43]

Serum

60 HCV-related HCC patients
60 HCV-related liver cirrhosis

patients
60 healthy controls

Liver cancer Expression levels of miRNAs determined
using qPCR Egypt Ali, et al. [44]

Serum 60 HCC patients
30 healthy controls Liver cancer Expression levels of microRNAs 191, 203 and

335 determined using qPCR Egypt Ezzat, et al. [45]

Plasma 45 LC patients
40 healthy controls Lung cancer The expression level of miR-21 and miR-23a

was detected by qPCR Egypt Hetta, et al. [46]

Serum 60 ovarian cancer patients
30 healthy controls Ovarian cancer Serum miR-21 levels were measured by

TaqMan-qPCR Egypt Mahmoud, et al. [47]

Serum
35 CRC patients

51 patients with benign lesions
101 healthy controls

Colorectal cancer The expression of miR-210, miR-21 and
miR-126 was performed using qPCR Egypt Sabry, et al. [48]

Serum
106 BC patients

49 benign breast lesion patients
40 healthy controls

Breast Cancer The expression level of miR-335 was detected
by qPCR Egypt Swellam, et al. [49]

Serum
137 BC patients

60 benign breast lesion patients
38 healthy controls

Breast cancer miRNAs expression levels were determined
using reaction qPCR Egypt Swellam, et al. [50]

Serum 30 HCC patients
20 healthy controls Liver cancer lncRNA GAS5 and miR-34a expression level

measured using qPCR Egypt Toraih, et al. [51]
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Table 1. Cont.

Samples Study Design Cancer Type Downstream Analysis Country References

Blood

9 CHC patients
6 liver cirrhosis patients

9 HCC patients
8 healthy controls

Liver cancer miRNAs expression levels were determined
using reaction qPCR Egypt Zekri, et al. [52]

Plasma
60 HCC patients
60 CHC patients

60 healthy controls
Liver cancer miRNA expression levels assessed using qPCR Egypt Demerdash, et al. [53]

Serum
224 HCC patients
250 CHC patients

84 healthy controls
Liver cancer

miRNAs (hsa-miR-1269, hsa-miR-125b,
hsa-miR-138, hsa-miR-214-5p, hsa-miR-494,

hsa-miR-375 and hsa-miR-145) were assessed
using qPCR

Egypt Elemeery, et al. [54]

Plasma 65 AML patients
50 healthy controls Acute myeloid leukemia Expression of miR-92a, miR-143 and miR-342

was measured using qPCR Egypt Elhamamsy, et al. [55]

Serum 64 CRC patients
27 healthy controls Colorectal cancer Expression levels of miR-92a, miR-375, and

miR-760 assessed using qPCR Egypt Elshafei, et al. [56]

Serum

23 HCC patients
25 post-HCV liver cirrhosis

patients
30 HCV patients

10 healthy controls

Liver cancer miRNA expression levels using qPCR Egypt Khairy, et al. [57]

Plasma 70 bladder cancer patients
62 healthy controls Bladder cancer Expression levels of miR-92a, miR-100 and

miR-143 measured using qPCR Egypt Motawi, et al. [58]

Serum
60 HCC patients
40 CHC patients

30 healthy controls
Liver cancer Expression levels of miRNA-122 and

miRNA-222 assessed using qPCR Egypt Motawi, et al. [59]

Peripheral blood
mononuclear cells

85 ALL patients
25 healthy controls

Acute lymphoblastic
leukemia

Expression levels of miR-92a, miR-100 and
miR-143 were measured using qPCR Egypt Swellam and El-Khazragy

[60]

Serum

30 CRC patients
18 IBD patients

18 colonic polyps’ patients
24 colonic symptoms patients
100 CRC patients (validation)

Colorectal cancer miRNAs expression levels were determined
using reaction qPCR Egypt Zekri, et al. [61]
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Table 1. Cont.

Samples Study Design Cancer Type Downstream Analysis Country References

Blood
30 HCC patients
20 HCV patients

20 healthy controls
Liver cancer miRNA expression levels assessed using qPCR Egypt Alnoanmany, et al. [62]

Urine
188 Bladder cancer patients
88 Benign bladder lesions

92 healthy controls
Bladder cancer

miR-210, miR-10b, miR-29c, miR-221, and
miR-23a expression levels assessed

using qPCR
Egypt Eissa, et al. [63]

Serum
40 HCC patients
40 HCV patients

20 Healthy controls
Liver cancer miRNA expression levels using qPCR Egypt El-Abd, et al. [64]

Serum 120 BC patients
50 healthy controls Breast cancer

Expression levels of miRNAs (miR10b,
miR34a, miR155, miR195 and miR16)

determined using qPCR
Egypt Hagrass, et al. [65]

Serum
112 HCV-related HCC patients
125 HCV-related CLD patients

42 healthy controls
Liver cancer Expression miRNA was measured using qPCR Egypt Motawi, et al. [66]

Urine

32 HCC patients with
post-HCV infection

74 chronic HCV patients
12 healthy controls

Liver cancer
miRNA whole-genome expression profiling

and relative expression profiling for candidate
miRNAs using qPCR

Egypt Abdalla and Haj-Ahmad
[67]

Serum

20 Inflammatory BC patients
20 non-inflammatory BC

patients
20 healthy controls

Breast cancer TaqMan qPCR was performed to detect the
circulating expression of miRNAs Tunisia Hamdi, et al. [68]

mRNA

Serum 40 HCC patients
10 healthy controls Liver cancer mRNA expression levels using qPCR Egypt Abdelgawad, et al. [69]

Serum 25 HCC patients
15 healthy controls Liver cancer mRNA expression levels using qPCR Egypt Ibrahim, et al. [70]
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Table 1. Cont.

Samples Study Design Cancer Type Downstream Analysis Country References

lncRNAs

Serum 80 BC patients
80 healthy controls Breast cancer mRNA expression levels using qPCR Egypt Zidan, et al. [71]

Serum

120 CRC patients
30 adenomatous polyps’

patients
96 healthy controls

Colorectal cancer Serum expression levels of lncRNAs and
miRNA using qPCR Egypt Shaker, et al. [72]

Serum
78 HCC patients
36 CHC patients

44 healthy controls
Liver cancer mRNA expression levels using qPCR Egypt El-Tawdi, et al. [73]

Plasma 32 gastric cancer patients
30 healthy controls Gastric cancer mRNA expression levels using qPCR Egypt Hashad, et al. [74]

Exosomes

Serum
60 HCC patients
42 CHC patients

18 healthy controls
Liver cancer Expression of exosomal RNA using qPCR Egypt Abd El Gwad, et al. [75]

Serum 20 LC patients Lung cancer Expression of exosomal RNA using qPCR Egypt Khalil, et al. [76]

Abbreviations: ALL—Acute lymphoblastic leukemia, AML—Acute myeloid leukemia, BC—Breast cancer, BPH—Benign prostatic hyperplasia, CHC—Chronic hepatitis C, CLD—Chronic
liver disease, COPD—Chronic obstructive pulmonary disease, CRC—Colorectal cancer, CSC—Cancer stem cell, HCC—Hepatocellular carcinoma, HCV—Hepatitis C-Virus,
IBD—Inflammatory bowel disease, LC—Lung cancer, mtDNA—mitochondrial DNA, NHL—Non-Hodgkin’s lymphoma, PCa—Prostate cancer, PC—Pancreatic cancer, qPCR—Quantitative
real-time PCR.
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Figure 1. The advantages and disadvantages of a tissue biopsy in comparison with a liquid biopsy
for cancer diagnosis and treatment. The illustration shows a tumor consisting of heterogeneous cells
(represented by different colors). During a tissue biopsy, a small section of tissue is removed; this section
may not represent the heterogeneity of the tumor. Tumor cells can undergo epithelial-to-mesenchymal
transition (EMT) and enter the blood (CTC). Small molecules are also released from tumor cells into the
blood, these include cfDNA, RNA, and exosomes. Tumor-specific alterations in CTCs, cfDNA, RNA,
and exosomes found in blood (liquid biopsy) can be utilized to diagnose and treat cancer.

Table 2. Comparison of the circulating biomarkers, CTC, cfDNA, circulating tumor RNA and Exosomes
in cancer management.

Analysis Capability CTC cfDNA Circulating
Tumor RNA Exosomes

Genomic mutations Yes Yes Yes Yes
RNA profiling Yes No Yes Yes

Phenotypic studies of
tumor cell Yes No No No

Proteomic analysis Yes No No Yes

Clinical Applications
Clinical trials Phase IV Phase IV Phase IV Phase II

Clinical approved
techniques CellSearch

1. Cobas® EGFR Mutation
Test v2 assay

2. Epi proColon test
3. AmoyDx Super-ARMS

EGFR mutation test
4. Therascreen EGFR RGQ

Plasma PCR kit
5. Therascreen PIK3CA RGQ

PCR Kit
6. Sysmex Inostics

OncoBEAM RAS CRC Kit
7. Idylla™ ctKRAS

Mutation Test
8. Idylla™ ctNRAS-BRAF

mutation test

Progensa™
PCA3 No

Cost of clinical use
(outside Africa) $350 $170–470 $220 -
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2. Component of Liquid Biopsy

2.1. Circulating Tumor Cells

Cancer deaths are mostly due to tumor metastasis [77]. Tumor cells dislodge from the primary
tumor and use the blood and lymph system as highways to travel to other parts of the body, where they
invade and form metastatic tumors. Our understanding of tumor cell migration is far from complete.
It is associated with epithelial-to-mesenchymal transition (EMT) and governed by numerous genes and
proteins in which genetic aberrations can accelerate or decelerate cancer progression. The potential of
these circulating tumor cells (CTCs) in cancer diagnosis and treatment is twofold. Firstly, it can be
used as a diagnostic marker to predict disease progression and survival in metastatic cancer [78–80],
indicating treatment failure [81,82], distinguish benign from malignant growth [83], and in early-stage
cancer diagnosis [84,85]. Secondly, with improvements in sequencing technologies, it also provides a
window into the genetic landscape of diseases which could be used to stratify patient treatment [86].

Several methods are available for the detection of CTCs in the blood (reviewed in [87]). The only
US Food and Drug Administration (FDA) approved method to quantify CTCs is the CellSearch system
(Verdex LLC, San Diego, CA, USA). This method has been approved to monitor treatment effectiveness
in metastatic breast, prostate, and colorectal cancer patients. The CellSearch system is sensitive, robust,
and can detect a single CTCs in 7.5 mL of blood. CTCs are stable for about 96 h at room temperature
when blood is collected in CellSave preservative tubes [88,89], making shipment at room temperature
from remote locations viable. A limitation of this method is that the enrichment step captures cells
expressing the epithelial cell adhesion molecule (EpCAM) on their surface and not all CTCs express
EpCAM. Some CTCs exhibit stem cell-like or normal-like characteristics with no EpCAM surface
protein while others undergo EMT transition with reduce or loss of EpCAM surface protein [90–92].
These CTCs will be undetectable by the CellSearch technology. Another concern is false positive results,
circulating cells that are EpCAM-, CK8-, CK18-, and CK19 -positive have been detected in patients
with benign inflammatory colon diseases, based on nuclear morphology these cells were consistent
with benign gland [93]. It should be noted that no CTCs were detected in healthy control patients. In
blood spiking experiments with carcinoma cells that have high levels of EpCAM, the sensitivity to
detect CTCs is higher than 85% [94,95], but with cells that express low levels of EpCAM, the sensitivity
is about 42% [96].

Using the CellSearch method, 5 or more CTCs for metastatic breast and prostate cancer and 3
or more in metastatic colorectal cancer were associated with shorter progression-free and overall
survival [78–80]. CTC count is a more reproducible predictor of overall survival than traditional
methods such as radiology [97] or prostate specific antigen (PSA) in prostate cancer [98].

Cancer treatment decisions are complicated by the disparity in responses observed between
patients. Discontinuing ineffective treatment earlier may decrease morbidity due to toxicity, allow
alternative treatment, and reduce treatment cost. Cancer treatment leads to a reduction in CTC
count [99]. Assessing the CTC count before and after treatment can predict the outcome of treatment
in castration-resistant prostate cancer [81]. CTC count is superior to traditional radiology because it
can detect treatment failure earlier and more accurately [97]. A phase II trial on advanced colorectal
cancer has shown that CTC count can also be used in the stratification of treatment. Patients with high
CTC count may benefit most from an intensive multidrug regimen, which is usually associated with
high toxicity. This can be avoided in patients with a low CTC count [100].

CTC count has also been recently used to differentiate between benign and malignant tumors.
Lung lesions on a PET/CT-scan (positron emission tomography/computed tomography scan) can be
benign or malignant and a tissue biopsy is needed for diagnose. A recent study found that it is possible
to distinguish benign lesions from lung cancer lesions using CTCs as a marker [83].

Studies report that CTCs are present in 10% to 55% of early-stage (stage I to III) breast cancer
patients and are associated with poorer outcomes [101,102]. CTC count can potentially be used for
early diagnosis of cancer in patients that have an increased risk for cancer [85]. Patients with chronic
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obstructive pulmonary disease (COPD) have an increased risk of lung cancer [103]. It is possible to
detect CTCs in COPD patients 1 to 4 years before the tumor was detectable with a CT-scan [85].

Blood contains CTCs from all tumor sites in the body and it has been suggested that this is a
molecular proxy for the overall disease [104], in contrast to a tissue biopsy which only represents
cancer at a particular site. This may open the possibility to use CTCs to assess the current tumor
biology in order to monitor genetic aberrations that may influence treatment choices and personalize
cancer treatment. CTCs are difficult to isolate compared to circulating tumor DNA (ctDNA) but can
provide information on the genome as well as the transcriptome and proteome of cancer. Recent
advances in whole genome amplification (WGA) have made it possible to interrogate a single CTCs
with microarray-based comparative genomic hybridization (array-CGH) and high-throughput [105]
and single-cell sequencing (SCS) [86,106,107].

Using amplicon-based sequencing it was found that aberrations in CTCs correlate with that found
in the primary tumor, including mutations and amplifications in druggable genes [108]. CTC RNA
sequencing data show that in breast cancer regulation patterns differ based on the location of the
metastatic tumors [109]. Gulbahce, et al. [86] showed that genomic sequencing of CTCs can be used to
analyze tumor heterogeneity and the detected somatic alterations provide information that may be used
in stratify treatment. It is also possible to culture CTCs ex vivo, enabling drug sensitivity testing [110].
Clinical trials utilizing genomic aberrations in CTCs or expanded CTC drug sensitivity testing to
stratify patient treatment are needed and may shed some light on its feasibility in the clinical setting.

The CTC studies done in Africa are listed in Table 1. Bahnassy, et al. [19] showed that the
melanoma antigen-encoding gene 1 (MAGE1) and MAGE3 are expressed on the surface of CTCs from
hepatocellular carcinoma (HCC) patients but not in healthy volunteers or chronic hepatitis C patients.
Sayed et al. [18] evaluated the uses of CTC and cancer stem cells (CSCs) during the treatment of breast
cancer. They found that CTC count at diagnosis can predict overall survival and CTC count after
chemotherapy can predict disease-free survival and overall survival. High levels of CD44+/CD24−
CSCs that remain after treatment was an indicator for recurrence [18]. Increased levels of CD133,
a marker for stem cells and cancer stem cells, were associated with higher stage tumors and poor
prognosis in HCC patients [20].

2.2. Circulating Tumor DNA

Mandel [111] first identified cell-free DNA (cfDNA) in 1948 and about 3 decades later
Leon, et al. [112] found an increased level of cfDNA in the circulation of cancer patients. The
increased level of cfDNA cannot only distinguish cancer patients from healthy individuals [113] but
can also differentiate patients with malignant tumors from those with benign tumors (prognostic
ability) [114,115].

In addition to being found in the blood, cfDNA is also found in urine, cerebrospinal fluid,
saliva, and breast milk [116]. cfDNA is highly fragmented, it measures between 150 and 200 bp
with an average length of 167 bp [117,118]. Apoptosis and/or necrosis are considered to be the main
sources of cfDNA, although the full mechanisms by which cfDNA is released into circulation is
not completely understood [118,119]. DNA fragments released from tumor cells are referred to as
circulating tumor DNA (ctDNA). ctDNA has a longer fragment size than DNA fragment released from
normal cells [120,121]. The fragment size of cfDNA is used to calculate the DNA integrity index. DNA
integrity index is the ratio of long to short DNA fragments [122]. DNA integrity index is used along
with cfDNA levels to diagnose cancer, monitor treatment response, and predict tumor stages [123].

DNA fragment size between different tumor types also differs largely due to metabolic and
biological differences among tumors [124]. For example, the DNA fragment size from brain cancers
reflects the filtration effect of the blood–brain barrier [124].

The half-life of cfDNA is approximately 2 h after which it is cleared from the circulation [125]. This
means that cfDNA analysis can provide a real-time view of the genetic landscape that includes all the
tumors in a patient (primary and metastatic). Studies have shown that DNA fragments released from
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tumors into circulation harbor tumor-specific aberrations, including mutations in tumor suppressors
and oncogenes, microsatellite instability, DNA methylation, loss of heterozygosity and copy number
variation [126–130]. Next-generation sequencing (NGS) can be used to identify all known and unknown
genomic aberrations but is time-consuming and expensive. PCR-based techniques, such as real-time
PCR or droplet PCR, is less expensive and faster but can only be used to assess known aberrations [131].

Wyatt, et al. [132] showed that driver DNA mutations found in metastatic tissue biopsies were
concurrently present in the cfDNA. They concluded that for most patients, analyzing genetic alterations
in cfDNA is sufficient to identify driver DNA alterations for managing metastatic castration-resistant
prostate cancer [132]. Genetic mutations detected in CTC and ctDNA from the same patient show high
concordance (<73%), although complimentary assessment may be beneficial to assess the dynamic
tumor profile [133].

The FDA has approved two tests based on cfDNA for cancer management, the first is the Cobas
EGFR Mutation Test v2 (Roche Molecular Diagnostics, Basel, Switzerland). The Cobas EGFR Mutation
Test is a real-time PCR test that can detect and quantify 42 mutations on the epidermal growth factor
receptor (EGFR) gene [134]. This test was approved to guide treatment decisions in non-small cell lung
cancer (NSCLC). When compared to tissue-derived DNA results, the sensitivity of this cfDNA test is
72.1% and the specificity is 97.9% [135]. The second is the Epi proColon test, a real-time PCR test that
detects hypermethylation in the promoter region of the Septin 9 gene (SEPT9) [136]. This test is the
first approved blood-based screening test for colorectal cancer. The sensitivity of the test is between
71.1% and 95.6% and the specificity is between 81.5% and 99% [137].

Additionally, the AmoyDx Super-ARMS EGFR mutation test has been approved by the Chinese
FDA for the detection of EGFR mutations in lung cancer. Four cfDNA-based tests have been approved
for the EU market. They are the Qiagen Therascreen EGFR RGQ Plasma PCR kit (for detection of EGFR
del19 and EGFRL858R in lung cancer); Sysmex Inostics OncoBEAM RAS CRC Kit (for detection of
KRAS and NRAS mutations in colorectal cancer); Idylla™ ctKRAS Mutation Test (for detecting KRAS
mutations in metastatic colorectal cancer patients), and the Idylla™ ctNRAS-BRAF mutation test (for
detecting NRAS and BRAF mutations in metastatic colorectal cancer patients) [138]. A number of
studies have investigated cfDNA in cancer management in Africa (Table 1). Ibrahim, et al. [30] found
that both qualitative (fragment size) and quantitative aspects of cfDNA are associated with prognosis,
metastasis, and treatment responses of Egyptian breast cancer patient. Fawzy, et al. [29] studied the
role of cfDNA and DNA integrity in patients with metastatic prostate cancer and found cfDNA to be a
potential non-invasive biomarker for screening and monitoring metastasis in prostate cancer patients.
A recent study by Marchio, et al. [26] used droplet digital PCR technique to detect TP53 R249S mutants
in cfDNA of HCC patients from the Central African Republic and Cameroon. The study suggested
that the technique may be used for diagnosis and to conduct public health surveys on populations at
risk of HCC [26].

2.3. Circulating Tumor RNAs

For decades, the concept of extracellular RNA has been one of the major focuses of scientific research.
One of the most important studies was reported by Stroun and co-workers in 1978, who demonstrated
that RNAs are released from cells into the culture medium [139]. Following this study, other studies
have demonstrated that free-circulating RNAs can be released in the bloodstream of healthy people or
cancer patients within particles-associated vesicles such as exosomes, microvesicles, and apoptotic
bodies [123,140]. These vesicles protect the free-circulating RNAs from ribonucleases degradation and
confer their stability [141]. Circulating RNAs do not result from random degradation but regulated
cleavage and may play a specific role in cell physiology and also in cell-to-cell communication [142,143].
Circulating RNAs are detectable in human body fluids such as plasma, serum, and urine and have
also been implicated in some disease outcomes like cancers [123]. Sensitive techniques like droplet
digital PCR and RNA sequencing have also been recently developed and are used for circulating
RNA detection [144]. These characteristics make circulating RNAs a potential biomarker in cancer
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management. Circulating RNAs include coding RNAs and non-coding RNAs (long non-coding RNAs
and microRNAs) will be discussed in the sections below.

2.3.1. Circulating Coding RNA

Circulating messenger RNAs (mRNAs) have been detected in body fluids of various cancer
patients. These circulating mRNAs are associated with several cancer types such as breast, gastric,
prostate, and colon cancers [145–148]. Many studies have shown the use of these circulating mRNAs as
potential biomarkers in cancer patients for early detection and cancer progression monitoring [149,150].

In Africa, only a few studies have been reported. An Egyptian study investigated the role of
transforming growth factor-beta 1 (TGF-β1) and Golgi protein 73 (GP73) circulating cell-free mRNAs
as a potential biomarker for HCC [70]. The authors reported that TGF-β1 and GP73 mRNA expression
was elevated in the serum of HCC patients compared to the control group. They also found that
alpha-fetoprotein (AFP), which is usually measured for monitoring of patients with high HCC risk,
showed a lower expression level than TGF-β1 and GP73. Abdelgawad, et al. [69] reported that the
GPC3 level was elevated in the serum of all HCC patients compared to control subjects. The study also
showed that measurement of the GPC3 level in serum of Egyptian patients with HCC is more sensitive
than the currently used marker AFP.

2.3.2. Long Non-Coding RNAs

Long non-coding RNAs (lncRNAs) represent a class of nucleic acid transcripts that are longer than
200 nucleotides in length and are not coding for any protein [151]. They have the potential to regulate
various biological events such as cell differentiation, proliferation, migration, and invasion [152]. They
are implicated in tumorigenesis with oncogene or tumor suppressor roles [152]. lncRNA profiles are
more organ- and tumor-specific than other RNA entities and it was reported that circulating lncRNAs
could reflect the pathological and physiological change of cancer patients [153,154]. A study by Xie,
et al. [155] showed that lncRNAs SOX2OT and ANRIL were upregulated in lung cancer patients in
comparison to healthy controls and therefore postulated that they could be good circulating markers for
non-small cell lung cancer prognosis [155]. Lv, et al. [156] also demonstrated that high level of lncRNA
HOTAIR in the serum of breast cancer patients induces less response to neoadjuvant chemotherapy,
hence highlighting HOTAIR as a biomarker for the monitoring of breast cancer treatment.

The only non-coding RNA clinically approved test is the PROGENSA® PCA3 urine test for prostate
cancer screening in patients with one or more negative biopsies with a sensitivity and specificity of
48.4% and 78.6%, respectively [157]. This test detects the non-coding RNA prostate cancer antigen 3
(PCA3) in post-digital rectal exam first catch urine [158].

Only a few studies (Table 1) have investigated the role of lncRNAs as biomarkers for cancer
diagnosis in Africa. Zidan, et al. [71] reported that MALAT1 (metastasis associated lung adenocarcinoma
transcript 1) expression is increased in serum of Egyptian breast cancer patients. The study found
MALAT1 to be more sensitive than CA15-3 which is the current marker for breast cancer [71].
Hashad, et al. [74] showed higher expression level of lncRNA H19 in the serum of gastric cancer patients
when compared with the healthy control group and highlighted the possibility of using lncRNA H19 as
a biomarker for gastric cancer diagnosis [74]. El-Tawdi, et al. [73] showed lncRNA-CTBP as a biomarker
for HCC diagnosis. The study proposed the use of a panel of markers including lncRNA-CTBP,
miR-16-2, miR-21-5p, and LAMP2 for best sensitivity and specificity of HCC diagnosis [73].

2.3.3. Circulating microRNAs

MicroRNAs (miRNAs) are endogenous non-coding RNA transcripts with a length around 18 to
24 nucleotides [159] which play an important role in cell physiology by modulating gene expression
at post-transcriptional level. They recognize their target messenger RNA by binding completely or
incompletely to the 3′-untranslated region (3′-UTR) and induce their effect either via translational
repression or mRNA degradation [160]. MicroRNAs are actively released from cells into various
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human body fluids like plasma, serum, urine, and saliva and their expression level is correlated with
disease progression and physiological states [159,161,162].

Circulating microRNAs are packed within vesicles or associated with RNA binding proteins and
are stable in bio-fluids [163]. In extracellular vesicles about half of the RNA are microRNAs [164].
Previous studies have proposed circulating miRNAs as non-invasive biomarkers for human diseases
like cancer, mainly due to their high stability in bio-fluids and their expression level that correlated
with the disease stage [165,166]. By comparing the profile of miRNAs in healthy subjects and cancer
patients, many studies have observed alterations of miRNAs expression in many human tumors with
the potential role of determining cancer outcome [167–169].

In the context of Africa, Motawi, et al. [170] reported that circulating miR-21 and miR-221 can be
used to discriminate between breast cancer patients and healthy subjects in Egyptian women. The
study showed that the expression of the two circulating miRNAs is higher in breast cancer cases
compared to healthy persons. A study by Fattah, et al. [171] confirmed circulating miR-21 as a potential
diagnostic marker for breast cancer in the Egyptian population. Circulating miRNA has also been
used as a diagnostic marker for HCC. Alnoanmany, et al. [62] demonstrated circulating miR-21 was
highly expressed in Egyptian HCC patients compared to the control group. They found that its use
as a diagnostic tool for HCC is more sensitive than AFP, the current diagnostic marker for HCC [62].
Elhamamsy, et al. [55] in their study on Egyptian acute myeloid leukemia (AML) patients, showed
that the expression level of circulating miR-92a, miR-143, and miR-342 were downregulated compared
to control individuals. The study demonstrated that these circulating miRNAs have sensitivity and
specificity high enough to be good markers for AML [55]. Several circulating miRNAs were identified
as biomarkers for colorectal carcinoma (CRC). Zekri, et al. [61] compared the miRNA profile between
CRC patients and healthy controls and found that circulating miR-17, miR-19a, miR-20a, and miR-223
were up-regulated in CRC patients. The circulating miRNAs found by Zekri, et al. [61] were shown to
demonstrate high diagnostic performance which may be useful biomarkers for the screening of CRC
and monitoring tumor dynamics.

2.4. Other Circulating Molecules

2.4.1. Exosomes

The three main groups of extracellular vesicles released by cells are microvesicles, apoptotic
bodies, and exosomes [172]. Exosomes are the best characterized and the most studied of these three
types of extracellular vesicles [173]. Exosomes are small round vesicles with a size range of 40–150 nm
in diameter [174,175]. Exosomes originate from endosomes and are actively produced and secreted by
different types of cells including tumor cells [174,175]. Exosomes have been identified in blood, urine,
cerebrospinal fluid, saliva, breast milk, pleural effusions, and nasal secretions [176–178].

Exosomes are employed by cells as vehicles to transmit molecular messages between homotypic
and heterotypic cells and affect the phenotype of the recipient cells [175,179]. The exosome cargo
includes a wide range of molecules such as proteins, lipids, mRNA, non-coding RNA, miRNA,
and DNA. Plasma from cancer patients generally contains higher levels of exosomes compared to
healthy control individuals, sustaining that tumor cells secrete more exosomes than normal cells [175].
Tumor-released exosomes exert their functions through cell–cell communications and impact malignant
transformation, angiogenesis, immune response, and metastatic spread [180,181].

Accordingly, exosomes have a strong potential as blood or urine-based biomarkers for diagnostic
prognostic and therapeutic management of cancer [175,179]. Recent studies highlight the relevance of
tumor-secreted exosomes for cancer progression, response to therapy, and the possibility that different
tumor types may secrete exosomes with unique cargos reflecting the tumor phenotype and clinical
behavior. Furthermore, the exosome content in terms of DNA, RNA, and proteins gives insights into
the intrinsic characteristic of tumors and can be exploited for personalized medicine approaches.
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Despite their high potential, few studies have been done on the role of exosomes in the diagnosis
and prognosis of cancer in Africa. An Egyptian study by Khalil, et al. [76] showed that exosomal
lncRNA-RP11-510M2.10 can be used as a diagnostic and prognostic marker for lung cancer. Abd El
Gwad, et al. [75] in their study showed that the accuracy of early diagnosis of HCC can be significantly
improved using serum exosomal miR-1262, lncRNA-RP11-513I15.6, and AFP.

2.4.2. Circulating Proteins and Peptides

Recent discoveries on new protein and peptide biomarkers have marked a new horizon in their
use in non-invasive cancer diagnosis [182,183]. Several protein markers such as CA19-9, AFP, CEA,
CA15-3, PSA, CA125, are in use clinically to boost the diagnosis and monitoring of cancer. Not all of
these protein markers have a high specificity to cancer and the need to discover novel biomarkers that
are highly specific and sensitive remains.

Numerous studies have evaluated the use of protein biomarkers in African populations; with some
aiming at the discovery of novel protein biomarkers [184–200]. A study by Adeola, et al. [15] identified
73 urinary proteins as potential biomarkers for prostate cancer in the South African population.
Abdel Wahab et al. [184] identified 33 deregulated proteins in Egyptian cohort that could be used
as a prognostic signature for hepatitis C-virus related HCC. A recent review by Adeola, et al. [201]
highlights the prospects of using proteomic biomarkers in Africa.

3. Challenges to Implementation of Liquid Biopsy Technology in Africa

Even though liquid biopsy techniques have been used for the diagnosis of various cancer types
in the advanced western world [201], its routine clinical use has not received wide coverage in
African healthcare settings. This can be due to limiting factors such as lack of skilled personnel, poor
health infrastructure, and poor government policies [201]. As a relatively new technology, a potential
drawback of liquid biopsy in Africa is that it’s market products would not be affordable to the majority
of low-income countries; and it may not be easily available for the general population. A typical
example is Kenya which recently became the third African country after South Africa and Tunisia
in which the use of liquid biopsy is commercially made available to the public [202]. The estimated
cost for each test was considered to be seventy thousand Kenyan Shillings (about $7000) which is
practically unaffordable to middle- and low-income earners that form the majority of the country’s
population [202].

In addition, it may be difficult to ascertain the sensitivity, specificity, and efficacy of liquid
biopsy methods in African patients, as most of the available products have not been tested in African
populations. Also, most of the technology used for detecting genetic mutations and alterations
are developed using non-African populations. This is particularly concerning because of the wide
geographic/latitudinal variations in pathogenesis and natural history of cancers in Africa [203].
Therefore, ad hoc designed clinical studies in African populations are needed to address these questions
and give insight on population-specific biomarkers for early diagnosis and monitoring.

Generally, parallel detection of various liquid biopsy analytes may be challenging from a small
volume of blood [204]; and this integrated liquid biopsy investigation has to be significantly improved
to provide in-depth information on tumor genotypes/phenotypes. The issue of low-frequency mutant
allele in the analysis of cell-free nucleic acid is also a huge challenge due to variability among early-stage
tumors [205]. Thus, adequate, cutting-edge, basic, translational, and clinical research in the African
continent should be supported in this important and emerging field, which has enormous potential
and social impact for improving public health at sustainable costs. For this technology to emerge in
Africa, great capacity needs to be built in terms of specialized personnel training and infrastructure
building, not only in the domain of molecular biology and clinical research but also in computational
biology and bioinformatics, to standardize and validate potential biomarkers [204,206].
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4. The Prospect for Liquid Biopsy in Africa

In spite of the challenges, liquid biopsy has emerged as a rapid, reliable, and minimally
invasive cancer screening solution, with high specificity and sensitivity for cancer diagnosis and
monitoring [205–208]. In western world settings, the use of liquid biopsy options like CTCs and ctDNA
has been a cutting-edge technology that has improved the detection and monitoring of cancer in a
small amount of blood samples [209–213]. It proved that real-time monitoring of disease progression
can be used to personalize treatment, which can increase effectiveness and reduce the cost of treatment.
Indeed, new technologies for detection of gene mutations, genetic rearrangements, and additional
cancer-specific biomarkers applied to liquid biopsy promise further cost-cutting.

Cancer in Africa is a public health menace. Most cancer cases are diagnosed late in Africa [214].
For example, in Zimbabwe 80% of cervical cancer patients presented with advanced disease [215] and
in Tanzania, more than 70% of breast cancer patient were diagnosed at stage III and above [216]. Factors
such as limited knowledge of signs and symptoms of cancer, limited screening facilities, and fear of
surgery are some of the major barriers to early presentation and cancer diagnosis in Africa [217–219].
Liquid biopsy could help in addressing these challenges as it is non-invasive and does not require
surgical facilities not always available in African settings.

As shown in the developed world, liquid biopsy can be an implementable and promising concept
that would non-invasively boost the prompt identification of cancers and reduce the morbidities and
mortalities associated with the late/end-stage diagnosis of cancer. The initial burden and high costs
due of the introduction of this high-tech, cutting-edge technology should be sustained by national
and international collaborative research and health care programs aimed at reducing disparities both
among and within African countries. Eventually, health care costs in African countries would be
reduced by implementing policies and technologies leading to easier access to diagnostic procedures,
early detection, and effective clinical predictive measures. Additionally, liquid biopsy approaches
would promote the practice of evidence-based precision medicine in Africa, applying therapies when
needed, and avoiding the human and societal costs of under- and over-treatment. Ultimately, it is
imperative that more resources are channeled towards African-based studies on the molecular basis of
cancer, enabling technologies and personnel training with the goal of developing genomic, proteomic,
and cell-based biomarkers that are specific to the African population. This will make easy and early
diagnosis a reality and help to improve the management of cancer in the African continent.
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