

Cells 2019, 8, 767; doi:10.3390/cells8070767 www.mdpi.com/journal/cells

Article

Ensemble of Deep Recurrent Neural Networks for
Identifying Enhancers via Dinucleotide
Physicochemical Properties
Kok Keng Tan 1,†, Nguyen Quoc Khanh Le 2,†, Hui-Yuan Yeh 2,* and Matthew Chin Heng Chua 1,*

1 Institute of Systems Science, 25 Heng Mui Keng Terrace, National University of Singapore,
Singapore 119615, Singapore

2 Medical Humanities Research Cluster, School of Humanities, Nanyang Technological University,
48 Nanyang Ave, Singapore 639798, Singapore

* Correspondence: hyyeh@ntu.edu.sg (H.-Y.Y.), mattchua@nus.edu.sg (C.H.C.)
 These authors contributed equally to this work.

Received: 27 May 2019; Accepted: 21 July 2019; Published: 23 July 2019

Abstract: Enhancers are short deoxyribonucleic acid fragments that assume an important part in the
genetic process of gene expression. Due to their possibly distant location relative to the gene that is
acted upon, the identification of enhancers is difficult. There are many published works focused on
identifying enhancers based on their sequence information, however, the resulting performance still
requires improvements. Using deep learning methods, this study proposes a model ensemble of
classifiers for predicting enhancers based on deep recurrent neural networks. The input features of
deep ensemble networks were generated from six types of dinucleotide physicochemical properties,
which had outperformed the other features. In summary, our model which used this ensemble
approach could identify enhancers with achieved sensitivity of 75.5%, specificity of 76%, accuracy
of 75.5%, and MCC of 0.51. For classifying enhancers into strong or weak sequences, our model
reached sensitivity of 83.15%, specificity of 45.61%, accuracy of 68.49%, and MCC of 0.312.
Compared to the benchmark result, our results had higher performance in term of most
measurement metrics. The results showed that deep model ensembles hold the potential for
improving on the best results achieved to date using shallow machine learning methods.

Keywords: enhancer DNA; gene expression; ensemble deep learning; dinucleotide physicochemical
properties; transcription factor; biocomputing; high performance

1. Introduction

Enhancers are short deoxyribonucleic acid (DNA) fragments of 50–1500 base pairs (bp) that
assume an important part in the genetic process of gene expression in which a DNA segment is
replicated into ribonucleic acid (RNA) [1,2]. Due to their possibly distant location of up to 1Mbp
relative to the gene on which they perform a regulatory action, enhancers are difficult to identify
using early biochemical experimental methods such as DNA foot-printing [3]. Identifying enhancers
could be done via experimental and computational studies. For example, an interesting work from
Rhie et al. [4] used epigenetic traits to trace enhancer networks and identify them in breast, prostate,
and kidney tumors. Later, Blinka et al. [5] applied genome-wide chromatin immunoprecipitation
technique on sequencing data to identify transcribed enhancers. Xiong et al. [6] retrieved the
information of 10 tissues and identified the functions of enhancers across them. They then found that
enhancers associated with transcription factors (TF), enhancer-associated RNAs (eRNA) and target
genes appeared in tissue specificity and function across different tissues. The latest work from Arbel
et al. [7] identified enhancers by exploiting regulatory heterogeneity and they achieved a high-
accuracy of 85% regarding this problem.

Cells 2019, 8, 767 2 of 17

The rise of computation bioinformatics [8] offers a new approach using machine learning
methods to solve the problem of identifying enhancers. Since the method of support vector machines
was proposed in 1995 [9], it has remained a popular machine learning model for performing
classification tasks. Liu et al. [10] employed support vector classification (SVC) in their ‘iEnhancer-
EL’ predictor using an ensemble approach in which a total of 171 SVC models were trained. 6 of these
models were selected using a clustering method and formed into a model ensemble for identifying
enhancers and non-enhancers. Based on the same approach, Liu et al. also further identified weak
versus strong enhancers using an ensemble of 10 selected models. To achieve good and accurate
results, manual feature engineering was performed to obtain features which aided the SVC models
in learning the classification task. Each DNA sample was converted to a vector using K-mer
subsequences, subsequence profiles, and pseudo k-tuple nucleotide composition. Jia et al. proposed
an improvement to ‘iEnhancer-2L’ [11] an earlier solution from Liu et al. by introducing more features
for the SVC model using 104 features from bi-profile Bayes, 1 from nucleotide and 9 from pseudo-
nucleotide composition [12]. The benchmark dataset of this work had been applied in later
applications such as iEnhancer-PsedeKNC [13], EnhancerPred2.0 [14].

Various other shallow machine learning models have also been applied to solve the enhancer
identification problem. Hiram et al. emphasized the role of manual feature extraction in their use of
a single hidden layer time-delay neural network for identifying enhancers using chromatin
signatures [15]. Rajagopal et al. [16] leveraged histone modification as a feature in their random forest
model as enhancer identification is also based on chromatin signatures. Erwin et al. used multiple
kernel learning [17], a variant of support vector machines while Bu et al. used three-layer deep belief
network on DNA sequence compositional, histone modification and DNA methylation features [18].
Le et al. [19] used a FastText model to transform DNA sequences into vectors and performed
supervised classification via support vector machine.

While shallow machine learning methods can achieve good results given useful features, deep
machine learning models offer the promise of even better results without the need for manual feature
engineering. Powerful deep networks can learn deep distributed representations comprising high-
level features in the data through the progressive composition of many non-linearities in each layer
of the deep network [20]. While it is possible for a shallow network to learn similarly with manually
derived features, it will require a high number of hidden nodes in each of its few hidden layers. It
has been proven that a deeper network of more layers can function using a smaller number of hidden
nodes compared to a shallow model, achieving a higher statistical economy. Deep-learning-based
models have been used to predict enhancers with promising performance, such as convolutional
neural network [21] and bidirectional gated recurrent units [22].

In addition, feature engineering using DNA subsequences such as K-mers - the equivalent of n-
grams in text-mining - used in Liu et al. did not capture the full sequence information residing in a
DNA sequence. The similar gap had been also seen in the feature engineering of FastText vectors [19].
The time-delay network in Hiram et al., being a 1D convolution in the temporal dimension [20],
similarly sampled only subsequences. In recurrent neural networks, deep networks offer an
alternative which performs full sequence processing.

Deep networks thus hold the potential to achieve better performance than large shallower
networks in the task of enhancer identification, a claim which this study will seek to substantiate by
developing an enhancer predictor based on the deep recurrent neural network and its model
ensembles.

2. Materials and Methods

2.1. Convolutional Neural Networks

Convolutional neural networks [23] are best known for being useful in image classification tasks.
In addition, they are also useful in processing sequential data [24]. In this context, the convolution
layers are one-dimensional (1D) and each convolution operation employs a 1D window and filter
which slides over each position in a sequence to extract sub-sequences. 1D convolutional networks

Cells 2019, 8, 767 3 of 17

learn local patterns in a sequence, which is similar to how convolutional 2D networks learn local
patterns in an image. Down-sampling sequential data is performed via a 1D max pooling operation,
which is equivalent to 2D max pooling for images. In this study, 1D convolution and max pooling
layers were used to pre-process an input sequence into shorter sequences of higher-level features for
the recurrent neural network [25]. Figure 1 shows such a model used in the study.

Figure 1. A neural network model with 1 convolution 1D and 1 max pooling layer before bi-directional
recurrent and fully-connected layers.

Using convolution combined with a recurrent network architecture allows the amount of
sequence information used in the classification task to be controlled by tuning the convolution / max
pooling layers.

2.2. Recurrent Neural Networks

Recurrent neural networks (RNN) are specialized neural networks for processing sequential
data [20]. A RNN processes an input x by combining it with its hidden state h which is passed forward
through time to the next input in a sequence in Equation (1). ℎ() = 𝑓 ℎ(), 𝑥(), 𝜃 (1)

In the above, the same value of θ parameterizes f for all the time steps. A typical RNN will have
an output layer which takes information out of the hidden state to make predictions.

However, such a simple RNN performs poorly in the learning of long-term dependencies
between the inputs and the final predicted output in long sequences. In 1997, [26] introduced the long
short-term memory (LSTM) unit, a gated RNN which greatly improves the performance of RNNs in

Cells 2019, 8, 767 4 of 17

learning such dependencies. The gates in the LSTM unit are themselves fully-connected feed-forward
neural networks. Proposed more recently by Cho et al. [27], the gated recurrent unit (GRU) is an RNN
hidden unit selected in this study for its simplicity to implement and to compute in comparison with
the LSTM. The GRU consolidates the three inputs, output and forget gates [28] in the complex LSTM
architecture, whose design rationale is not totally clear as noted by Josefowicz et al. [29], into two
reset and update gates while retaining an ability to learn dependencies over different time scales.
Figure 2 shows a model with two GRU layers used in the study.

Figure 2. A neural network model with 2 single-direction gated recurrent unit (GRU) layers and 1
fully-connected layer.

2.3. Model Ensembles

An ensemble of classifiers is a set of classifiers whose individual predictions are aggregated
typically by a majority voting scheme to produce a final prediction on an input sample [30]. For an
ensemble to produce better results than its individual members, each member must produce overall
accurate results and different errors on input samples. Typical strategies for assembling machine
learning models are bagging and boosting which require training multiple models by varying the
training dataset or the sample weighting scheme respectively. For deep RNNs, these approaches are
usually not feasible given the relatively long model training duration in comparison to shallower
machine learning models such as SVCs.

In this study, to obtain the individual models of the ensemble, the technique of warm restarts is
used in model training [31]. Warm restarts utilize a cyclic learning rate based on a simple cosine
annealing algorithm. In each cycle, the learning rate starts at a maximum and decrease to a minimum
over the length of the cycle according to Equation (2). 𝛾 = 𝛾 + 12 (𝛾 − 𝛾) 1 + cos 𝑇𝑇 𝜋 (2)

In Equation (2), γ is the learning rate, T is the number of epochs in a cycle, Tcur is the current
epoch.

Warm restarts help in improving the rate of convergence during model training. In addition, it
allows the harvesting of a model in each cycle of a training session [32]. During each cycle, the training
converges to a local minimum at which the model weights correspond to a relatively good model. At
the end of each cycle, resetting the learning rate back to maximum kicks the training trajectory out of
the local minimum so that it will re-converge into a different local minimum in the next cycle. While

Cells 2019, 8, 767 5 of 17

the models at different minima may have similar error rates, they tend to make different errors which
satisfy the condition for a model ensemble.

3. Experiment

3.1. Dataset and Machine Learning Task

The dataset used in this study was taken from Liu et al. [11] and subsequently also used in later
published works [10,12–14]. It was perfectly balanced across classes and did not have any missing
data. The training data of 2968 samples comprised 1484 samples each of enhancers and non-
enhancers for the layer 1 binary classification problem. An independent test set of 200 samples of
each class was used for evaluation. This dataset also contains a layer 2 binary classification problem
of identifying strong or weak enhancers. The training data comprised 742 samples of each class. An
independent test set of 100 samples of each class was used for evaluation.

According to Liu et al. [11], the dataset was a combination of the chromatin state information of
nine cell lines. To obtain fragments consistent with the length of nucleosome and linker DNA, the
data was separated into 200 bp fragments. Each data sample was thus a 200-element sequence of the
4 nucleotide bases ‘A’, ‘C’, ‘G’ and ‘T’. An example of a data sample was ‘CACAATGTAGA …’. Each
dinucleotide or pair of nucleotide bases was also associated with a physicochemical property given
in Table 1.

In [10], it has been noted that for evaluating the performance of predictors, three methods were
commonly used. These were the independent dataset test, the subsampling test, and the jackknife
test. In our study, we have opted to rely mainly on the first, the independent dataset test. Due to the
long model training duration for RNNs (>5 h with regularization), employing subsampling or
jackknife resampling required more resources than was available. As an example, performing
subsampling using five-fold cross-validation would require ~25 h of training time per network
architecture given that five separate models were trained in this process. In place of this, a simple
train/validation split was used in our model training process. The difference in using a simple
train/validation split lies in the less accurate estimates of model error in comparison to the more
robust approaches. While this would affect the model selection process to obtain the best model, it
does not compromise the final evaluation of the selected model, which is based on the independent
dataset test [10,11].

3.2. Assessment of Predictive Ability

The benchmarks on the independent test set also were obtained from [11] which were believed
to be the best results obtained to date from the dataset. As noted in that study, the most important
metrics were accuracy and Matthews Correlation Coefficient (MCC) which determined how useful a
model was. Besides that, they also reported the sensitivity and specificity. Finally, the metrics
included accuracy (Acc), sensitivity (Sens) or recall, specificity (Spec), and Matthews Correlation
Coefficient (MCC) defined as: 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (3)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 (4)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (5)

𝑀𝐶𝐶 = 𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) (6)

where true positive (TP) and true negative (TN) are the numbers of correctly predicted enhancer and
non-enhancer, respectively; whereas false positive (FP) and false negative (FN) are the numbers of
misclassified enhancer and non-enhancer, respectively. These metrics have been used in a lot of
recent bioinformatics problems to evaluate the performance [33,34]. In addition to that, we utilized

Cells 2019, 8, 767 6 of 17

the Receiver Operating Characteristics (ROC) curve and Area Under Curve (AUC) [35] as an indicator
to evaluate the performance of our models. The AUC value provides a probability value ranging from
0 to 1. The greater the ROC curve deviates from the 45-degree diagonal, the more propinquity to the
point (0, 1), and the greater the AUC value, the better the prediction performance.

3.3. Model Training Setup

The models were implemented using the Keras [36], Tensorflow [37] and Sci-kit Learn [38]
machine learning libraries. Model training was performed mainly on Google Co-laboratory [39] with
some base models trained on a stand-alone personal computer. Presently, RNN implementations on
Keras/Tensorflow using dropouts [40] are not supported by NVIDIA Compute Unified Device
Architecture (CUDA) Deep Neural Network (cuDNN) library [41]. This resulted in long model
training duration of around 5 h or more when using RNNs with dropouts. The loss function and
metric used were binary cross-entropy and accuracy respectively.

3.4. Feature Extraction

Each nucleotide base in a sample was first converted using one-hot encoding to a vector of shape
(4,). Secondly, each of the di-nucleotide physicochemical properties in Table 1 was normalized to a
range of 0 to 1. Each di-nucleotide was then converted to each of its 6 normalized physicochemical
properties, giving a vector of size 6. As the last nucleotide base in each sample was not associated
with any di-nucleotide, a value of −1 was used as padding. It has been shown that such
physicochemical properties have a major role in gene expression regulation and they correlate with
functional elements such as enhancers [42]. These physicochemical properties had been successfully
used in numerous bioinformatics applications with high performance [10,43]. The state-of-the-art
work on enhancer classification problem has also integrated physicochemical properties in their
features [10]. Therefore, these features were used in our study.

Table 1. Physicochemical property.

 Rise Roll Shift Slide Tilt Twist
AA 0.430303 0.403042 1.000000 0.545455 0.4 0.833333
AC 0.818182 0.695817 0.618557 1.000000 0.7 0.833333
AG 0.257576 0.315589 0.762887 0.772727 0.3 0.791667
AT 0.860606 1.000000 0.319588 0.863636 0.6 0.750000
CA 0.045455 0.220532 0.360825 0.090909 0.1 0.291667
CC 0.548485 0.171103 0.731959 0.545455 0.3 1.000000
CG 0.000000 0.304183 0.371134 0.000000 0.0 0.333333
CT 0.257576 0.315589 0.762887 0.772727 0.3 0.791667
GA 0.706061 0.277567 0.618557 0.500000 0.4 0.833333
GC 1.000000 0.536122 0.494845 0.500000 1.0 0.750000
GG 0.548485 0.171103 0.731959 0.545455 0.3 1.000000
GT 0.818182 0.695817 0.618557 1.000000 0.7 0.833333
TA 0.000000 0.000000 0.000000 0.136364 0.0 0.000000
TC 0.706061 0.277567 0.618557 0.500000 0.4 0.833333
TG 0.045455 0.220532 0.360825 0.090909 0.1 0.291667
TT 0.430303 0.403042 1.000000 0.545455 0.4 0.833333

In summary, each sample, comprising of a sequence of 200 nucleotide bases, was pre-processed
into a vector of shape (200,10).

4. Results

4.1. Base Models

Different network architectures were implemented in the base models including both single and
bi-directional GRU and convolution1D with max-pooling layers. The base models were scaled-up to
increase their predictive power until overfitting was observed. In Table 2, the smallest model is #1

Cells 2019, 8, 767 7 of 17

which has only a single GRU layer. The layer was increased in size in model #2. Additional GRU and
dense layers were added as the models were gradually scaled-up. More complex layers which include
bi-directional GRU and convolutional 1D layers were added in the later models. It can be seen that
the best model performance was observed in the smallest model #1 at epoch 586 while in model #6,
it was observed at epoch 44. This showed that more powerful models overfit earlier during model
training. Overfitting caused the performance of larger models to deteriorate over their simpler
counterparts. To realize the potential of these more powerful models, the detrimental effects of
overfitting must be countered by applying regularization techniques in the next phase of model fine-
tuning.

The activation function for all intermediate layers was relu except for GRU layers where default
values in Keras of tanh and sigmoid were used. The optimizer used was RmsProp [44] with the
default learning rate of 0.001. This same optimizer was also used in model fine-tuning and for the
model ensembles with varying learning rates.

None of the base models (in Table 2) were observed to outperform the benchmark. Two models
4 (Figure 2) and 7 (Figure 1) with different network architecture were selected for further fine-tuning
and regularization.

Table 2. Model validation results.

S/N Conv1D/Maxpool GRU Dense Acc (%) @epoch
Layer 1

#1 - 1 × 8 - 75.61 586
#2 - 1 × 16 - 75.20 252
#3 - 2 × 16 - 75.51 232
#4 - 2 × 16 1 × 16 75.41 392
#5 - 1 × 16b 1 × 16 74.82 206
#6 1 × 16(9)/2 2 × 8 1 × 8 74.49 44
#7 1 × 16(9)/2 2 × 8b 1 × 8 75.00 161

Layer 2
#8 - 2 × 16 1 × 16 62.29 61
#9 1 × 16(9)/2 2 × 8b 1 × 8 60.27 68

Conv1D/Max pool = 1 × 16(9)/2 means 1 convolution layer of 16 channels using filter of size 9 and 1
max pool layer of filter size 2; stride is 1 for both GRU, Dense = 1 × 8 means 1 layer of 8 hidden nodes;
b means bi-directional.

4.2. Model Fine-Tuning

Dropouts with different parameter values and weights regularization [45] were applied to two
selected base models (#4, #7). As larger networks are typically viable with dropouts, the GRU layers
of the base model #7 were also enlarged from 8 to 16 hidden nodes (Table 3). It was observed that
accuracy increased and overfitting set in only later in the training process.

Table 3. Fine-tuning validation results.

S/N Conv1D/Maxpool GRU Dense Regularization Acc (%) @Epoch
Layer 1

#1 - 2 × 16 1 × 16 dp 0.1 77.65 865
#2 - 2 × 16 1 × 16 dp 0.2 76.22 1044
#3 - 2 × 16 1 × 16 dp 0.3 76.12 3744
#4 - 2 × 16 1 × 16 dp 0.4 75.10 1104
#5 1 × 16(9)/2 2 × 16b 1 × 8 dp 0.6 77.24 693
#6 1 × 16(9)/2 2 × 16b 1 × 8 dp 0.6; l1l2 3e-5 77.14 604

Layer 2
#7 - 2 × 16 1 × 16 dp 0.1 62.96 547
#8 1 × 16(9)/2 2 × 16b 1 × 8 dp 0.6 61.28 2081

Regularization = dp means dropouts with following parameter value; l1l2 means weights
regularization using both l1 and l2 penalty functions with following parameter value.

Cells 2019, 8, 767 8 of 17

4.3. Model Ensembles

The hyper-parameters used for training both selected models with warm restarts are shown in
Table 4. From each training run, the best model was saved every 200 epochs or cycle. Several model
ensembles, each comprising different combinations of individual models, were scored on the
validation split.

Table 4. Training (with warm restarts) validation results.

S/N Conv1D/Maxpool GRU Dense Warm Restarts
Acc
(%) @Epoch

Layer 1
#1 - 2 × 16 1 × 16 dp 0.1; cyc 200; max_lr 0.003 76.73 1283
#2 1 × 16(9)/2 2 × 16b 1 × 8 dp 0.6; cyc 200; max_lr 0.001 76.22 871

Layer 2
#3 - 2 × 16 1 × 16 dp 0.1; cyc 200; max_lr 0.003 63.30 228
#4 1 × 16(9)/2 2 × 16b 1 × 8 dp 0.6; cyc 200; max_lr 0.001 59.60 1224

Warm Restarts = dp means dropouts with following parameter value; cyc means number of epochs
in a cycle; max_lr means maximum learning rate; minimum learning rate is set at 1e-4 for both models.

For layer 1, based on validation accuracy, 5 models were finally selected from the cycles between
epochs 800 and 1800 which includes the best model from epoch 1283 for model ensemble #1 (Table
3). For model ensemble #2, 3 models from the cycles 200–400, 800–1000 and 1400–1600 were selected.
An example of the cycles in model training with warm restarts is seen in Figure 3. Warm restarts
utilize a cyclic learning rate based on a simple cosine annealing algorithm. In each cycle, the learning
rate starts at a maximum and decrease to a minimum over the length of the cycle according to
equation (2). During each cycle, the training converges to a local minimum (corresponding to the
local peaks in training accuracy) at which the model weights correspond to a relatively good model.
At the end of each cycle, resetting the learning rate back to maximum kicks the training trajectory out
of the local minimum (corresponding to the local sharp dips in training accuracy) so that it will re-
converge into a different local minimum in the next cycle (refer to 2.3 Model Ensembles). The warm
restart cycles are apparent in the training accuracy plot where each repeated “sawtooth” pattern is a
cycle. A similar model selection process was performed for the layer 2 model ensembles.

Cells 2019, 8, 767 9 of 17

Figure 3. An example of model training using warm restarts. The cycles are apparent in the plot. The
y axis is accuracy; the x axis is epochs.

Base on the validation results in Table 5, the best models were model ensemble #1 and #3 for two
layers, respectively.

Table 5. Ensembles validation results.

S/N Conv1D/Maxpool GRU Dense # of Models Acc
(%)

Layer 1
#1 - 2 × 16 1 × 16 5 77.45
#2 1 × 16(9)/2 2 × 16b 1 × 8 3 76.43

Layer 2
#3 - 2 × 16 1 × 16 3 63.64
#4 1 × 16(9)/2 2 × 16b 1 × 8 3 59.60

of Models = number of individual models in the model ensemble.

4.4. Cross-Validation Results

Since previous methods used cross-validation strategy in their model, we aimed to evaluate our
cross-validation performance in this section. Table 6 shows our 5-fold cross-validation results in both
layer 1 and layer 2 of enhancer classification. As shown in this table, our performance results were
consistent and did not contain many differences compared to Table 5. It means that our model could
be applied via different evaluation methods (train/test splitting or cross-validation) with a stable
performance.

Cells 2019, 8, 767 10 of 17

Table 6. Cross-validation results.

Acc
(%)

MCC Sn (%) Sp (%) AUC (%)

Layer 1
74.83 0.498 73.25 76.42 76.94

Layer 2
58.96 0.197 79.65 38.28 60.68

MCC = Matthews Correlation Coefficient.

4.5. Independent Test Results

Independent test is an utmost step to evaluate whether machine learning models perform well
in both seen and unseen data. It was used to check the correctness as well as overfitting of every
model. Since Liu et al. provided benchmark datasets including the independent dataset (200
enhancers and 200 non-enhancers), we also used these independent datasets in this section. The best
single models after regularization and the model ensembles were evaluated on this set. Table 7 shows
that our independent results are at the same level with validation results. Meanwhile, there is no
overfitting in our models.

Table 7. Independent test results.

S/N Conv1D/Maxpool GRU Dense Type Acc
(%)

MCC Sn (%) Sp (%) AUC (%)

Layer 1
#1 - 2 × 16 1 × 16 Single 74 0.48 75.00 73.00 79.63
#2 1 × 16(9)/2 2 × 16b 1 × 8 Single 73.75 0.475 75.00 72.50 80.86
#3 - 2 × 16 1 × 16 Ensemble 75.25 0.506 73.00 77.50 76.16
#4 1 × 16(9)/2 2 × 16b 1 × 8 Ensemble 75.5 0.51 75.50 76.00 77.04

Layer 2
#5 - 2 × 16 1 × 16 Single 60.96 0.100 86.52 21.05 58.57
#6 1 × 16(9)/2 2 × 16b 1 × 8 Single 68.49 0.312 83.15 45.61 67.14
#7 - 2 × 16 1 × 16 Ensemble 58.90 0.071 79.78 26.32 53.19
#8 1 × 16(9)/2 2 × 16b 1 × 8 Ensemble 62.33 0.201 70.79 49.12 60.48

MCC = Matthews Correlation Coefficient.

ROC Curves were provided in this section to see our performance results at different threshold
levels. As shown in Figure 4, the ensemble model helps us reach the best performance in the first
layer, but it cannot perform well in the second layer. For layer 2, the best model was model #6 (Single
Model 1 × 16 Conv1D, 2 × 16GRU-B, and 1 × 8 Dense).

Cells 2019, 8, 767 11 of 17

a)

b)

Figure 4. Receiver Operating Characteristic (ROC) Curve for all single and ensemble models. (a) Layer
1 classification, (b) Layer 2 classification.

5. Discussion

5.1. General

Table 8 shows the comparative performance between our results and the other results on the
same independent dataset. As noted in Liu et al. [11], while a broad range of metrics were calculated
for comparison, the most important metrics are accuracy which reflects the predictor’s overall
performance and MCC, its stability. Therefore, we also showed the detailed comparison of these
metrics in Figure 5.

Cells 2019, 8, 767 12 of 17

Table 8. Independent test results between our proposed method and the other state-of-the-art
predictors.

Predictors Acc (%)MCCSn (%) Sp (%)AUC (%)
Layer 1

Ours 75.50 0.510 75.5 76.0 77.04
iEnhancer-EL 74.75 0.496 71.0 78.5 81.73
iEnhancer-2L 73.00 0.460 71.0 75.0 80.62
EnhancerPred 74.00 0.480 73.5 74.5 80.13

Layer 2
Ours 68.49 0.312 83.15 45.61 67.14

iEnhancer-EL 61.00 0.222 54.00 68.00 68.01
iEnhancer-2L 60.50 0.218 47.00 74.00 66.78
EnhancerPred 55.00 0.102 45.00 65.00 57.90

a)

b)

Figure 5. Comparative performance among different predictors. (a) Comparison on layer 1, (b)
Comparison on layer 2.

For layer 1, both model ensembles outperformed the benchmark from iEnhancer-EL [10] as well
as other predictors for test accuracy and MCC. The model ensembles also outperformed the single
models. The best model comprised a model ensemble using as a base learner the model with only
GRU layers with 5 individual models in the ensemble (#4 in Table 7) which achieved a test accuracy
of 75.5% and MCC of 0.510 against the benchmark values of 74.75% and 0.496 respectively. For layer
2, the best model comprised the single model with both convolution 1D and bi-directional GRU layers

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80

Ours iEnhancer-EL iEnhancer-2L EnhancerPred

LAYER 1
Accuracy MCC

0.00

0.20

0.40

0.60

0.80

Ours iEnhancer-EL iEnhancer-2L EnhancerPred

LAYER 2
Accuracy MCC

Cells 2019, 8, 767 13 of 17

(#6 in Table 7) which achieved a test accuracy of 68.49% and MCC of 0.312 against the benchmark
values of 61.00% and 0.222 respectively. It is easy to see that we could improve performance a lot in
layer 2 when compared with the other previous works. The model ensembles did not perform better
than the single models, however, there is a need for further testing different cases of ensemble. Here,
an important discussion is that our model did not outperform the previous works on enhancers such
as DeepEnhancer [21] and BiRen [22]. Although both of them also identified enhancers using DNA
sequence and deep neural network, but they used a different dataset compared with us. Therefore,
to perform a fair comparison, further studies could apply our network on different datasets. Also, the
other works could not classify enhancers into strong and weak enhancers. It is also an essential
problem and it explains the reason why we selected the dataset of Liu et al. [11] in this study.

In the present study, to simplify the model training process, the same network architecture as
the layer 1 classifier was employed for the layer 2 classifier. The same selection of individual models
was also made for the model ensembles. As such, the network architecture as well as the model
selection in the model ensembles were not optimized for the layer 2 problem. This is likely the reason
for the underperformance of the model ensembles relative to the single models. Better performance
could possibly be obtained by going through a model selection process via base models and fine-
tuning to select an optimal network architecture for the layer 2 classification problem. A separate
model selection for the model ensembles could also be performed. This additional work could be
attempted in a later study.

Moreover, to demonstrate generality, we used our model to predict another dataset on enhancer.
The dataset used in this section was collected directly from [46], in which the authors retrieved 900
enhancer sequences and 898 non-enhancer sequences from VISTA Enhancer Browser. We used this
dataset as an independent dataset and inserted into our model. For the results, our single model
outperformed the ensemble model with achieved accuracy of 56.007% and MCC of 0.125. Compared
to our benchmark independent dataset, there was a little bit lower because of some explainable
reasons. First of all, the test performance is highly dependent on the test dataset. If a dataset has more
of the same kind of sample as in the benchmark dataset, the overall performance will be poorer than
what we obtained on Liu et al. [10]. Secondly, there are differences in the length of DNA samples
between two datasets (Liu et al. [10] used 200 bp and used 1500 bp, thus we cannot use a model with
length of 200 bp to predict the sequences with length of 1500 bp. Therefore, if we can train a model
with the pure dataset from [46], the performance should be better. We hope to find an optimal model
that could be applied in both datasets with a promising performance in the future works.

5.2. Model Ensembles

Model ensembles have been shown to yield better results given sufficient diversity and quality
in its component models [30]. One common method of building model ensembles is bootstrap
aggregation, also known as bagging. In bagging, diversity in the ensemble’s component models is
achieved by a random re-sampling of the training data for each model. In this study, the need for
training each component model on a different dataset was obviated by using the warm restart
technique. It is noteworthy that the model ensembles are similar to an ensemble of bagged predictors
according to [47]. Breiman deemed that 25-50 models in an ensemble of bagged models was a
reasonable number. In this study, the number of models harvested was limited to less than 15 per
training session using warm restarts (out of which 5 or less were finally selected) due to limitations
in computational resources. Larger model ensembles can be explored in future work.

[48] also investigated another method for creating model ensembles commonly known as
boosting [49]. In boosting, models were added progressively to the model ensemble where each
model added depended on the errors made by the previous model. For example, in the popular
Adaboost [50] method, samples wrongly classified by the previous model were weighted more before
resampling the dataset for the next model. Breiman showed that boosting could yield improved
results for larger model ensembles (of up to 250 models), as compared to bagging.

Specifically for model ensembles of neural networks, Moretti et al. applied bagging of fully-
connected neural networks in their urban traffic flow forecasting model [51] while Khwaja et al. used

Cells 2019, 8, 767 14 of 17

the same approach in short-term energy load forecasting [52]. Several other studies employed
boosted fully-connected neural networks using AdaBoost which produced occasional instances of
exceptional results [53–55]. Mao [56] found that bagging out-performed boosting when metrics other
than accuracy were employed. [57] applied boosting to RNN on a time-series regression task to
produce more accurate results as compared to a single RNN model. With promising results obtained
from these studies, future work should explore a boosting approach. As boosting is not amenable to
parallelization, it necessitates an even longer model training duration as compared to bagging. As
such, the essential computational resources will need to be secured for this endeavor.

5.3. Biological Discussion

In addition to the importance of deep neural network ensembles, biological features play an
important role in classifying enhancers. The model performance had improved significantly when
we added physicochemical properties to our neural network. It is because the ensemble neural
network plays as a black box nature and it needs biological features to be learned. Since
physicochemical properties had been used successfully in a lot of bioinformatics applications [42,43],
this study provided more evidence on the usefulness of this feature in DNA sequence classification.
However, further studies need to be developed to construct better hyperparameters in
physicochemical properties to increase performance. Each enhancer or strong/weak enhancer
sequence may have a different set of physicochemical properties and the optimal choice will help us
increase the results. Moreover, understanding more features or nucleotide-binding sites that affect
the classification of enhancers is an utmost important step for further works. Via this way, the
machine learning algorithm is able to capture more information and possibly boost performance.

5.4. Source Codes and Web Application for Reproducing the Results

The python notebooks for pre-processing the data and training the various models are available in the
following GitHub repository: https://github.com/tkokkeng/KE5006-AppliedResearch. We also deployed a web
application namely DeployEnhancerModel which is freely available at
https://github.com/tkokkeng/DeployEnhancerModel/. The users are able to access this link and run the web
application without much computational knowledge. The instructions for running the web application is in
the README.md file and as follows:

(1) Step 1: git clone this repository to your local machine using the command below:
“git clone https://github.com/tkokkeng/DeployEnhancerModel”
(2) Install all the required python package dependencies using the command below:
“pip install -r requirements.txt”
(3) Run the web server and Flask application using the command below:
“python3 manage.py runserver”
(4) Open a web browser and enter the following url: localhost:5000. The users should see our

web application.

6. Conclusions

Identifying DNA enhancers is an important issue in biological aspects, especially computational
biology. To address this issue, numerous computational researchers had conducted their classifiers
with a variety of machine learning/deep learning techniques on different sets of features. In this
study, a model ensemble of deep recurrent neural network base learners was shown to outperform
the best results available-to-date for the first-layer enhancer identification task on the same dataset.
Additionally, suggestions to improve the existing model ensembles for both the first and second-
layer predictions were also proposed.

Author Contributions: N.Q.K.L. and K.K.T. conceived the ideas and designed study. K.K.T. conducted the
experiments. K.K.T. and N.Q.K.L. analyzed the results. K.K.T., N.Q.K.L., H.-Y.Y., and M.C.H.C. participated in
the discussion of the results and writing of the article. All authors read and approved the final version of the
manuscript.

Cells 2019, 8, 767 15 of 17

Funding: This work has been supported by the Nanyang Technological University Start-Up Grant.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Blackwood, E.M.; Kadonaga, J.T. Going the Distance: A Current View of Enhancer Action. Science 1998, 281,
60–63.

2. Pennacchio, L.A.; Bickmore, W.; Dean, A.; Nobrega, M.A.; Bejerano, G. Enhancers: Five essential questions.
Nat. Rev. Genet. 2013, 14, 288–295.

3. Boyle, A.P.; Song, L.; Lee, B.K.; London, D.; Keefe, D.; Birney, E.; Iyer, V.R.; Crawford, G.E.; Furey, T.S.
High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome
Res. 2011, 21, 456–464.

4. Rhie, S.K.; Tak, Y.G.; Guo, Y.; Yao, L.; Shen, H.; Coetzee, G.A.; Laird, P.W.; Farnham, P.J. Identification of
activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing
enhancer networks using epigenetic traits. Epigenetics Chromatin 2016, 9, 50.

5. Blinka, S.; Reimer, M.H.; Pulakanti, K.; Pinello, L.; Yuan, G.C.; Rao, S. Identification of Transcribed
Enhancers by Genome-Wide Chromatin Immunoprecipitation Sequencing. In Enhancer RNAs: Methods and
Protocols; Ørom, U.A., Ed.; Humana Press: New York, NY, USA, 2017; pp. 91–109.

6. Xiong, L.; Kang, R.; Ding, R.; Kang, W.; Zhang, Y.; Liu, W.; Huang, Q.; Meng, J.; Guo, Z. Genome-wide
Identification and Characterization of Enhancers Across 10 Human Tissues. Int. J. Boil. Sci. 2018, 14, 1321–
1332.

7. Arbel, H.; Basu, S.; Fisher, W.W.; Hammonds, A.S.; Wan, K.H.; Park, S.; Weiszmann, R.; Booth, B.W.;
Keranen, S.V.; Henriquez, C.; et al. Exploiting regulatory heterogeneity to systematically identify enhancers
with high accuracy. Proc. Natl. Acad. Sci. USA 2019, 116, 900–908.

8. Huerta, M.; Downing, G.; Haseltine, F.; Seto, B.; Liu, Y. NIH Working Definition of Bioinformatics and
Computational Biology; US National Institute of Health: Bethesda, MD, USA, 2000.

9. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.
10. Liu, B.; Li, K.; Huang, D.-S.; Chou, K.-C. iEnhancer-EL: Identifying enhancers and their strength with

ensemble learning approach. Bioinformatics 2018, 34, 3835–3842.
11. Liu, B.; Fang, L.; Long, R.; Lan, X.; Chou, K.-C. iEnhancer-2L: A two-layer predictor for identifying

enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics 2015, 32, 362–369.
12. Jia, C.; He, W. EnhancerPred: A predictor for discovering enhancers based on the combination and selection

of multiple features. Sci. Rep. 2016, 6, 38741.
13. Liu, B. iEnhancer-PsedeKNC: Identification of enhancers and their subgroups based on Pseudo degenerate

kmer nucleotide composition. Neurocomputing 2016, 217, 46–52.
14. He, W.; Jia, C. EnhancerPred2.0: Predicting enhancers and their strength based on position-specific

trinucleotide propensity and electron–ion interaction potential feature selection. Mol. BioSyst. 2017, 13, 767–
774.

15. Firpi, H.A.; Ucar, D.; Tan, K. Discover regulatory DNA elements using chromatin signatures and artificial
neural network. Bioinformatics 2010, 26, 1579–1586.

16. Rajagopal, N.; Xie, W.; Li, Y.; Wagner, U.; Wang, W.; Stamatoyannopoulos, J.; Ernst, J.; Kellis, M.; Ren, B.
RFECS: A Random-Forest Based Algorithm for Enhancer Identification from Chromatin State. PLoS Comput.
Boil. 2013, 9, e1002968.

17. Erwin, G.D.; Oksenberg, N.; Truty, R.M.; Kostka, D.; Murphy, K.K.; Ahituv, N.; Pollard, K.S.; Capra, J.A.
Integrating Diverse Datasets Improves Developmental Enhancer Prediction. PLoS Comput. Boil. 2014, 10,
e1003677.

18. Bu, H.; Gan, Y.; Wang, Y.; Zhou, S.; Guan, J. A new method for enhancer prediction based on deep belief
network. BMC Bioinform. 2017, 18, 418.

19. Le, N.Q.K.; Yapp, E.K.Y.; Ho, Q.T.; Nagasundaram, N.; Ou, Y.Y.; Yeh, H.Y. iEnhancer-5Step: Identifying
enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Anal.
Biochem. 2019, 571, 53–61.

20. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT press: Cambridge, MA, USA, 2016.
21. Min, X.; Zeng, W.; Chen, S.; Chen, N.; Chen, T.; Jiang, R. Predicting enhancers with deep convolutional

neural networks. BMC Bioinform. 2017, 18, 478.

Cells 2019, 8, 767 16 of 17

22. Yang, B.; Liu, F.; Ren, C.; Ouyang, Z.; Xie, Z.; Bo, X.; Shu, W. BiRen: Predicting enhancers with a deep-
learning-based model using the DNA sequence alone. Bioinformatics 2017, 33, 1930–1936.

23. LeCun, Y. Generalization and Network Design Strategies, in Connectionism in Perspective, vol. 19; Amsterdam:
Elsevier, 1989.

24. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks
for Sequence Modeling. arXiv 2018, arXiv:1803.01271.

25. Chollet, F. Deep Learning with Python; Manning Publications Company: Shelter Island, NY, USA, 2017.
26. Hochreiter, S.; Schmidhuber, J. LSTM can solve hard long time lag problems. In Advances in Neural

Information Processing Systems; MIT press: Cambridge, MA, USA, 1997.
27. Cho, K.; Van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning

Phrase Representations Using RNN Encoder–Decoder for Statistical Machine Translation. arXiv 2014, 1724–
1734, arXiv:1406.1078.

28. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM; MIT press:
Cambridge, MA, USA, 1999.

29. Jozefowicz, R.; Zaremba, W.; Sutskever, I. An empirical exploration of recurrent network architectures. In
Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015.

30. Dietterich, T.G. Ensemble methods in machine learning. In International Workshop on Multiple Classifier
Systems; Springer: Berlin/Heidelberg, Germany, 2000.

31. Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2016,
arXiv:1608.03983.

32. Huang, G.; Li, Y.; Pleiss, G.; Liu, Z.; Hopcroft, J.E.; Weinberger, K.Q. Snapshot Ensembles: Train 1, Get M
for Free. arXiv 2017, arXiv:1704.00109.

33. Wei, L.; Su, R.; Luan, S.; Liao, Z.; Manavalan, B.; Zou, Q.; Shi, X. Iterative feature representations improve
N4-methylcytosine site prediction. Bioinformatics 2019, doi:10.1093/bioinformatics/btz408.

34. Wei, L.; Zhou, C.; Su, R.; Zou, Q. PEPred-Suite: Improved and robust prediction of therapeutic peptides
using adaptive feature representation learning. Bioinformatics 2019, doi:10.1093/bioinformatics/btz246.

35. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms.
Pattern Recognition. 1997, 30, 1145–1159; Amsterdam: Elsevier.

36. Chollet, F. Keras; 2015.
37. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.;

et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA, 2–4
November 2016.

38. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–
2830.

39. Carneiro, T.; Da Nobrega, R.V.M.; Nepomuceno, T.; Bian, G.-B.; De Albuquerque, V.H.C.; Filho, P.P.R.; Da
Nobrega, R.V.M.; Filho, P.P.R. Performance Analysis of Google Colaboratory as a Tool for Accelerating
Deep Learning Applications. IEEE Access 2018, 6, 61677–61685.

40. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

41. Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. Cudnn: Efficient
Primitives for Deep Learning. arXiv 2014, arXiv: 1410.0759.

42. Chen, W.; Lei, T.-Y.; Jin, D.-C.; Lin, H.; Chou, K.-C. PseKNC: A flexible web server for generating pseudo
K-tuple nucleotide composition. Anal. Biochem. 2014, 456, 53–60.

43. Jia, C.; Yang, Q.; Zou, Q. NucPosPred: Predicting species-specific genomic nucleosome positioning via four
different modes of general PseKNC. J. Theor. Boil. 2018, 450, 15–21.

44. Tieleman, T.; Hinton, G. Divide the Gradient by a Running Average of Its Recent Magnitude. COURSERA Neural
Networks for Machine Learning 6. 2012.

45. Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson Education Limited: Kuala Lumpur,
Malaysia, 2016.

46. Singh, A.P.; Mishra, S.; Jabin, S. Sequence based prediction of enhancer regions from DNA random walk.
Sci. Rep. 2018, 8, 15912.

47. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140.

Cells 2019, 8, 767 17 of 17

48. Breiman, L. Bias, Variance, and Arcing Classifiers. Tech. Rep. 460, Statistics Department, University of
California, Berkerley, CA, USA, 1996.

49. Schapire, R.E. The strength of weak learnability. Mach. Learn. 1990, 5, 197–227.
50. Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to

Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139.
51. Moretti, F.; Pizzuti, S.; Panzieri, S.; Annunziato, M. Urban traffic flow forecasting through statistical and

neural network bagging ensemble hybrid modeling. Neurocomputing 2015, 167, 3–7.
52. Khwaja, A.; Naeem, M.; Anpalagan, A.; Venetsanopoulos, A.; Venkatesh, B. Improved short-term load

forecasting using bagged neural networks. Electr. Power Syst. Res. 2015, 125, 109–115.
53. Schwenk, H.; Bengio, Y. Boosting neural networks. Neural Comput. 2000, 12, 1869–1887.
54. Zheng, J. Cost-sensitive boosting neural networks for software defect prediction. Expert Syst. Appl. 2010, 37,

4537–4543.
55. Kim, M.-J.; Kang, D.-K. Ensemble with neural networks for bankruptcy prediction. Expert Syst. Appl. 2010,

37, 3373–3379.
56. Mao, J. A case study on bagging, boosting and basic ensembles of neural networks for OCR. In Proceedings

of the 1998 IEEE International Joint Conference on Neural Networks Proceedings, Anchorage, AK, USA,
4–9 May 1998; IEEE World Congress on Computational Intelligence (Cat. No. 98CH36227); IEEE: New York,
NY, USA, 1998.

57. Assaad, M.; Boné, R.; Cardot, H. A new boosting algorithm for improved time-series forecasting with
recurrent neural networks. Inf. Fusion 2008, 9, 41–55.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

