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Abstract: Ubiquitin is a highly conserved small eukaryotic protein. It is generated by proteolytic
cleavage of precursor proteins in which it is fused either to itself, constituting a polyubiquitin precursor
of head-to-tail monomers, or as a single N-terminal moiety to ribosomal proteins. Understanding the
role of the ubiquitin fused to ribosomal proteins becomes relevant, as these proteins are practically
invariably eS31 and eL40 in the different eukaryotes. Herein, we used the amenable yeast Saccharomyces
cerevisiae to study whether ubiquitin facilitates the expression of the fused eL40 (Ubil and Ubi2
precursors) and eS31 (Ubi3 precursor) ribosomal proteins. We have analyzed the phenotypic effects
of a genomic ubilAub-HA ubi2A mutant, which expresses a ubiquitin-free HA-tagged eL40A protein
as the sole source of cellular eL40. This mutant shows a severe slow-growth phenotype, which could
be fully suppressed by increased dosage of the ubi1Aub-HA allele, or partially by the replacement of
ubiquitin by the ubiquitin-like Smt3 protein. While expression levels of eL40A-HA from ubil Aub-HA
are low, e[ 40A is produced practically at normal levels from the Smt3-S-eL40A-HA precursor. Finally,
we observed enhanced aggregation of eS31-HA when derived from a Ubi3Aub-HA precursor and
reduced aggregation of eL40A-HA when expressed from a Smt3-S-eL40A-HA precursor. We conclude
that ubiquitin might serve as a cis-acting molecular chaperone that assists in the folding and synthesis
of the fused eL40 and eS31 ribosomal proteins.

Keywords: ribosome biogenesis; pre-rRNA processing; ribosomal protein L40 (eL40); ubiquitin;
UBI1/2 genes; translation; yeast

1. Introduction

Ubiquitin is a small eukaryotic protein of 76 amino acids whose name (i.e., it occurs ubiquitously)
results from its remarkable evolutionary conservation [1]. Ubiquitin functions as a reversible
post-translational modifier of proteins to regulate many different cellular processes such as DNA repair,
chromatin dynamics, cell cycle regulation, membrane and protein trafficking, endocytosis, autophagy,
but most notably proteasome-dependent protein degradation [2—4]. Normally, the conjugation of
ubiquitin to other proteins involves the formation of an isopeptide bond between the x-carboxyl group
of the C-terminal glycine of a ubiquitin molecule with an e-amino group of a specific lysine residue
within the target protein [2,3]. This process is known as ubiquitination and involves three sequential
steps: activation, conjugation, and ligation, which are performed by ubiquitin-activating (E1) enzymes,
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ubiquitin-conjugating (E2) enzymes, and ubiquitin ligases (E3), respectively. The reversal of this
modification, deubiquitination, is catalyzed by specific proteases called deubiquitinating enzymes [5].

In most eukaryotes studied, ubiquitin is encoded by two classes of genes: (i) The first comprises
genes coding for a single copy of ubiquitin fused to ribosomal proteins (r-proteins), most commonly
eL40 and eS31. Ubiquitin fusion to other r-proteins, such as P1 or P2, and even to non-ribosomal
proteins such as actin, has been reported in diverse genera of rare single-celled algae as, for example,
Bigelowiella [6]. (ii) The second class includes genes that encode a polyubiquitin precursor protein,
which consists of a polymer of several tandem ubiquitin monomers (e.g., [7-10]). For both classes, free
de novo ubiquitin is synthesized by proteolytic maturation from the corresponding precursor proteins.
Only rarely, ubiquitin is encoded by monoubiquitin genes, as occurs in the protozoa Giardia lamblia
and Entamoeba histolytica, or in algae as Guillardia theta and Bigelowiella natans [11-13].

In Saccharomyces cerevisiae (thereafter yeast), but also in mammals, ubiquitin is encoded by four
different genes [14]. The yeast UBI4 gene (equivalent to the human UBB and UBC genes) encodes a
polyubiquitin precursor protein of five head-to-tail repeats of ubiquitin. Expression of UBI4 occurs
when cells enter the stationary phase or when they are exposed to diverse stresses, including heat shock,
oxidative stress, exposure to DNA-damaging agents, or nutrient depletion [8,15-19]. The paralogous
UBI1 and UBI2 yeast genes (equivalent to the human UBA52 gene) code for a fusion protein where
a single ubiquitin moiety is fused to the 60S r-proteins eL40A and eL40B, respectively. In turn, the
yeast UBI3 gene (equivalent to the human RPS27A/LIBA8O gene) codes for a fusion protein consisting
of a single N-terminal ubiquitin moiety and the 40S r-protein eS31 [8,14]. In actively growing yeast
cells, most of the ubiquitin originates from these three r-protein fusion genes [15]; on the other hand,
expression of UBI4 is induced when the UBI1, UBI2, and UBI3 genes are turned down, as occurs when
cells are subjected to different stresses, including starvation [20].

There are other proteins that share the ubiquitin fold, and these can also be conjugated, akin to
ubiquitin, via an isopeptide bond to substrate proteins in an enzymatic process that is analogous to
ubiquitination (for a review, see [3,21]). Among these proteins, known as ubiquitin-like modifiers,
SUMO (small ubiquitin-related modifier) is the most widely spread member within eukaryotes [21].
Four SUMO genes coding for different monomeric SUMO isoforms have been identified in mammals,
while yeast harbors a single essential gene, SMT3, which encodes the SUMO protein Smt3 [22].
Sumoylation of target proteins regulates various cellular processes by modulating the localization
or activity of the SUMO-modified substrate proteins. While polyubiquitination mainly provides a
signal for proteasome-dependent degradation (e.g., [23]), sumoylation seems to enhance the stability
of the target proteins (reviewed in [22,24]). This latter feature has been biotechnologically exploited
to increase the yield of recombinant proteins in Escherichia coli; thus, the N-terminal fusion of a
single SUMO moiety to recombinant proteins, which fail to properly fold and precipitate as inclusion
bodies, may significantly improve their stability and solubility (e.g., [25,26]). Similarly, expression of
recombinant proteins containing an N-terminal ubiquitin moiety has been found to augment their
yield and solubility [27-29]. However, whether an N-terminally attached SUMO or ubiquitin moiety
could act in vivo as a physiological cis-acting chaperone for proper folding and efficient expression of
the fused proteins remains to be determined (see discussion in [30]).

We are interested in understanding the contribution of the ubiquitin moiety within the Ubil/2
and Ubi3 precursors to ribosome biogenesis and function. Experimental evidence indicates that
while eS31 is a quasi-essential r-protein that assembles in the nucleus, most likely into early 90S
pre-ribosomal particles [31,32], eL40 is an essential r-protein that associates in the cytoplasm with
late pre-60S r-particles [33,34]. Under wild-type conditions, the Ubil/2 and Ubi3 precursor proteins
could so far never be detected, suggesting that their proteolytic maturation occurs very rapidly,
likely co-translationally, and consequently before the assembly of the respective r-proteins into
pre-ribosomal particles [14,31,35]. We have previously studied the consequences of introducing
mutations in the intersection between ubiquitin and eS31 within the Ubi3 precursor and between
ubiquitin and eL40 within the Ubil precursor that partially or totally impair ubiquitin removal [35,36].
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The obtained results indicate that the presence of ubiquitin hinders the assembly of the respective
r-proteins into pre-ribosomal particles; therefore, assembly of either €531 or eL40A is favored over
that of non-cleaved Ubi3 or Ubil, respectively [35,36]. Moreover, non-cleaved Ubi3 or Ubil variants
confer lethal phenotypes when expressed as the sole source of €S31 or eL40, respectively. Only in
these circumstances (i.e., upon depletion of the wild-type eS31 or eL40 counterparts), these mutant
proteins get incorporated into nascent pre-ribosomal particles [35,36]. Strikingly, while Ubi3-containing
r-particles can quite efficiently engage in translation [35], Ubil-containing r-particles are delayed
in their cytoplasmic maturation (i.e., Tif6 recycling), prevent r-subunit joining, and interfere with
translation elongation [36]. In addition, we and others have shown that the ubiquitin moiety of
the Ubi3 precursor can be deleted (ubi3Aub allele) without causing a deleterious phenotype as long
as the unfused eS31 r-protein is expressed at an elevated dosage [14,35]. In contrast, expression of
eS31 from an ubi3Aub allele integrated into its natural chromosomal locus conferred a pronounced
slow-growth (sg) phenotype and a shortage of 40S r-subunits [14,35]. Thus, the N-terminal ubiquitin
moiety of Ubi3 contributes to the efficient synthesis of eS31 and, as a consequence, is required for
the quantitative synthesis of 40S r-subunits. In this study, we have performed an equivalent analysis
with a ubilAub allele, which encodes a ubiquitin-free UbilAub protein. As above, when the sole
cellular source of eL40 originates from a single-copy ubilAub allele, integrated at the native UBI1
genomic locus, cells showed a pronounced sg phenotype and a deficit in 60S r-subunits; both defects
are fully suppressed by increasing the gene dosage of the ubilAub allele by placing it on a centromeric
(CEN) plasmid. Therefore, as for Ubi3, it appears that the ubiquitin moiety of the Ubil precursor
is important for the efficient accumulation of the derived eL40A r-protein product. Importantly,
expression of an N-terminally Smt3-fused eL40A variant protein as sole source of eL40 leads to a
modest yet significant improvement of cell growth, especially at high temperatures. Finally, we
have evaluated the effect of the absence and presence of an N-terminal ubiquitin or Smt3 moiety,
respectively, on the aggregation status of HA-tagged eL40A, either expressed from a genomic UBI1-HA,
ubilAub-HA or SMT3-5-eL40A-HA allele, and HA-tagged eS31, expressed either from a genomic
UBI3-HA or ubi3Aub-HA allele. While we found practically no differences in the extent of aggregation
for HA-tagged eL40A derived from the ubiquitin-containing Ubil-HA precursor or the ubiquitin-free
UbilAub-HA protein in cells encompassing a ubi2A mutation, we observed both a clear tendency
for reduced aggregation of eL40A-HA when generated from the Smt3-5-eL40A-HA precursor and
for enhanced aggregation of HA-tagged eS31 derived from the ubi3Aub-HA allele when compared
to eS31-HA originating from the UBI3-HA allele. We discuss our results in the context of a possible
cis-acting role of the N-terminal ubiquitin moiety, fused to eS31 and eL40, as a molecular chaperone
that facilitates the correct folding and efficient synthesis of these two r-proteins.

2. Materials and Methods

2.1. Strains and Microbiological Methods

All yeast strains used in this study are listed in Table 1 and are derived from the diploid
W303 strain [37]. A two-step allele replacement method was used to replace genomic wild-type
UBI1 by the UBI1-HA, ubilAub-HA or SMT3-5-eL40-HA alleles [38]. Briefly, SMY106, which is a
haploid ubil::)kIURA3 (URA3 gene from Kluyveromyces lactis) null mutant strain, was co-transformed
with 100 ng of empty YCplaclll vector and 1 ng of DNA fragments containing the UBII-HA,
ubil Aub-HA, or SMT3-5-eL40-HA alleles excised by EcoRI/HindIII digestion from YCplac111-UBI1-HA,
YCplacl11-ubilAub-HA, or YCplac111-SMT3-S-eL40-HA, respectively. Transformants were selected on
SD-Leu plates. Then, transformants were replica-plated onto 5-FOA-containing plates to select for those
that had lost the KIURA3 marker as a consequence of a site-specific recombination event. Candidate
clones were analyzed by colony PCR and sequencing. SMY113 (UBI1-HA), SMY107 (ubil Aub-HA),
and SMY218 (SMT3-S-eL40A-HA) are representative 5-FOA-resistant clones that were selected for
further analyses. To obtain strains where the above alleles are the sole source of cellular eL40, SMY113,
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SMY107, and SMY218 were crossed to JDY923, which is a ubi2::kanMX4 null mutant. The resulting
diploids were sporulated and tetrads were dissected. Several complete tetrads from each cross were
analyzed for (i) G418 resistance on G418-containing plates, (ii) the presence of the ubi2::kanMX4 deletion
disruption and either the UBI1-HA, ubil Aub-HA or SMT3-S-eL40A-HA allele by PCR, and (iii) the
expression of the HA epitope by immunoblotting using anti-HA antibodies. SMY256 (UBI1-HA ubi2A),
SMY257 (ubilAub-HA ubi2A), and SMY258 (SMT3-5-eL40A-HA ubi2A) are representative meiotic
segregants that were selected for further analyses. Strains SMY215 and SMY216 were generated
by transforming the UBI1/2 shuffle strain (TAY001) with the plasmids YCplacl11-ubilAub-HA or
YCplac111-SMT3-5-eL40-HA; transformants were then restreaked on 5-FOA-containing plates to
counter-select against the presence of pHT4467A-UBI1.

Yeast cells were grown at the indicated temperatures either in YPD medium (1% yeast extract,
2% peptone, and 2% glucose) or SD medium (synthetic dextrose; 0.15% yeast nitrogen base, 0.5%
ammonium sulphate, and 2% glucose), which was supplemented with the appropriate amino acids
and bases as nutritional requirements. To prepare plates, 2% agar was added to the media before
sterilization. Yeast genetic techniques and growth media have been previously described [39]. Yeast
cells were transformed by the lithium acetate method [40]. For tetrad dissection, a Singer MSM 400
micromanipulator was used. Standard molecular biology techniques were carried out according to
the specifications in Sambrook et al. [41]. E. coli DH5x was used for cloning and propagation of
plasmids [41].

Table 1. Yeast strains used in this study.

Strain ? Relevant Genotype P Source
W303-1A MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 [37]
W303-1B As W303-1A but MAT « [37]

MATa ubil::kanMX4 ubi2: kanMX4 ade3::kanMX4

TAY001 [pHT4467A-UBI1] [36]
SMY106 MATa ubil:kIlURA3 This study
SMY113 MATa UBIT-HA This study
SMY256 MATa UBI1-HA ubi2::kanMX4 This study
SMY107 MATa ubil Aub-HA This study
SMY257 MAT oc ubilAub-HA ubi2::kanMX4 This study

MATa ubil: kanMX4 ubi2::kanMX4 ade3::kanMX4 .

SMY215 [YCplac111-ubilAub-HA] This study

JDY923 MAT « ubi2::.kanMX4 [33]
SMY218 MATa SMT3-S-eL40A-HA This study
SMY258 MAT o SMT3-S-eL40A-HA ubi2::kanMX4 This study

MATa ubil:: kanMX4 ubi2::kanMX4 ade3::kanMX4 .

SMY216 [YCplac111-SMT3-5-eL40A-HA] This study

JDY532 MATa ssb1::HISBMX6 ssb2::natNT2 This study
SMY324 MATa ssb1::HIS3MX6 ssb2::natNT2 UBI3-HA::kanMX4 This study
TLY56.D3 MATa UBI3-HA::kanMX4 [35]
TLY61.A2 MATa ubi3Aub-HA::kanM X4 [35]
TLY14.3C MAT o ubi3::HIS3BMX6 [35]
SMY315 MAT o rps12:kanMX4 This study
ORY211 MAT o rpl39:natNT2 This study

MS157-1A MAT o dob1-1 [42]

2 Strains used in this study are isogenic with W303. b For simplicity, only the relevant genotypes, differing from the
one of the W303-1A strain, are indicated.

2.2. Plasmids

Plasmids used in this study were generated by multiple sequential cloning steps and they are
listed in Table 2. All constructs were verified by DNA sequencing. Description of the oligonucleotides
used for the PCRs and information on the construction of the different plasmids will be available
upon request.
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Table 2. Plasmids used in this study.

Name (Collection Name) Relevant Information Source

E CENG (instable), URA3, ADE3. Wild-type Ubil;
pHT4467A-UBIL promoter and terminator of UBI1 (361

YCplaclll CEN, LEU2 [43]
CEN, LEU2. C-terminally 1xHA-tagged el 40A;

YCplacl11-UBIL-HA (pDK4131) promoter and terminator of UBI1 (361
YCplacl11-ubilAub-HA CEN, LEU2. Allele ubilAub-HA (M-II); promoter and This stud
(pDK4192) terminator of UBII y
YCplacl111-SMT3-S-eL40-HA CEN, LEU2. Allele SMT3-5-eL40A-HA (GG-5-1I); This stud
(pDK4193) promoter and terminator of UBI1 y
pADH111-Ub (pDK2253) CEN, LEU2. Wild-type ubiquitin; promoter and This study

terminator of ADH1

2.3. Polysome Analysis and Sucrose Gradient Fractionation

Cell extracts for polysome analysis were prepared and analyzed as previously described [44,45].
Ten Aygp units of each cell extract were loaded onto 7-50% sucrose gradients. These gradients were
centrifuged at 39,000 rpm in a Beckman Coulter SW41Ti rotor for 2 h 45 min; the Ajs4 was continuously
monitored using an ISCO UA-6 system. When needed, fractions of 0.5 mL were collected and
proteins were precipitated from each fraction using trichloroacetic acid, as previously described [46].
The precipitated fractions were resuspended in 2x Laemmli loading buffer; an equal volume of each
fraction was separated by SDS-PAGE and analyzed by western blotting.

2.4. Western Blot Analysis and Antibodies

Total yeast protein extracts were prepared by the alkaline lysis method of Yaffe and Schatz [47],
which immediately freezes the in-vivo protein content, thus preventing rapid protein turnover reactions.
Proteins were separated by SDS-PAGE and analyzed by western blotting according to standard
procedures [41]. The following primary antibodies were used: mouse monoclonal anti-HA 16B12
(Covance, Emeryville, CA, USA), anti-Pgk1 (Invitrogen, Eugene, OR, USA), and anti-uL3 (gift from
J.R. Warner) [48]; rabbit polyclonal anti-uL29 (gift from M. Seedorf) [49] and anti-uS3 (gift from M.
Seedorf) [49]. Goat anti-mouse or anti-rabbit horseradish peroxidase-conjugated antibodies (Bio-Rad,
Hercules, CA, USA) were used as secondary antibodies. Immune complexes were visualized using a
chemiluminescence detection kit (Super-Signal West Pico, Pierce, Rockford, IL, USA) and a ChemiDoc™
MP imaging system (Bio-Rad, Hercules, CA, USA).

2.5. Analysis of Agqregated Proteins

Isolation of aggregated proteins was done from whole cell extracts as described by Koplin et al. [50],
but following the sonication modifications described in Panasenko et al. [51]. Briefly, 40 ODggg units of
cells, grown to mid-log phase in YPD, were harvested, washed with water containing 15 mM NaN3,
and cell pellets were first frozen in liquid N, and then stored at —80 °C. For preparation of cell lysates,
the pellets were resuspended in 0.5 mL of freshly prepared lysis buffer (20 mM sodium phosphate, pH
6.8, 10 mM DTT, 1 mM EDTA, 0.1% Tween 20) supplemented with 1x Complete EDTA-free protease
inhibitor cocktail (Roche, Basel, Switzerland), 3 mg/mL zymolyase T20 (USBiological, Salem, MA, USA)
and 1.25 U/mL benzonase. Samples were incubated at room temperature for 15 min, chilled on ice for
5 min, and tip sonicated (Branson sonifier 450; three times 10 s at duty cycle 40%). Upon sonication,
the lysates were cleared by centrifugation at 200x g for 20 min at 4 °C, and the supernatants were
adjusted to an identical protein concentration, determined by the Bradford method, of 10.0 mg/mL.
Supernatant aliquots of 20 uL were taken and boiled with 40 pL of SDS Laemmli sample buffer (total
extract samples). Then, the supernatants were centrifuged at 16,000x g for 20 min at 4 °C to pellet the
aggregated proteins. After removing the supernatants, the pellets were washed twice with 0.5 mL of
wash buffer (20 mM sodium phosphate, pH 6.8, 1x Complete EDTA-free protease inhibitor cocktail)
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containing 2% NP-40 (WB-NP); then, pellets were resuspended in 0.5 mL. WB-NP, sonicated (10 s at
duty cycle 40%), and centrifuged at 16,000x g for 20 min at 4 °C. Pellets were again washed twice with
0.5 mL of wash buffer and then resuspended in wash buffer, sonicated, and centrifuged as above. Pellets
were resuspended in 50 pL of SDS Laemmli sample buffer and boiled (protein aggregate samples).
Total extract and protein aggregate samples were then separated by 4-12% gradient SDS-PAGE and
analyzed by colloidal blue Coomassie staining and western blotting.

2.6. Reproducibility

To ensure good reproducibility, each experiment was done two or more times (biological replicates);
then, each sample was also analyzed at least twice (technical replicates). Representative experiments
are shown in the different figures.

3. Results

3.1. Generation of ubil Mutants for Phenotypic Analysis

Yeast e[40 is an essential r-protein of 52 amino acids that is encoded by two independent
paralogous genes, UBI1 (RPL40A; YIL148W), and UBI2 (RPL40B; YKR094C). As mentioned in the
introduction, eL40 as well as the r-protein eS31 (UBI3 gene) are produced in practically all eukaryotes by
proteolytic removal of the N-terminal ubiquitin moiety from the ubiquitin-fused precursor r-proteins.
We previously studied the effects of impaired ubiquitin removal from the Ubil and Ubi3 precursors by
introducing specific mutations that decrease or abolish their proteolytic maturation [35,36].

Ubiquitin "~ eL4DA HA
| Grs Grs [tz b | |
1 128
Gene Precursor protein Mature proteins
| I Ll UBI1-HA Ubi1-HA Ub + eL40A-HA
e I ubi1Aub-HA M-eL40A-HA M-eL40A-HA*
M
Gg7 Gag 100 hioy | | SMT3-S-eL40A-HA Smi3-S-eL40A-HA  Smt3 + S-eL40A-HA*

+Sgg

Figure 1. Schematic representation of the genomic constructs used in this study. Ubil consists of an
N-terminal ubiquitin moiety fused to the r-protein eL40A. A peptide bond between the C-terminal
glycine of ubiquitin (G76) and the N-terminal isoleucine of eL40A (I77) connects the two proteins.
Relevant residues and ubil mutant variants thereof used in this study are also indicated. The relevant
constructs are schematically depicted, and the respective allele, precursor protein, and mature protein
names are indicated. The asterisk denotes that the exact nature of the mature proteins derived from
these precursor proteins has not been experimentally determined; thus, the indicated mature proteins
correspond to the most likely in vivo cleavage products. A single C-terminal HA tag was added for
western detection of the Ubil and/or eL40A protein variants.

To date, however, only experimental data concerning the phenotypic consequences of expressing
a genomic ubi3Aub allele, which lacks the region coding for the ubiquitin moiety, are available [14,35].
To explore the role of the N-terminal fused ubiquitin moiety within Ubil/2 precursors, we constructed
two different mutant Ubil variants (Figure 1). First, we replaced the endogenous wild-type UBI1
copy with a ubil Aub-HA allele, which harbors a deletion of the ubiquitin coding region and therefore
solely expresses the eL40A r-protein part without the N-terminal ubiquitin moiety. To allow efficient
translation of the construct, the cognate ATG start codon of UBI1 was kept downstream of its 5
untranslated region; thus, the corresponding e[.40A protein starts with a N-terminal methionine that
is not present in the natural, proteolytically processed eL40A. Second, we replaced the endogenous
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UBI1 allele with a SMT3-S-eL40A-HA allele where the ubiquitin coding region was exchanged with a
Smt3 (hereafter SUMO) coding region. To facilitate cleavage of the SUMO moiety, we inserted a serine
codon at the junction between the coding regions of Smt3 and eL40A. In both constructs, as well as in
the genomic UBI1-HA wild-type control construct, we also added an in-frame C-terminal single HA
epitope for western detection.

3.2. The ubilAub Ubiquitin Deletion Mutant Displays a Slow-Growth Phenotype

For the functional analysis of the generated mutants, we first examined the growth phenotype
associated with the deletion of the ubiquitin moiety from the Ubil precursor (Figure 2). As el40
is encoded by two independent paralogous genes, we performed this analysis both in the presence
or the absence of a functional eL40B r-protein (wild-type UBI2 or ubi2A background, respectively).
As previously described [33,36], the presence of the HA epitope slightly affected growth when
eL40A-HA is the sole source of eL40, specially at low temperatures. In agreement, doubling times of ca.
1.8 h, 2.0 h, and 3.0 h were obtained in liquid YPD at 30 °C for the wild-type W303-1A strain and the
isogenic ubi2A and UBI1-HA ubi2A mutants, respectively. As also discussed [36], this is likely due to
an adverse effect of the extra amino acids on the interaction environment of the C-terminus of eL40A
within the ribosome. Figure 2 also shows that deletion of the ubiquitin moiety has practically no effect
on cell growth when the UBI2 gene is present. However, ubilAub-HA ubi2 A mutant cells, in which all
cellular eL40 is derived from the single-copy expression of a ubiquitin-free eL40A construct, showed a
severe sg phenotype at all tested temperatures and divided every 5.5 h in liquid YPD at 30 °C.

Wild type
UBI1-HA

UBI1-HA ubi2A

ubi1Aub-HA
ubi1Aub-HA ubi2A

ubi1A ubi2A + ubilAub-HA

ND ‘
22°C 30°C 37°C

Figure 2. The genomically integrated ubi1Aub-HA allele confers a slow-growth phenotype. Growth
analysis of the indicated strains, either expressing a C-terminally HA-tagged Ubil (UBI1-HA) or a
UbilAub (ubilAub-HA) variant protein from the UBI1 genomic locus or from a centromeric plasmid (+
ubilAub-HA) in a wild-type UBI2 or a ubi2A null mutant background. Strains W303-1A (Wild type),
SMY113 (UBI1-HA), SMY256 (UBI1-HA ubi2A), SMY107 (ubilAub-HA), SMY257 (ubilAub-HA ubi2A),
SMY215 [YCplacl11-ubilAub-HA] (ubilA ubi2A + ubilAub-HA), and JDY923 (ubi2A) were spotted in
fivefold serial dilution steps onto YPD plates, which were incubated for 4 days at 22 °C or for 3 days at
30°Cand 37 °C.

It has been previously shown that increased dosage of the ubi3Aub allele suppresses its growth
defect [14,35]. Thus, to address whether a similar situation occurred upon increasing the dosage of the
ubilAub allele, we cloned either the wild-type UBI1-HA or the mutant ubi1Aub-HA allele into YCplacl11,
a centromeric (CEN) low-copy-number LEU2 plasmid [43], and transformed these constructs into
the UBI1/2 shuffle strain TAY001 (for its genotype, see Table 1). After counter-selection against the
pHT4467A-UBI1 (URA3 ADE3) plasmid on 5-FOA-containing plates, cell growth was analyzed on
YPD plates. As shown in Figure 2, cells harboring the ubi1Aub-HA allele on the CEN plasmid, thus
constituting the sole source of cellular eL40, grew significantly better than the ubilAub-HA ubi2A
mutant cells, in which the ubilAub-HA allele is present at the genomic UBI1 locus. This is in agreement
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with previous data showing that the expression of a ubilAub allele from a strong promoter also
complemented the lethal phenotype of a ubilA ubi2A strain to the wild-type extent [14]. We conclude
that the presence of the ubiquitin moiety is required for optimal cell growth when eL40 is expressed
from a single-copy allele.

3.3. The SMT3-S-eL40A ubi2A Mutant Displays a Slow-Growth Phenotype

The small ubiquitin-like modifier SUMO has an overall three-dimensional structure that is very
similar to the one of ubiquitin and possesses, as ubiquitin, a C-terminal glycine residue via which it is
conjugated to specific lysine residues of target proteins (e.g., [52]). Thus, given that ubiquitin provides
a beneficial cis-acting effect when fused to eL40, we reasoned that the replacement of the ubiquitin
moiety in the Ubil precursor by SUMO should therefore also permit, if enabling proper processing of
the Smt3-eL40A fusion protein by the SUMO proteases Ulpl and Ulp2 [53], the optimal production of
functional eL40A protein. To this end, we integrated the SMT3-S-eL40A-HA allele at the genomic UBI1
locus (see Section 3.1 and Materials and Methods). Then, we assessed the growth of cells harboring the
SMT3-S-eL40A-HA allele in the context of the wild-type UBI2 and the ubi2A null mutant background.
As shown in Figure 3, SMT3-5-eL40A-HA cells grow practically like the wild-type control strain in
the presence of UBI2. Interestingly, the SMT3-S5-eL40A-HA ubi2A strain, where the Smt3-S-eL40A-HA
precursor is the sole source of eL40, displays a mildly improved growth compared to that of the isogenic
ubil Aub-HA ubi2A strain, which is especially evident at higher temperatures. Consistently, when
grown in liquid YPD at 30 °C, SMT3-5-eL40A-HA ubi2A cells divided more rapidly than ubil Aub-HA
ubi2A cells as indicated by the determined doubling times of 4.0 h and 5.5 h, respectively. As observed
for the ubilAub-HA allele, introducing the SMT3-S-eL40A-HA allele on a low-copy-number plasmid
into ubilA ubi2A cells resulted in apparent wild-type growth, showing that its increased gene dosage
suppressed the sg phenotype linked to the genomic single-copy SMT3-S-¢eL40A allele. We conclude
that SUMO is able to partially fulfil the cis-acting role of ubiquitin within the Ubil precursor when
replacing it as the N-terminal fusion moiety preceding the eL40A r-protein component.

SMT3-S-eL40A-HA
SMT3-S-eL40A-HA ubi2A
UBI1-HA ubi2A

ubi1Aub-HA ubi2A

ubi1A ubi2A + SMT3-S-eL40A-HA

22°C 30°C

Figure 3. The genomically integrated SMT3-S-eL40A-HA allele permits better growth than the
corresponding ubilAub-HA allele. Growth analysis of the indicated strains, either expressing a
C-terminally HA-tagged Ubil (UBI1-HA) or a Smt3-S-eL40A (SMT3-S-eL40A-HA) fusion variant protein
from the UBI1 genomic locus or from a centromeric plasmid (+ SMT3-5-eL40A-HA) in a wild-type
UBI2 or a ubi2A null mutant background. Strains W303-1A (Wild type), SMY218 (SMT3-5-eL40A-HA),
SMY258 (SMT3-eL40A-HA ubi2A), SMY256 (UBI1-HA ubi2A), SMY257 (ubilAub-HA ubi2A), SMY216
[YCplac111-SMT3-S-eL40A-HA] (ubilA ubi2A + SMT3-S-eL40A-HA), and JDY923 (ubi2A) were spotted
in fivefold serial dilution steps onto YPD plates, which were incubated for 4 days at 22 °C and for
3 days at 30 °C and 37 °C.

3.4. Contribution of the Ubiquitin and SUMO Moieties to the Expression of eL40A

The fact that the sg phenotype linked to providing either the ubi1Aub-HA or the SMT3-5-eL40A-HA
allele as the sole source of cellular eL40 r-protein was suppressed by increasing the copy number
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of these alleles strongly suggests that the initial presence of the ubiquitin moiety within the Ubil
precursor ensures that the released eL40A r-protein is produced in sufficient amounts. To test this
hypothesis, we monitored the expression levels of the eL40A-HA r-protein in the different used strains
by western blotting. As shown in Figure 4, the protein levels of eL40A-HA were significantly lower in
the ubil Aub-HA ubi2A strain when compared with those of the UBI1-HA ubi2A strain. As expected,
an increased dosage of the ubilAub-HA allele fully restores the levels of eL40A-HA (Figure 4, lane 5).
Together, these results indicate that the ubiquitin moiety of Ubil is required for the efficient production
of the eL40 r-protein.

To assess the efficiency of cleavage of the Smt3-5-eL40A-HA precursor into SUMO and eL40A-HA,
western blot analyses using anti-HA antibodies were also carried out with whole cell extracts of strains
harboring a genomic SMT3-5-eL40A-HA allele. As previously shown [33,36], no Ubil-HA precursor
but only mature eL40A-HA was detected in the UBI1-HA strains (Figure 4, lanes 2 and 3). In contrast,
although cell extracts of the SMT3-S-eL40A-HA ubi2A strain mostly contained mature eL40A-HA,
some precursor protein could also be detected at the expected molecular mass, especially when the
Smt3-S-L40A-HA fusion protein variant was the sole cellular source of eL40A-HA (Figure 4, lanes
6 and 7). We conclude that proteolytic processing of the Smt3-5-L40A-HA precursor into SUMO
and eL40-HA is less efficient than removal of ubiquitin from the Ubil precursor. Nevertheless, we
observed a clear increase in the total amount of produced mature eL40A-HA in the cell extracts of the
SMT3-5-e[40A-HA ubi2 A strain when compared to the eL40A-HA levels present in the ubilAub-HA
ubi2 A strain.

— Smi3-S-eL40A-HA

e GEs - GNNp “ub em» — cL40A-HA
10 14 06 1.9 1.0 1.1 (eL40A-HA/Pgk1)

S w—— S — — Pgki

‘ 1 2 3 4 5 6 if
Figure 4. Analysis of the protein levels of eL40A-HA. A wild-type control strain (lane 1) and strains
with the indicated relevant genotypes, expressing C-terminally HA-tagged eL40A from the different
precursor constructs, either from the genomic locus (lanes 2, 3, 4, 6, and 7) or from a centromeric
plasmid (lane 5), in a wild type UBI2 or a ubi2A null mutant background, were grown in liquid YPD
medium at 30 °C. Total cell extracts were prepared and subjected to western analysis using anti-HA and
anti-Pgkl (loading control) antibodies. The mature e[L40A-HA and the Smt3-S-e[.40A-HA precursor
are indicated.

3.5. The Genomic ubilAub-HA and SMT3-S-eL40A-HA Alleles Affect the Functional Integrity of 60S
r-Subunits

As the genomic ubilAub-HA allele limits the production of the eL40A protein in a ubi2A background
(Figure 4), we wondered whether this would affect the synthesis and function of 60S r-subunits.
To answer this question, we performed polysome profile analyses with cell extracts obtained from
this strain and, to evaluate the effect of the SUMO fusion, the SMT3-S-eL40A-HA ubi2 A strain. First,
we examined the profiles of the UBI1-HA ubi2A control strain grown in YPD at 30 °C. This strain,
in agreement with its slightly slower growth (Figure 2), still displayed good amounts of actively
translating ribosomes, as inferred from the overall polysome content (Figure 5A). However, compared
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to ubi2 A mutant cells for which we had previously reported a mild deficit in free 60S r-subunits [33],
the levels of free 60S r-subunits were rather moderately increased and half-mer polysomes could be
observed, suggesting that there is some impairment of subunit joining when the Ubil-HA precursor is
expressed from the genomic locus in ubi2A cells. In contrast, the analysis of the ubilAub-HA ubi2A
strain revealed, in addition to the appearance of half-mer polysomes, a drastic decrease in polysome
content (Figure 5B). Notably, this profile closely resembles those obtained upon the depletion of
elL40, including the accumulation of both r-subunits in their free forms [33], thus strongly suggesting
that the amount of available eL40 is indeed limited in this strain. Consistently, increasing the copy
number of the ubilAub-HA allele, by providing it on a centromeric plasmid in the context of the
ubilA ubi2A background, resulted in a wild-type polysome profile, as this overcame the limitation
in eL40 availability (Figures 4 and 5C). Altogether, these results indicate that the deletion of the
ubiquitin moiety from a genomically expressed ubiquitin-free UbilAub protein, in the absence of eL40B,
leads to a decreased production of eL40A and as a consequence affects the synthesis and function of
60S r-subunits. Thus, we conclude that, as also reported to be the case for the ubiquitin moiety of
Ubi3 [14,35], the ubiquitin moiety of Ubil is important but not strictly required for the production of
eL40A and hence the synthesis of 60S r-subunits.

We also assessed the effects of replacing ubiquitin by the SUMO moiety. As shown in Figure 5D,
the SMT3-S-eL40A-HA ubi2A strain displayed a polysome profile with reduced polysome content and,
more notably, with a clear increase in the levels of free 60S r-subunits versus free 40S r-subunits that
was accompanied by the occurrence of half-mer polysomes; such a profile is typical for mutants with
a pronounced defect in 60S to 40S r-subunit joining (e.g., [54-56]). Strikingly, we have previously
observed highly similar polysome profiles, albeit with varying degrees of polysome content, in cells
expressing mutant Ubil precursors that are not efficiently proteolytically processed into ubiquitin
and eL40A [36], suggesting that the accumulating free 60S r-subunits may contain the non-cleaved
Smt3-5-eL40A-HA protein.

UBI1-HA polysomes ubilAub-HA
ubi2A gos —, ubi2A
polysomes
8os I
0S I {
40IS 6| \J
c s0s D
ubi1A ubi2A I SMT3-S-eL40A-HA
+ ubiltAub-HA ubi2A pol o
80S
60s | Y
|
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40S
I

Figure 5. The genomically integrated ubilAub-HA and SMT3-S-eL40A-HA alleles affect the synthesis
and function of 60S r-subunits. Strains SMY256 (UBI1-HA ubi2A) (A), SMY257 (ubil Aub-HA ubi2A) (B),
SMY215 [YCplacl11-ubilAub-HA] (ubilA ubi2A + ubilAub-HA) (C), and SMY258 (SMT3-S-eL40A-HA
ubi2A) (D) were grown in YPD medium at 30 °C to an ODgq of about 0.8. Cell extracts were prepared
and 10 Apgp units of each extract were resolved in 7-50% sucrose gradients. The Ajs4 was continuously
measured. Sedimentation is from left to right. The peaks of free 40S and 60S r-subunits, vacant 80S
ribosomes/monosomes and polysomes are indicated. Half-mer polysomes are labeled by arrows.
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Next, we addressed how the mature eL40-HA or the non-cleaved precursors, derived from
Ubil-HA, UbilAub-HA, and Smt3-S-eL40A-HA, were distributed along the different ribosomal
particles (i.e., free 60S r-subunits, vacant 80S couples/monosomes, and translating ribosomes) by
sucrose gradient fractionation. No apparent differences were found between the distribution of
eL40-HA expressed either from the ubilAub-HA or the UBII-HA allele in ubi2A null mutant cells.
In both cases, eL40A-HA was, similarly to the 60S r-subunit control protein uL3, detected in the
80S ribosome and polysome fractions. This result indicates that the fused ubiquitin moiety is not
required for the assembly of the r-protein eL40A protein into functional 60S r-subunits (Figure 6, upper
and middle panel). In contrast, when the SMT3-5-eL40A-HA ubi2A strain was studied, the mature
eL40A-HA fractionated similarly as the 60S r-subunit control protein uL3; however, the non-cleaved
Smt3-5-eL40A-HA mainly peaked in the 60S and 80S fractions (Figure 6, bottom panel). Notably, this
precursor protein was almost completely absent from the polysomal fractions. This result, which is
similar to what we have previously observed for non-cleaved Ubil precursor variants [36], indicates
that the Smt3-S-eL40A-HA precursor can assemble into pre-60S r-particles that are, however, unable
to efficiently engage in subunit joining and translation elongation, suggesting that the resulting 80S
ribosomes are not competent to enter the pool of translating ribosomes. Strikingly, uL3 but not the
mature eL40A was identified in the 60S peak (see Figure 6, bottom panel, lanes 7-10); this result further
supports the hypothesis that the 60S r-particles containing eL40A-HA are very efficiently recruited into
polysomes while those containing Smt3-S-eL40A-HA are not and accumulate in the 80S area of the
gradient (see profile in Figure 5D).
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Figure 6. Incorporation of eL40A-HA, derived from the Ubil-HA, UbilAub-HA, and Smt3-S-eL40A-HA
precursors, into translating ribosomes. Strains SMY256 (UBI1-HA ubi2A), SMY257 (ubil Aub-HA ubi2A),
and SMY258 (SMT3-S-eL40A-HA ubi2A) were grown in YPD medium at 30 °C to mid-log phase. Cell
extracts were prepared and 10 Ajg units of each extract were resolved in 7-50% sucrose gradients.
Fractions were collected from the gradients, the proteins were extracted from each fraction, and equal
volumes were analyzed by western blotting using anti-HA and anti-uL3 antibodies. The position of
free 40S and 60S r-subunits, vacant 80S ribosomes/monosomes, and polysomes, obtained from the
recorded Ajsy profiles, are shown. T, total cell extract.
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3.6. In Trans Expression of Free Ubiquitin Ffails to Rescue the Deficiencies of the ubilAub-HA ubi2 A and
SMT3-5-eL40A-HA ubi2 A Mutants

To formally exclude the possibility that a ubiquitin shortage might account for the growth defects
of ubilAub-HA ubi2A and SMT3-5-eL40A-HA ubi2A mutant cells, considering that the UBI3 gene
remains the only source of cellular ubiquitin during active growth of these cells, we transformed these
two strains, as well as the UBI1-HA ubi2A control strain, with a plasmid expressing the ubiquitin
moiety to increase the available amount of free ubiquitin or with an empty control plasmid. In case that
ubiquitin was indeed limiting, then ectopic in trans expression of free ubiquitin would be expected to
result in a suppression of the sg phenotype of these mutant cells. As shown in Figure 7A, expressing free
ubiquitin in trans from a plasmid did, however, not improve the growth of UBI1-HA ubi2A, ubil Aub-HA
ubi2A, and SMT3-S-eL40A-HA ubi2A cells. In addition, we performed polysome profile analyses with
cell extracts derived from these strains. As expected from the unchanged growth, the additional
expression of free ubiquitin did not restore the perturbed synthesis and function of 60S r-subunits
in either ubilAub-HA ubi2A and SMT3-S-eL40A-HA ubi2A cells or in the isogenic UBI1-HA ubi2A
control strain (Figure 7B and data not shown). Altogether, these results indicate that the contribution
of ubiquitin to the synthesis and assembly of eL40 is exclusively exerted when it is fused in cis to the
r-protein tail but not when it is expressed in trans as a free molecule.
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Figure 7. Expression of free ubiquitin in trans does not restore the growth defects of ubil Aub-HA ubi2A
or SMT3-S-eL40A-HA ubi2A cells. (A) Growth comparison of the strains W303-1A (Wild type), SMY256
(UBI1-HA ubi2A), SMY257 (ubil Aub-HA ubi2A), and SMY258 (SMT3-5S-eL40A-HA ubi2A) transformed
with either empty YCplac111 (vector) or pADH111-Ub (Ub), a YCplacl11-based plasmid expressing
ubiquitin from the strong ADH1I promoter. Transformants were selected on SD-Leu plates and then
spotted in fivefold serial dilution steps onto SD-Leu plates, which were incubated for 4 days at 22 °C,
for 3 days at 30 °C, and for 2 days at 37 °C. (B) Polysome profile analysis of ubil Aub-HA ubi2A cells
harboring either empty YCplacl11 (vector) or pADH111-Ub (Ub). Cells were grown in SD-Leu at
30 °C to an ODg of about 0.8. Cell extracts were prepared and 10 Aygg units of each extract were
resolved in 7-50% sucrose gradients. The Ajys4 was continuously measured. Sedimentation is from left
to right. The peaks of free 40S and 60S r-subunits, vacant 80S ribosomes/monosomes, and polysomes
are indicated. Half-mer polysomes are labeled by arrows.
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3.7. Ubiquitin and SUMO Modestly Prevent eL40 or eS31 Protein Aggregation

It has been proposed that the N-terminal ubiquitin moiety present in the Ubil/2 and Ubi3 precursors
acts as a cis-acting chaperone that facilitates the correct folding and, hence, the efficient synthesis
and assembly of eL40 and eS31, the respective r-protein tails, into pre-ribosomal particles [14,30,35].
However, only genetic evidence in support of this conjecture has so far been reported ([14,35], this
study). Thus, to obtain more direct experimental insight into this suspected role of ubiquitin and
to explore whether SUMO could act similarly, we monitored the levels of aggregated proteins in
cells expressing the different Ubil variants used in this study. As a positive control for the protein
aggregation assay, we included a strain lacking the Hsp70 chaperone Ssb (a ssb1A ssb2A mutant), which
has been described to exhibit a pronounced aggregation of a variety of newly synthesized proteins,
especially r-proteins and factors involved in r-subunit biogenesis or translation [50]. As shown in
Figure 8, substantial protein aggregation was found in strains expressing eL40A-HA as the sole cellular
source of e[ 40 from the genomic UBII-HA (lane 5), ubilAub-HA (lane 6) or SMT3-5-eL40A-HA (lane 7)
alleles, which could not be simply explained by the common presence of the ubi2A null allele. Thus,
the presence of the C-terminal HA-tag on eL40 appears to negatively interfere with the synthesis and
proper functioning of 60S r-subunits and, hence, besides having some impact on optimal cell growth
(see Figure 2 and Ref. [36]), may also promote some protein aggregation (see also below). Moreover,
the global aggregation tendency was very similar in the three strains, albeit slightly more pronounced
in ubil Aub-HA ubi2A cells (Figure 8, top panel, lane 6). Western blotting against the HA-tag indicated
that eL40A-HA is among the different aggregated proteins in extracts of the above strains, as also
are other r-proteins of the large and small r-subunit, such as uL29 and uS3 (Figure 8, lower panels).
The housekeeping Pgkl enzyme, which has so far not been implicated in any aspect of ribosome
metabolism, has, however, only a low propensity for aggregation in all tested strains. Strikingly, the
levels of aggregated eL40A-HA, although apparently not increasing when eL40A-HA is synthesized
from the ubil Aub-HA allele, clearly diminished when derived from the Smt3-S-eL40A-HA precursor
(compare lanes 6 and 7). This result suggests a minor but positive role of SUMO as a cis-acting
chaperone for proper folding and, thus, solubility of the eL40 r-protein.

We also assessed the levels of aggregated proteins in a ubi3Aub-HA strain and its isogenic UBI3-HA
control strain. As shown in Figure 9, the aggregation analysis suggested less global accumulation of
insoluble proteins in cells of these strains compared to the equivalent UBII-HA ubi2A and ubil Aub-HA
ubi2A strains, which is especially evident for the UBI3-HA versus the UBI1-HA ubi2A strain. Moreover,
while western blotting showed practically no aggregation of eS31-HA when produced from the
wild-type Ubi3-HA precursor, a clear aggregation of this r-protein was observed when it is produced
from the ubiquitin-free Ubi3Aub protein (Figure 9, lanes 4 and 5), suggesting that the initial presence
of ubiquitin may promote the soluble expression of eS31. In addition, the aggregation analyses
revealed three other remarkable findings that are worth being mentioned: (i) In all samples containing
aggregated eL40A-HA or eS31-HA, also other r-proteins, such as uL29 and uS3, were among the
aggregated proteins (see Figures 8 and 9, lower panels). (ii) Aggregation of these r-proteins occurs not
only in the ssb1A ssb2A control strain, but also in mutant strains lacking a specific r-protein and/or
displaying a defect in ribosome biogenesis, as shown here for the ubi3A, rps12A, rpl39A, and dob1-1
mutant. This is consistent with the recent observation that perturbing the assembly of ribosomes leads
to the aggregation of newly synthesized r-proteins, which provokes a collapse of overall proteostasis
and severely compromises cell growth [57]. (iii) In contrast to what has been previously reported [50],
we did find substantial amounts of e531-HA among the different r-proteins present in the aggregates
of ssb1A ssb2A cells. Thus, the ubiquitin moiety fused to eS31 appears to be insufficient to protect
eS31-HA from aggregation in these circumstances, indicating that this r-protein is also a client of the
Ssb chaperone system. Altogether, our observations suggest that although the ubiquitin moiety fused
to eS31 and eL40 has an important function for the optimal production of the respective r-protein,
its presence does not specifically prevent the aggregation of eS31 when cells lack the Ssb chaperone
system. Moreover, they provide further evidence for the notion that defects in ribosome assembly
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elicit a proteostatic stress that results in the aggregation of r-proteins and, as a consequence, many
other proteins.

total extracts protein aggregates
= H ﬂ N

R -
g e
by |
50 — —
o | = |
—_
25—\..

10 — —— -Ja—.
1 2 3 4 5 6 7 1

- . .-

WD T ——— s — -
\ 4 -4 -4-4 % | s
W — W W - —— o — — Pgki
g 9 <« < < g g 9 < <2 <
SEEE IR LRSS
s 3 Sz 2§ S I Ix
' S B
S 2 3 S 2 3
53 53
2 2
3 3

Figure 8. Analysis of protein aggregation in ubil Aub-HA and SMT3-5-eL40A-HA cells. Strains W303-1A
(Wild type), JDY532 (ssb1A ssb2A), JDY923 (ubi2A), SMY113 (UBI1-HA), SMY256 (UBI1-HA ubi2A), SMY257
(ubil Aub-HA ubi2A), and SMY258 (SMT3-5-eL40A-HA ubi2A) were grown to logarithmic phase in YPD
medium at 30 °C. Then, total protein extracts and protein aggregates were prepared, separated by SDS-PAGE,
and visualized by Coomassie staining (upper part) or subjected to western blot analysis (lower part) using
antibodies detecting either the HA-tag of the e[40-HA protein or the ul.29, uS3, and Pgk1 proteins.
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Figure 9. Analysis of protein aggregation in the ubi3Aub-HA strain and cells lacking individual
r-proteins or being defective in ribosome biogenesis. Strains W303-1A (Wild type), JDY532 (ssb1A
ssb2A), SMY324 (UBI3-HA ssb1A ssb2A), TLY56.D3 (UBI3-HA), TLY61.A2 (ubi3Aub-HA), TLY14.3C
(ubi3A), SMY315 (rps12A), ORY211 (rpl39A), and MS157-1A (dob1-1) were grown to logarithmic phase
in YPD medium at 30 °C. Then, total protein extracts and protein aggregates were prepared, separated
by SDS-PAGE, and stained with Coomassie (upper part) or subjected to western blot analysis (lower
part) using anti-HA (detection of e531-HA), anti-uL29, anti-uS3, and anti-Pgk1 antibodies.
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4. Discussion

Ubiquitin is an extremely conserved post-translational modifier that is present in all eukaryotes
and is involved in various cellular processes [2—4]. In practically all eukaryotes where the organization
of the genes encoding ubiquitin has been analyzed, a fusion of ubiquitin with the r-proteins eL40 (Ubil
and Ubi2 precursors) or e531 (Ubi3 precursor) is observed [6]. As these particular combinations have
been strictly maintained during evolution, it can be assumed that they might be beneficial for the
fitness of eukaryotic cells. While fusing the ubiquitin moiety to an r-protein of each r-subunit could
be an excellent way in which to couple the synthesis and degradation of proteins in eukaryotes, its
explicit fusion to eL40 and eS31 goes beyond this possible strategy and suggests a specific function
of ubiquitin with respect to these r-proteins, or vice versa, a specific effect of these two r-proteins
on the fused ubiquitin. To understand this puzzling situation, we have previously analyzed the
consequences of impairing ubiquitin removal from the Ubil and Ubi3 precursors and concluded that
these precursors are likely already co-translationally cleaved, with their cleavage being a pre-requisite
for the efficient assembly of the two released r-protein tails and their correct function within the
r-subunits [35,36]. Whether processing of UBA52 and UBAS0, the ubiquitin-e[.40 and ubiquitin-eS31
precursor, respectively, in human cells, is co- or post-translational remains to be determined; however,
it has recently been suggested, based on results obtained with a reticulocyte lysate-based translation
system, which does not exactly reflect the in-vivo situation, that processing of UBA52 can occur
post-translationally [58]. In any case, processing of UBA52 has also been shown to be critical for the
function of eL40 in human cells [59]. Moreover, we and others have also experimentally addressed
the effects of deleting the ubiquitin moiety from the Ubi3 precursor [14,35]; thus, revealing that cells
harboring a genomically integrated ubi3Aub-HA allele display a severe sg phenotype [35]. Our study
indicated that this growth defect was likely due to the reduced expression of HA-tagged eS31, resulting
in a net 40S r-subunit shortage; accordingly, increasing the gene dosage of this allele restored wild-type
growth [35]. In this work, we have tackled the analysis of an equivalent genomic ubilAub-HA allele.
As el40 is encoded by two paralogous genes in yeast [33], we were forced to study this allele in the
context of a ubi2A deletion background in order to achieve that the sole cellular source of eL40A-HA
originates from the ubiquitin-free allele. Akin to the ubi3Aub-HA mutant, ubil Aub-HA ubi2A cells
showed, compared to the isogenic UBI1-HA strain, a severe sg phenotype and reduced expression
levels of eL40A-HA (Figures 2 and 4), which affects the synthesis and function of 60S r-subunits such
that the overall translational activity is clearly decreased (Figure 5). Again, as previously observed for
the ubi3Aub-HA allele, increasing the dosage of the ubil Aub-HA allele fully suppressed all of the above
defects (Figures 2 and 5). Thus, our experiments clearly show that the ubiquitin moiety of Ubil, as it is
also the case for Ubi3, is mainly required to facilitate the expression of the eL40 r-protein. The fact that
expression in trans of free ubiquitin fails to restore the defects of ubil Aub-HA ubi2A cells (Figure 7)
indicates that ubiquitin only exerts its beneficial role when fused in cis to eL40A. Moreover, we also
concluded from this experiment that the defects associated with the ubi1 Aub-HA ubi2A allele were not
due to a ubiquitin limitation; indeed, ubilA, ubi2A, and ubi3A cells have practically similar levels of
ubiquitin as wild-type cells [14].

How does the fused ubiquitin moiety facilitate the expression of the eL40 and eS31 r-protein
tails? This is still unclear, and some non-mutually exclusive possibilities, which must also agree
with the evolutionary conservation, can be envisaged: (i) It could be that ubiquitin directly assists
the assembly of eL40 and eS31. Thus, in the absence of ubiquitin, their assembly into the respective
pre-ribosomal particles would be less productive and, therefore, the unassembled r-protein fraction
of eL40 or eS31 would be efficiently and rapidly degraded, as has been described to be the general
case for r-proteins that are produced in excess and/or fail to properly assemble [60-64]. This possible
direct role of ubiquitin is questionable since cleavage of the ubiquitin fusion precursors seems to
occur very rapidly, possibly even co-translationally. While it would still be conceptually possible that
ubiquitin assists eL40 assembly since this occurs in the cytoplasm [33], it is unlikely that ubiquitin
protects e531 until its assembly into pre-ribosomal particles in the nucleolus [31,32]. Still, in human
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cells, ubiquitin cleaved from UBA52 has been suggested to form a complex with eL40 for regulation of
protein synthesis [59]; however, this complex has not been shown to facilitate e[ 40 assembly. (ii) A more
plausible scenario proposes that ubiquitin fulfils a role as a cis-acting chaperone to facilitate translation
and folding of e[.40 and eS31. While only the correctly folded r-proteins are competent for assembly
into pre-ribosomal particles, the misfolded fraction of these will have an increased propensity for
aggregation and/or be cleared by degradation. In agreement with such a cis-acting role of ubiquitin, we
show that the expression of ubiquitin-free eL40A is clearly reduced (Figure 4) and that the replacement
of the ubiquitin moiety of Ubil by the ubiquitin-like protein SUMO (yeast Smt3), which is known to
increase the productive expression of fused proteins [27-29,65], is able to partially suppress the growth
defect of the ubil Aub-HA ubi2A mutant, especially at high temperatures (Figure 3), and leads to higher
yields of the mature eL40A-HA protein (Figure 4). The fact that the Smt3-S-eL40A-HA precursor is
not efficiently processed (Figures 4 and 6) could be the reason for the incomplete suppression, as
ubiquitin release from eL40 is required for the cytoplasmic maturation and proper function of 60S
r-subunits [36] (see also Figures 5 and 6). Additional experiments are required to understand the
reasons why processing of the Smt3-5-eL40A-HA precursor is inefficient, although it could be that
the two SUMO proteases Ulp1 and Ulp2, which are presumed to cleave this fusion protein, might be
limiting as they are localized in the nuclear periphery and in the nucleus, respectively (reviewed in [53]).
Moreover, to further explore the role of ubiquitin as a chaperone of r-proteins e[.40 and eS31, we have
analyzed the aggregation status of different eL40 and eS31 protein variants. In general, most r-proteins
have a high tendency to aggregate during or after their synthesis due to their particular characteristics,
such as an extremely high isoelectric point and the presence of unstructured or intrinsically disordered
extensions [66]. These features have spurred the evolution of eukaryote-specific proteins known
as dedicated chaperones and escortins, which facilitate the import and/or assembly of individual
r-proteins, thus impeding their degradation, inappropriate interaction with other cellular components,
and aggregation [67-69]. Additionally, r-proteins are among the major client proteins of the general
ribosome-associated chaperones such as the nascent polypeptide-associated complex (NAC) and the
Ssb-RAC chaperone triad, consisting of the Hsp70 chaperone Ssb and the ribosome-associated complex
(RAC) [50]. It has been shown that the loss of NAC and Ssb-RAC complexes causes aggregation of most
r-proteins from both r-subunits [50] (see also Figures 8 and 9). Although originally r-proteins eL.40 and
eS31 were not found among the proteins identified in the aggregation analysis of cells lacking NAC
and Ssb-RAC (see [50]), our results show that, at least, the fused ubiquitin moiety does not prevent
the specific aggregation of e531 in the absence of the Ssb chaperone (Figure 9). Interestingly, deleting
the ubiquitin moiety from the Ubi3 precursor causes a mild enhancement of the aggregation levels
of eS31; however, this enhancement is not restricted to eS31 but is also observed for other directly
tested r-proteins (uL29 and uS3, see Figure 9). Indeed, we show herein that a defect in ribosome
biogenesis (e.g., analysis of the ubi3A, rps12A, rpl39A or dobl-1 mutants), similarly to what is observed
in cells lacking Ssb, leads to a substantial increase in the amounts of insoluble proteins detected by
polyacrylamide gel electrophoresis and Coomassie staining (Figures 8 and 9). While this work was in
progress, Tye et al. demonstrated that an imbalance in the synthesis of r-proteins and rRNAs leads to
the rapid aggregation of newly synthesized r-proteins [57]. Thus, it is likely that the modest increase in
overall aggregation detected in ubi3Aub cells could also be due to the ribosome biogenesis defect caused
by the ubi3Aub allele, which impairs 40S r-subunit synthesis [35]. Similarly, the UBI1-HA ubi2A strain
showed a substantial amount of insoluble material and aggregation of r-proteins, as both the ubi2A
mutation and, to a lesser extent, the C-terminal HA-tag on Ubil interfere with ribosome biogenesis
and cell growth [33,36] (see also Figures 2 and 5A). Unfortunately, this general aggregation appears to
be sufficient to mask the possible specific aggregation of eL40A-HA due to its expression from the
ubiquitin-free ubilAub allele in ubi2A cells. Notably however, our results indicate that the fusion of
Smt3 to eL40 seems to modestly prevent the aggregation of the processed r-protein. Altogether, these
experiments, although not fully conclusive, strongly suggest that the ubiquitin moiety could indeed
facilitate in cis the productive expression and proper folding of the fused e[40 and eS31 r-proteins.
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5. Conclusions

The use of amenable tools in yeast biochemistry and genetics has enabled us to shed light on
the biological role of ubiquitin fused to the r-proteins eL40 and eS31. Our findings provide evidence
for how ubiquitin could contribute to the efficient expression and folding of its fused r-protein tails,
eL40 and eS31, in order to furnish them as assembly-competent and fully functional mature r-proteins.
With the exception of a ubiquitin variant that remains attached to eS31 in the protozoan parasite
G. lamblia, there is so far no evidence of a naturally occurring non-cleaved form of ubiquitin fused
to either eS31 or eL40 as a constituent of mature ribosomes [70]; thus, proteolytic removal of the
ubiquitin moiety from the precursors seems to be a general requirement for the functionality of the
r-subunits containing these two r-proteins. Furthermore, our results suggest that the fused ubiquitin
moiety may act as an in-vivo chaperone enabling the efficient synthesis of eL40 and eS31, a function
that can, although only partially, also be artificially fulfilled by the yeast ubiquitin-like Smt3 protein.
In support of such a chaperone function, ubiquitin fused to e531 has indeed evolutionarily diverged
into a ubiquitin-like moiety in some organisms, such as, for example, in the nematodes Caenorhabditis
elegans and Caenorhabditis briggsae [71].
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