1 Supplementary table 1: Listed are all specimens used in this study. Samples are gut seg-

2 ments unaffected by the initial diagnosis and resected in the course of stoma relocations.

Age	Gender	Gut region	Diagnosis	Experiments
6 month	female	colon	imperforate anus	FACS, proliferation, differentiation
40 month	female	colon	yolk sac tumor	FACS, proliferation, differentiation
7 month	female	colon	imperforate anus	FACS, proliferation, differentiation
9 month	male	colon	meconium ileus	FACS, proliferation, differentiation, patch- clamping
9 month	female	colon	imperforate anus	FACS, proliferation, differentiation
12 month	female	colon	imperforate anus	FACS, proliferation, differentiation
8 month	female	colon	imperforate anus	FACS, proliferation, differentiation
9 month	male	colon	imperforate anus	FACS, proliferation, differentiation
1 month	male	colon	Hirschsprung's disease *	histology
1.5 month	male	colon	Hirschsprung's disease *	histology
9 month	female	colon	Hirschsprung's disease *	unsorted enterospheres
4 month	female	ileum	meconium plug syndrome	unsorted enterospheres
5 month	male	colon	imperforate anus	unsorted enterospheres

3

* Samples were collected from normoganglionic gut segments.

4

5 **Supplementary table 2:** Antibodies used in this study

Epitope	Host	Dilution	Resource
Fzd4	mouse	1:20	BioLegend, San Diego, CA, USA
Fzd4 *	mouse	undiluted hybridoma supernatant	Nothelfer et al. ²⁵
HuC/D	mouse	1:50	Life technologies, Carlsbad, CA, USA
PGP9.5	mouse	1:300	BIO RAD, Puchheim, Germany
S100b	rabbit	1:400	Abcam plc, Cambridge, UK
SMA	rabbit	1:100	Spring Bioscience, Pleasanton, CA, USA
BrdU	rat	1:100	MorphoSys AbD GmbH, Düsseldorf, Germany
anti-rabbit Cy3	goat	1:400	Jackson Immuno Research, Newmarket, UK
anti-rat Alexa488	goat	1:500	Invitrogen, Carlsbad, CA, USA
anti-mouse Alexa488	goat	1:500	Invitrogen, Carlsbad, CA, USA

*Monoclonal mouse anti-human antibody CH3A4 against frizzled-4 was raised by
immunization with the retinoblastoma cell line WERI-RB-1 and specificity for frizzled-4 was
verified by the selective recognition of HEK-293 cells transfected with human frizzled-4. This
molecule was clustered to CD344 at the HCDM workshop in Quebec, Canada

1 (http://www.hcdm.org/). Kindly provided by Hans Jörg Bühring. This antibody is mechanized in

2 purified form by BioLegend.

3

Supplementary Figure 1. Ancestry analyses of Fzd4⁺ and Fzd4⁻ cell populations. The scatter blot of the ancestry analyses of the representative experiment illustrated in Figure 2 are shown in red for Fzd4⁻ (A) and Fzd4⁺ (B) cells, respectively. This allows us to show whether the population of interest differs from the main population or exhibits a specific scatter profile. Thereby, we are able to identify the counts of Fzd4+ and Fzd4- cells in the scatter blots of the parent populations. There was no clear correlation of scattering pattern to Fzd4 expression detectable.

Supplementary Figure 2. Lack of neural cells in Fzd4⁻ cell cultures. Shown are overviews
over entire representative wells of Fzd4⁻ cultures, as well as high resolution excerpts as
indicated by the white rectangles. Stainings were performed for nuclei (DAPI) and for glial
(S100b) or neuronal markers (PGP9.5, HuC/D). We did not detect a single neural cell in Fzd4⁻
cultures. Scale bars: overviews 2 mm; detail excerpts 100 μm.