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Abstract: The use of extracellular vesicles, specifically exosomes, as carriers of biomarkers in
extracellular spaces has been well demonstrated. Despite their promising potential, the use of
exosomes in the clinical setting is restricted due to the lack of standardization in exosome isolation
and analysis methods. The purpose of this review is to not only introduce the different types of
extracellular vesicles but also to summarize their differences and similarities, and discuss different
methods of exosome isolation and analysis currently used. A thorough understanding of the isolation
and analysis methods currently being used could lead to some standardization in the field of exosomal
research, allowing the use of exosomes in the clinical setting to become a reality.
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1. Introduction

Extracellular vesicles (EVs) are lipid bound vesicles secreted by cells into the extracellular
space [1,2]. The three main subtypes of EVs are microvesicles (MVs), exosomes, and apoptotic
bodies, which are differentiated based upon their biogenesis, release pathways, size, content, and
function [1–3]. The content, or cargo, of EVs consists of lipids, nucleic acids, and proteins—specifically
proteins associated with the plasma membrane, cytosol, and those involved in lipid metabolism [1,4].
The primary focus of this review will be on the protein content of EVs, however, the nucleic acid
and lipid composition of EVs is well described in [1,2,5] and [6–8], respectively. While no specific
protein markers have been identified to distinguish between the different types of EVs, MVs, exosomes,
and apoptotic bodies have different protein profiles due to their different routes of formation [9–11].
However, substantial overlap of protein profiles is often observed, due in part to the lack of standardized
isolation and analysis methods of EVs [2,12]. Further, it has been demonstrated that the proteomic
profiles of EVs from the same source are dependent on their isolation method [2]. The field of EVs has
led to much understanding in the area of cell–cell communication and cancer metastasis, and their use
in the clinical setting as carriers of biomarkers for diagnostic purposes has been demonstrated [13–28],
however, standardized methods for EV isolation and analysis must be developed in order for them to
become tools that can truly be used in the clinical setting.

1.1. Exosomes

Exosomes, also referred to as intraluminal vesicles (ILVs), are enclosed within a single outer
membrane, and are secreted by all cell types and have been found in plasma, urine, semen, saliva,
bronchial fluid, cerebral spinal fluid (CSF), breast milk, serum, amniotic fluid, synovial fluid, tears,
lymph, bile, and gastric acid [18,22–24,29–39].
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1.1.1. Origin and Size

Exosomes are a subtype of EV formed by an endosomal route and are typically 30–150 nm in
diameter [1,3–5]. Specifically, exosomal vesicles form by inward budding of the limiting membrane
of early endosomes, which mature into multivesicular bodies (MVBs) during the process [2,4,5].
Early endosomes, which originate from inward budding of the cell’s plasma membrane, and MVBs
are involved in the endocytic and trafficking functions of the cell’s material [3]. Specifically, they
are involved in protein sorting, recycling, storage, transport, and release [3]. MVBs are eventually
either sent to the lysosome to be degraded along with all of its components or fused with the cell’s
plasma membrane to release its content, including exosomes, into the extracellular space [4,40–42].
The factors that determine the fate of a specific MVB are not well understood [5]. However, studies
have been done to demonstrate that the fate of a particular MVB depends on the level of cholesterol in
the MVB. Specifically, a cholesterol rich vesicle was secreted while a morphologically identical vesicle
that lacked cholesterol was sent to the lysosome for degradation [43]. The regulation of MVB and
exosome formation and release is through the endosomal sorting complexes required for transport
(ESCRT) pathway [44,45]. While the exact mechanism is still not fully understood, it appears the
formation of MVBs can be stimulated by growth factors and the cell adjusts its exosome production
according to its needs [29,46].

1.1.2. Composition

The biogenesis of exosomes can be used to understand the proteome of the vesicles. Because
exosomal formation and MVB transportation are regulated by ESCRT proteins, these proteins and
its accessory proteins (Alix, TSG101, HSC70, and HSP90β) are expected to be found in exosomes
regardless of the type of cell from which they originate [10,47–50]. Thus, this set of proteins are often
termed “exosomal marker proteins.” Some studies indicate there is another mechanism, an ESCRT
independent mechanism, by which some cells release exosomes into the extracellular space [51]. In such
cases, exosome release is thought to depend on sphingomyelinase enzyme instead of ESCRT, since
cells depleted of the ESCRT machinery still produced CD63 positive exosomes [52–55]. The CD63,
along with CD9 and CD81, are proteins in the tetraspanin family. These transmembrane proteins,
and other proteins associated with the plasma membrane, are commonly found in exosomes and
are often enriched in the vesicles compared to the cell lysate [56,57]. Originally, it was thought
that tetraspanin proteins were specific markers of exosomes, however, these proteins have since
been identified in MVs and apoptotic bodies [58,59]. Exosomes tend to be enriched in glycoproteins
compared to the secreting cells, however, MVs (discussed in Section 1.2) are thought to contain
proteins with higher levels of posttranslational modifications (PTMs), such as glycosylation and
phosphorylation, compared to exosomes, which is a potential way to distinguish the vesicles based
on content rather than size [12,57,60]. Finally, a recent study [61] reported interorganelle trafficking
between mitochondria and the endolysosomal system, which challenges the untested dogma that
proteins specifically associated with organelles such as mitochondria and the nucleus are not expected
to be observed in the exosomal vesicles. Proteins associated with the Golgi apparatus and endoplasmic
reticulum, however, are thought to be present at low levels since early endosomes can interact with
these organelles. Nonetheless, such proteins are typically still considered to be non-exosomal marker
proteins since they are at lower levels in the exosomes compared to the lysate.

1.1.3. Biological Purpose

Exosomes were originally thought to be a source of cellular dumping, or a way for cells to get
rid of unneeded or unwanted material, however, it has since been found that exosomes participate
in cell–cell communication, cell maintenance, and tumor progression, as discussed in Section 1.2.3.
In addition, exosomes have been found to stimulate immune responses by acting as antigen-presenting
vesicles [62,63]. In the nervous system, exosomes haven been found to help promote myelin formation,



Cells 2019, 8, 727 3 of 24

neurite growth, and neuronal survival, thus playing a role in tissue repair and regeneration [64–68].
At the same time, exosomes in the central nervous system (CNS) have been found to contain pathogenic
proteins, such as beta amyloid peptide, superoxide dismutase, and alpha synuclein that may aid in
disease progression [69–72].

1.1.4. Applications and Uses

A common interest in exosomal research is in studying their ability to act as carriers of biomarkers
for diseases. For example, exosomes in both plasma and CSF have been found to contain alpha
synuclein, a protein associated with Parkinson’s disease [73–75]. A recent review has focused on
EVs as markers of glioblastoma [76]. Exosomes isolated from urine have demonstrated the ability
to reflect acute kidney injury [14]. There has also been success in finding markers for pancreatic
cancer and lung cancer in exosomes as well [28,77]. The use of exosomes as carriers of biomarkers
is ideal because these vesicles are found in bodily fluids, such as blood and urine, which allows for
minimally to non-invasive “liquid biopsy” type methods to diagnose and even monitor a patient’s
response to treatment. The ability of exosomes to monitor a patient’s response is yet another potential
application of these vesicles in the clinical setting [13]. If the disease marker directly correlates to
disease state, and if the patient’s treatment is working, one should observe a change in the presence
of the biomarker as the patient undergoes treatment. Others have suggested that exosomes can be
used in vaccine development and for other immunological purposes [62,63]. Because exosomes act
inherently as antigen presenting vesicles, it may be possible to capitalize on this inherent property.
Further, exosomes have a long circulating half-life, are well tolerated by the human body, and capable
of not only penetrating cellular membranes but also potentially targeting specific cell types, which
makes them an even better candidate for such immunological applications [78]. Also, because of these
inherent advantages of exosomes, they are also ideal for the development of drug delivery systems [79].
While methods are still being developed for introduction of RNA and protein to exosomes, and to target
these exosomes to a specific region of the body, the ability to load both protein and genetic material into
exosomes is yet another advantage making exosomes an attractive drug delivery system [78]. Finally,
it has been demonstrated that the mesenchymal stem cell exosomes themselves can act as a therapeutic
entity to help reduce tissue injury [80–84]. While there is a broad range of potential applications and
uses of exosomes in the clinical setting, more standardized methods for exosome isolation and analysis
are needed in order to meet the regulatory requirements of the FDA and other regulatory agencies to
use exosomes as biomarkers, vaccines, drug delivery devices, and therapeutic tools [5].

1.2. Microvesicles

1.2.1. Origin and Size

MVs are EVs that form by direct outward budding, or pinching, of the cell’s plasma membrane.
The size of MVs typically range from 100 nm up to 1 µm in diameter [1–5]. The route of MV formation
is not well understood, however, it is thought to require cytoskeleton components, such as actin and
microtubules, along with molecular motors (kinesins and myosins), and fusion machinery (SNAREs
and tethering factors) [85]. The number of MVs produced depends on the donor cell’s physiological
state and microenvironment [1]. Likewise, it has been previously demonstrated that the number
of MVs consumed depends on the physiological state and microenvironment of recipient cells [1].
Further, the uptake of MVs is likely an energy dependent process, as uptake is suppressed at lower
temperatures [60,86,87].

1.2.2. Composition

While the proteomic profiles of MVs are heavily dependent on the isolation method, there is a
category of proteins termed “marker proteins”, which are proteins found in MVs, regardless of cell
origin, as a result of their biogenesis process [88]. Because MVs form by an outward budding of
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the cell’s plasma membrane, it is easily understood that MVs contain mainly cytosolic and plasma
membrane associated proteins, especially proteins known to cluster at the plasma membrane surface,
such as tetraspanins [89,90]. It has been reported that such proteins can have 100-fold higher
concentration in MVs compared to the cell lysate [89,90]. Other proteins commonly identified in MVs
include cytoskeletal proteins, heat shock proteins, integrins, and proteins containing post translational
modifications, such as glycosylation and phosphorylation [91–93]. Interestingly, the glycan binding
proteins on the surface of MVs maybe a key factor in understanding how MVs are targeted to, and
interact with, other cells. The focus of this review will remain on the proteome of MVs, however,
the glycome of MVs is thoroughly discussed in [2]. The presence of cytosolic and plasma membrane
proteins can be understood based on the biogenesis of MVs, similarly, it can be understood that proteins
specifically associated with different organelles such as the mitochondria, Golgi apparatus, nucleus,
and endoplasmic reticulum should be depleted in MVs, especially compared to the cell’s lysate, as
these organelles are not involved in the biogenesis of MVs [57,87]. However, specific markers are still
lacking to distinguish MVs from exosomes [11].

1.2.3. Biological Purpose

Originally, it was thought that, like exosomes, MVs were a cellular dumping or maintenance
mechanism, by which the cell would get rid of unwanted material [2]. However, it has since been
understood that MVs (and exosomes) are involved in cell–cell communication between local and distant
cells. The ability of these EVs to alter the recipient cell has been well demonstrated [94,95]. These new
discoveries in biological purpose of EVs have spurred a global interest in fully understanding EVs and
the diagnostic and therapeutic potential. Other forms of cell–cell communication, such as hormones,
growth factors, cytokines, and direct interaction are better understood and play an important role as
to how multi-cellular organisms are able to function as a single system [2]. The uniqueness of EVs
is that they have the ability to package active cargo (proteins, nucleic acids, and lipids) and deliver
it to another cell, neighboring or distant, and alter the recipient cell’s functions with its delivery [1].
While such forms of communication occur between physiologically healthy cells, one could understand
that diseased cells, such as cancer cells, package their active machinery in EVs, transport it to otherwise
healthy cells, thus playing a role in cancer metastasis [96,97]. Perhaps a better understanding of MV
and exosomal formation and regulation could lead to new options for cancer therapies, since they
appear to play a critical role in cancer development and progression.

1.2.4. Applications and Uses

The applications of and uses of MVs in the clinical setting are similar to those of exosomes (1.1.4).

1.3. Apoptotic Bodies

1.3.1. Origin and Size

Apoptotic bodies are released by dying cells into the extracellular space. They are reported to
range in size from 50 nm up to 5000 nm in diameter, with the size of most apoptotic bodies tending to
be on the larger side [3]. These bodies form by a separation of the cell’s plasma membrane from the
cytoskeleton as a result of increased hydrostatic pressure after the cell contracts [98].

1.3.2. Composition

The composition of apoptotic bodies is in direct contrast with exosomes and MVs. Unlike exosomes
and MVs, apoptotic bodies contain intact organelles, chromatin, and small amounts of glycosylated
proteins [3,48,60,99]. Thus, one would expect to observe higher levels of proteins associated with the
nucleus (i.e., histones), mitochondria (i.e., HSP60), Golgi apparatus, and endoplasmic reticulum (i.e.,
GRP78). Further, the proteomic profiles of apoptotic bodies and cell lysate are quite similar, whereas
there are stark differences in the proteomic profiles between exosomes and cell lysate.
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2. Isolation Methods

The potential benefits and uses of exosomes and other EVs in the clinical setting have been
described above, however, a major hindrance in bringing exosomes into the clinical setting is the lack of
standardization in isolation methods. Exosomes were originally isolated by ultracentrifugation-based
methods, and while these methods remain the gold standard, other methods have been developed
to address the challenges associated with ultracentrifugation [100,101]. These alternative methods
have been developed based on isolation by size, immunoaffinity capture, and precipitation of
exosomes, however, even these methods fail to exclusively isolate exosomes, and typically result in
complex mixtures of EVs and other components of the extracellular space [1,2]. This is due to the
complexity of biological fluids from which exosomes are being isolated from, the drastic overlap in the
physiochemical and biochemical properties between exosomes and different EVs, and the heterogeneity
among exosomes themselves [102,103]. Thus, the challenge remains to develop isolation techniques
that can differentiate the different types of EVs in the extracellular matrix and do so rapidly, efficiently,
reproducibly, and in a clinically friendly manner [5]. Further, the use of multiple isolation methods
consecutively has been used to further enrich the exosomal content of a particular isolation, however,
this also leads to increased cost, time, and technical training making it less clinically friendly [104].
An overview of some methods described in this review can be seen in Table 1.

Table 1. Comparison of exosomal isolation techniques based on recovery, purity, required sample
volume, and time required for isolation.

Isolation Technique Recovery Purity Sample Volume Time Required Reference

Ultracentrifugation 5–25% Low 100s of mLs 8 h [10]
Density Gradient Higher than UC Similar to UC up to 1 mL 20 h [105]
Precipitation Kits N/A Low >100 µL Overnight [106]

ExoChip N/A N/A <400 µL <2 h [107]
Immunoprecipitation >99% bead recovery Higher than UC up to 1 mL Overnight [10]

ExoSearch Chip 42–97% Higher than UC 20 µL 40 min [108]
Acoustic Nanofilter >80% High 50 µL <30 min [109]

N/A: not available.

2.1. Ultracentrifugation Techniques

2.1.1. Differential Ultracentrifugation

Differential ultracentrifugation was the first method used for exosome isolation and remains
the gold standard for exosome isolation to date [100,110,111]. As is the case with all centrifugation
methods, the separation of exosomes and other EVs from the extracellular matrix depends on density,
size, and shape, with larger and more dense particles sedimenting out first [112]. A sample protocol
for exosome isolation by differential ultracentrifugation is represented in the diagram in Figure 1.

The 500× g step helps to pellet-out cellular debris and larger particles from the matrix. The 0.22 µm
filtration and 10,000× g steps further purify the matrix, removing larger EVs and apoptotic bodies.
Finally, the exosomes are pelleted out and washed in the 100,000× g centrifugation steps. The exosomal
yield can be increased by using longer centrifugation times during the 100,000× g spins, however, it has
been demonstrated that if >4 h is used, there is significant mechanical damage to the exosomes and
higher levels of soluble protein contamination in the final preparation [106,113]. Even when less than
4 h is used during the 100,000× g spins, differential ultracentrifugation only results in an enrichment of
exosomes, not a complete separation of exosomes from other components in the extracellular space [1].
In addition, differential ultracentrifugation is time consuming and requires large starting volumes
(100s of mLs) of sample, making it difficult to process several biological samples in a short amount of
time [1]. At the same time, however, differential ultracentrifugation requires little technical expertise,
little to no sample pretreatment, and affordability over time since only one ultracentrifuge is needed
for long term use [101].
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Figure 1. Workflow of differential ultracentrifugation for exosome isolation.

2.1.2. Density Gradient Centrifugation

Density gradient centrifugation is another ultracentrifugation method that is commonly employed
in research settings. Like differential ultracentrifugation, separation is still based on size and density,
however in density gradient centrifugation this occurs in the presence of a preconstructed density
gradient, typically made of sucrose or iodoxinol, in the centrifuge tube [101,104]. The sample is placed
at the top of the gradient, and when centrifugal force is applied, the particles in the sample pass through
the gradient, which increases in density from top to bottom, at unique rates to allow for separation.
The exosomes can then be collected by fractionation collection, typically in the density range of 1.1 and
1.2 g/mL [101,104]. Density gradient ultracentrifugation is very effective in separating EVs, including
exosomes, from protein aggregates and non-membranous particles and is particularly useful for
separating exosomes and other EVs from bodily fluids. However, like differential ultracentrifugation,
it suffers from low exosome recovery [10,40,89,114]. Previous studies have demonstrated the coupling
of differential ultracentrifugation with either Rate-Zonal Centrifugation or Isopycnic Centrifugation
(2 types of density gradient ultracentrifugation) can drastically improve the purity and quality of the
isolated exosomes, however, it requires additional time for gradient preparation and extra care during
the acceleration and deceleration to prevent damage to the gradient [115].

Rate-Zonal Centrifugation

Rate-Zonal centrifugation allows for separation of particles based primarily on their sedimentation
rate [115]. The sample containing EVs is placed on top of a shallow gradient and upon centrifugation
the sample particles will separate into different zones based on their sedimentation rate as they
move through a gradient with increasing density towards the bottom of the ultracentrifuge tube.
The more dense particles will travel more quickly to the bottom of the tube as they can pass through
the more dense layers easier than the smaller particles [115]. It is important to control the duration of
centrifugation because eventually, since the particles are denser than the gradient, they will pellet at
the bottom of the ultracentrifugation tube.

Isopycnic Centrifugation

In isopycnic centrifugation, particles sediment into the fraction of a steep density gradient with
the same density, also known as the isopycnic position [115]. At this position, the gradient density is
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equal to the buoyant density of the particles, and the particles therefore remain in the given portion
of the gradient [115]. In this method, the exosomes will remain at their unique isopycnic position
and will not pellet out, no matter how long the centrifugation time lasts [115], which differs from
Rate-Zonal centrifugation where particles will eventually pellet out due to the shallow density gradient
used. Since apoptotic bodies, microvesicles, exosomes, and soluble proteins have different densities,
their isopycnic positions will be at different levels of the gradient, providing a separation between the
extracellular components.

2.2. Size Based Techniques

2.2.1. Ultrafiltration

Ultrafiltration is one of the most common size-based techniques used for exosome isolation; the
idea behind this method is the same as with conventional membrane filtration, where the separation
of particles is based on the size and molecular weight cut off (MWCO) of the membrane being
used [104]. That is, particles larger than the MWCO of the particular filter are retained by the filter and
particles smaller than the MWCO of the filter are passed through the filter into the filtrate [101,104].
One challenge with ultrafiltration is the clogging and trapping of vesicles (and therefore loss of
exosomes) on the filter unit [116]. While this can be minimized by starting with larger MWCO filters
and moving to smaller ones, it leads to low isolation efficiency, and the exosomes lost on the membrane
cannot be used in downstream analysis [101]. While ultrafiltration is less time consuming than
ultracentrifugation and requires no special instrumentation, it can still lead to particle deformation
and lysis of exosomes due to the shear force, though this can be reduced by monitoring and regulating
transmembrane pressure [106].

2.2.2. Exosome Isolation Kit

A commercially available isolation kit, the ExoMir Kit (Bioo Scientific; Austin, TX, USA) has been
developed to isolate exosomes based on size. Essentially, two membranes (200 nm and 20 nm) are
placed into a syringe with the 200 nm filter at the top and the 20 nm filter at the bottom. The sample is
typically pretreated with a low speed centrifugation, to pellet cells and cellular debris, and proteinase
K, to help breakdown larger particles and prevent the membrane from clogging. After pretreatment,
the sample is passed through the syringe where the larger vesicles (>200 nm) remain above the first
filter, the smaller vesicles (<200 nm and >20 nm) remain between the two filters in the syringe, and the
smallest vesicles (<20 nm) are passed through the syringe and discarded. Other methods relying on
the same general principle have also been developed, such as the ExoTIC technology, in order to make
the isolation of exosomes a more clinically friendly procedure [117].

2.2.3. Sequential Filtration

The idea behind sequential filtration for exosome isolation is similar to the ExoMir Kit or ExoTIC
methods discussed in Section 2.2.2, in that it relies on a series of filtration steps for exosome enrichment.
In sequential filtration, the initial steps involves filtration with a 100 nm filter to eliminate cells, cellular
debris, and large rigid particles [118]. Particles that are larger than 100 nm in diameter, such as exosomes
and microvesicles, are able to pass through the 100 nm filter as long as they are soft and flexible [118].
However, the more rigid components associated with cellular debris are filtered away [118]. The filtrate
then undergoes tangential flow filtration with a 500 kDa MWCO membrane to remove soluble proteins
and other contaminants [118]. Finally, concentrated retentate is then filtered with a 100 nm track-etch
filter for exosome enrichment [118]. The primary advantages of this methodology are that it can isolate
exosomes from 150 mL of media within a day, is automatable, and produces intact and biologically
active exosome material, some of which have been used in clinical trials [118–120].
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2.2.4. Size Exclusion Chromatography (SEC)

The use of size exclusion chromatography (SEC) to isolate exosomes from other EVs based on size
is performed the same way as if one wanted to separate proteins of different sizes. That is, a column
is packed with a porous stationary phase in which small particles can penetrate. This penetration
slows down the movement of the smaller particles through the tube, causing them to elute later in the
gradient, after the larger particles. Typically, size exclusion is used in parallel to ultracentrifugation
methods, where the exosome pellet is re-suspended after enrichment by ultracentrifugation and then
further purified using SEC [121,122]. While SEC methods preserve vesicle structure, integrity, and
biological activity, they require run times of several hours, are not easily scalable, and cannot be used
for high throughput applications [122]. However, iZON science has produced a qEV Exosome Isolation
Kit, which allows for rapid, cost effective, high precision exosome isolation within 15 min based on
the SEC methodology [123]. Their products allow for exosome isolation from <150 µL up to 10 mL
volume of starting material with porous resins of 35 nm or 75 nm for optimal exosome isolation [123].
Development of such methodologies may bring about standardization in the area of exosome isolation,
making the use of exosomes in the clinical setting more realistic.

2.2.5. Flow Field-Flow Fractionation (FFFF)

Flow Field-Flow Fractionation (FFFF) is a new technique used to isolate exosomes based on size.
In this method, the sample is injected into a chamber and subjected to parabolic flow as it is pushed
down the length of the chamber [124]. At the same time, a crossflow (a flow perpendicular to the
parabolic flow) is used to create the separation of the particles in the sample [124]. Larger particles
are more affected by the crossflow, so they are pushed closer to the walls of the chamber, where the
parabolic flow is slower [124]. Thus, the larger particles elute after the smaller particles, which are less
affected by the crossflow, remain in the center of the parabolic flow, and elute earlier [124].

2.2.6. Hydrostatic Filtration Dialysis (HFD)

In traditional dialysis, separation of particles in the sample is achieved by diffusion of particles
across a porous membrane. The selectivity of the separation is dependent on the MWCO of the given
membrane; particles smaller than the MWCO of the membrane will diffuse across the membrane, and
particles larger than the MWCO of the membrane will remain on the starting side of the membrane.
In HFD, the sample is forced through a dialysis tube with a MWCO of 1000 kDa by hydrostatic pressure.
The solvent and small solutes pass easily through the tube and the larger particles, such as exosomes
and other EVs, remain in the tube, where they can be collected [125]. Typically, ultracentrifugation
methods are used after HFD isolation to further separate exosomes from other EVs retained in the
dialysis tube [125].

2.3. Immunoaffinity Capture-Based Techniques

Immunoaffinity capture-based techniques rely on the use of an antibody to capture exosomes
based on the expression of the antigen on the surface of the exosome. Antibodies for a specific
antigen of interest can be attached to plate (ex. ELISA, see Section 2.3.1 below), magnetic beads
(see Section 2.3.2 below), resins, and microfluidic devices (see Section 2.5 below) [101]. A major
benefit of these techniques over others is that it allows for isolation of exosomes derived from
a specific source [10,126,127]. For example, a well-established hepatocellular protein marker is
Asialoglycoprotein receptor 1 (ASGR1). The presence of this protein has been established in hepatocyte
derived exosomes [128], and therefore has the ability to be used as a marker to isolate liver derived
exosomes. Not only do immunoaffinity methods have the potential to aid in the isolation of a specific
sub-set of exosomes from a complex mixture, they also have the potential to separate exosomes from
other types of EVs, should a specific marker for exosomes be identified and agreed upon [106]. The main
limitation in developing this method is that the protein/antigen used to capture the exosomes must be
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expressed on the surface of exosomes, since the antibody will not be able to capture an antigen enclosed
within the vesicle [104]. In addition, the specificity of the assay is limited to the specificity of the antibody
used, however, it has been well demonstrated that immunoaffinity methods result in lower yield of
isolated exosomes with higher purity than methods that isolate exosomes based on other properties [129].
Due to the complexity of biological fluids, such as plasma, immunoaffinity capture-based techniques
are often used after exosomal enrichment by ultracentrifugation or ultrafiltration [126].

2.3.1. Enzyme-Linked Immunosorbent Assay (ELISA)

An ELISA based assay, in which an antibody against an antigen of interest is immobilized on the
surface of a microplate, is one type of immunoaffinity capture-based technique that is used to isolate
exosomes from a sample. The exosome sample is exposed to the well containing the immobilized
antibody, and the exosomes expressing the antigen are now immobilized onto the plate due to the
antibody-antigen interaction. The un-captured exosomes and sample contents are washed away, and
the immobilized exosomes can be detected using another antibody containing an absorbent tag. In the
EV field, ELISA has been used to isolate exosomes from urine, plasma, and serum, and can even
be quantitative when standards (of known exosome amounts) are used to create a calibration curve.
This method has been around for many years and is currently used in the clinical setting to test a
patient’s blood for different antibodies against different infectious diseases, such as HIV, Zika, Lyme
Disease, and others [130]. However, it is yet to be used in the clinical setting for exosome applications
due to the required sample pretreatment by ultracentrifugation or ultrafiltration.

2.3.2. Magneto-Immunoprecipitation

In the case of magneto-immunocapture, a biotinylated antibody against the antigen of interest
is attached to the surface of streptavidin coated magnetic beads. The antibody coated beads are
then incubated with the sample from which exosomes are to be isolated from. The major benefit
of this method over ELISA is that the beads provide a larger surface area for capturing exosomes,
leading to higher isolation efficiency. Additionally, there is no upper limit of sample starting
volume when using the magnetic beads, whereas the microplate-based ELISA assay has a maximum
sample volume of 100 µL that can be held within the well of a typical 96-well microplate. Not only
does magneto-immunocapture provide better isolation efficiency and is capable of handling large
sample volumes, the exosomes captured on the beads can be eluted and used for downstream
analysis. When comparing magneto-immunocapture to the gold standard exosome isolation method,
ultracentrifugation, magneto-immunocapture leads to a more pure exosome preparation, is quicker, and
requires no advanced or expensive instrumentation [104]. Additionally, the magneto-immunocapture
methodology is better for preserving the activity of exosomal proteins than other isolation methods,
such as ultracentrifugation or ultrafiltration [131].

2.4. Exosome Precipitation

2.4.1. Polyethylene Glycol (PEG) Precipitation

Precipitation of exosomal vesicles is typically done by introducing a water excluding polymer, such
as polyethylene glycol (PEG), into the sample. The PEG polymer then “ties-up” the water molecules,
causing other particles, such as exosomes to precipitate out of solution [106]. The precipitated vesicles
can then be pelleted by centrifugation and used for different downstream analysis [106]. This isolation
method is quick, simple, requiring little technical expertise or expensive equipment [101,104].
Additionally, it can be used for a variety of starting volumes (from 100 µL up to several mLs)
and therefore is suitable for use in various research and clinical settings [101,104]. However, the major
drawback with this methodology, and the reason it cannot be immediately employed in the clinical
setting is due to the lack of selectivity [106,129]. Not only do the PEG polymers cause precipitation of
exosomal vesicles, they also causes precipitation of other extracellular vesicles, extracellular proteins,
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and protein aggregates [100]. Therefore, it is important to include some sample pretreatment, such
as filtration and/or ultracentrifugation, before using such methods in order to reduce contamination
of final exosomal preparation [104]. Several commercially available kits have been produced based
on exosome precipitation for isolation of exosomes from cell culture medium and a variety of bodily
fluids, e.g., ExoQuick by System Biosciences (Palo Alto, CA, USA) and Total Exosome Isolation Kit by
Thermo Fisher Scientific [132].

2.4.2. Lectin Induced Agglutination

An alternative to PEG precipitation is lectin precipitation. Lectins are a family of proteins that
bind carbohydrate moieties of other particles at a very high specificity. This is able to aid in exosome
isolation when lectins bind to carbohydrates on the surface of exosomes. When lectins bind to the
carbohydrates on the surface of exosomes, it alters their solubility, causing them to precipitate out of
solution. Typically, the sample is pretreated by ultracentrifugation to remove any cellular debris or
other components that may also contain carbohydrates. The sample is then incubated overnight with
the lectin, for example Concanavalin A or Phytohemagglutinin at 1 mg/L, and the precipitated exosomes
can then be pelleted using centrifugation [133]. Like PEG precipitation methods, the lectin precipitation
methods are straightforward requiring little time and expertise, however the co-precipitation of other
soluble components is negligible unless they are highly glycosylated.

2.5. Microfluidic Based Isolation Techniques

Microfluidic based exosome isolation methods have been developed in order to address issues
with more traditional methods, and make the use of exosomes in the clinical setting more feasible.
The primary advantage of microfluidic techniques is that they have the ability to isolate exosomes
based on their physical and biochemical properties simultaneously [104]. Additionally, microfluidic
isolation methods typically are rapid, efficient, require small starting volumes (10 s–100 s of µL), and
allow for the development of innovative separation mechanisms such as acoustic, electrophoretic, and
electromagnetic properties of the exosomal vesicles [109,134].

2.5.1. Acoustic Nanofilter

Acoustic nanofilter is a microfluidic isolation technique in which exosomes and other EVs are
separated from the matrix based on size. The matrix, containing exosomes, EVs, and other extracellular
components is injected into a chamber where it is exposed to ultrasound waves. These waves exert
radiation forces onto the particles, and the particle’s response to these forces is dependent upon its
size and density [109]. Specifically, larger particles experience stronger radiation forces and therefore
migrate faster towards the pressure nodes [109]. The ultrasonic waves can be tuned in such a way to
separate particles above and below any desired size [109]. While this specific methodology is still in
development stages, its simplicity, quickness, tunability, and low starting volume (50 µL) of material
make it a promising tool for potential use in the clinical setting.

2.5.2. Immuno-Based Microfluidic Isolation

The principles behind immuno-based microfluidic isolation techniques are very similar to those
of ELISA (Section 2.3.1). The isolation of exosomes is based on an interaction between a membrane
bound protein on the exosomal vesicle and an antibody against the protein which is immobilized
on a microfluidic chip. The primary advantage of this technique over ELISA is that exosomes have
been isolated from as little as 10 s–100 s of µL of serum in 60 min, whereas ELISA assays require prior
isolation of exosomes (via ultracentrifugation, ultrafiltration etc.) from the plasma or serum [108,135].
Much like ELISA, the specificity of the assay is dependent on the specificity of the antibody used.
A commercially available product, ExoChip, has been developed for isolation of exosomes using
the microfluidic technology. This product has an anti-CD63 antibody immobilized on the surface
of the chip. The CD63 protein is considered an exosomal marker protein and has been found to be
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expressed in exosomes from many cell types, and thus allows for isolation of exosomes from a sample
matrix regardless of the cell source [107]. Other microfluidic based isolation methodologies have been
developed, for example the ExoSearch Chip, which has demonstrated the ability to isolate exosomes
from as little at 20 µL of plasma in 40 min [108]. Unlike the ExoChip, the ExoSearch Chip allows
for isolation of specific subpopulations of exosomes of interest, assuming that the antigen used to
differentiate the subpopulation of exosomes is expressed on the surface of the exosomes, and can be
recognized by the immobilized antibody on the beads [108]. The development of the microfluidic
based technologies is essential to bringing the diagnostic, therapeutic, and prognostic capabilities of
exosomes to the clinical setting because in comparison to all other isolation methods, these methods
require the smallest amounts of plasma/serum, least amount of time, and are most cost efficient and
require minimal expertise and training.

3. Analysis of Exosomes

Initially, isolated extracellular vesicles were characterized primarily by their protein
concentration [1]. However, the protein concentration of isolated EVs is typically overestimated
due to contamination, and does not take into consideration the different protein profiles that can vary
between different subtypes of EVs [1]. Thus, as the uses of EVs became more prevalent and of interest,
they were studied by more sophisticated methods. Today, there are typically two different types of
analysis performed on the isolated vesicles, that is physical and chemical/biochemical/compositional
analysis. Physical analysis, which gives insight to particle size and/or concentration, is done using
nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), electron microscopy, and tunable
resistive pulse sensing (tRPS). The chemical/biochemical/compositional analysis is typically done via
staining, immunoblotting, or proteomic analysis, and gives information regarding the content of the
isolated vesicles. A major challenge in this area is developing methodologies that can differentiate the
different types of EVs, are easily standardized, and well multiplexed. What makes this the most difficult
is the fact that the proteomic profiles of exosomes are changed when different isolation methods are
used to isolate exosomes from the same cell line [2]. This section is an overview of the current methods
used for exosomal protein analysis and, unless otherwise noted, required some sort of isolation or
enrichment of exosomal vesicles (see Section 2 of this paper) prior to analysis.

3.1. Physical Analysis

3.1.1. Nanoparticle Tracking Analysis (NTA)

Nanoparticle tracking analysis, or NTA, allows for the determination of both particle size and
concentration. The size of the particles is estimated using the Stokes–Einstein equation, where the
diffusion coefficient is based on the Brownian motion of particles within the chamber. The laser light
is scattered as it interacts with the particles (under Brownian motion) within the chamber, and the
scattered light is collected by a microscope that has a camera mounted to it [136]. The camera on
top of the microscope captures the movement of particles in a video, and then the NTA software
uses the movement of the particles in the video to estimate the particle size and concentration [136].
NTA is capable of determining particle size between 10 and 1000 nm in diameter, which is within
the size of exosomes which are known to be between 50–150 nm [5,137]. The challenge with NTA,
however, is that it requires sample volumes of ~0.5 mL, and optimization of data collection and analysis
parameters [138,139].

3.1.2. Dynamic Light Scattering (DLS)

Like NTA, dynamic light scattering, or DLS, uses the scattered light due to Brownian motion of
particles to estimate particle size and concentration. However, instead of using the scattered light to
determine the particle’s diffusion coefficient, DLS uses the fluctuations in the intensity of the scattered
light to estimate the particle’s size [138–140]. Unlike NTA, DLS requires very little sample volume
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(70 µL) and is easy to use, with few parameters needed for optimization [138,139]. While DLS has
its benefits over NTA, its major drawback is in the analysis of heterogenous mixtures. Specifically,
the intensity of scattered light is proportional to the sixth power of particle diameter, making the
scattered light due to smaller particles harder to detect, thus it often produces data that is skewed
towards larger particle sizes when there is a mixture of particle sizes present in the suspension [138,139].
Therefore, NTA is best for differentiation of heterogenous populations of particles [139].

3.1.3. Electron Microscopy

The two common types of electron microscopy used to assess the morphology of exosomal vesicles
are transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Both SEM and
TEM produce high resolution images of submicron particles using a beam of electrons. The difference
between the two is which electrons are detected. Simply put, in SEM, the scattered electrons are
detected, and in TEM, the electrons that pass through the sample are detected [141]. More specifically,
in SEM, the electrons are scattered when they interact with the particles in the sample. The scattered
electrons are then captured and detected, which produces this image of particles. In TEM, however,
the electrons that do not interact with the particles pass through the sample and are detected using
a fluorescent screen. The particles of the sample create dark areas, or shadows, on the fluorescent
screen thus producing an image [141]. In the case of exosomes, both TEM and SEM demonstrate
similar size distribution of particles but slightly different morphologies [142]. That is, in TEM and SEM,
the exosomal vesicles typically have a divot in their center. This is likely due to the drying process
associated with the sample preparation required for TEM and SEM [142].

3.1.4. Tunable Resistive Pulse Sensing (tRPS)

Tunable resistive pulse sensing, or tRPS, is another technique that can be used in order to get the
size distribution and concentration of particles in a sample. Essentially, a fluid cell is divided in half by
a non-conductive nano-membrane [143]. One half of the cell contains the suspension and the other half
contains a particle free electrolyte [143]. A potential is applied across the two cells and the particles
then flow from their half, through the nano-membrane, and to the other half. As the particles cross the
membrane, however, it causes a disruption, or resistive pulse, in the current across the two different
cells [143]. The length of the resistive pulse can be correlated to the size of the particle producing that
particular resistive pulse, if a series of standards with known diameters are used to build the calibration
curve [143]. In addition, the number of resistive pulses can be measured over a given time (the rate of
resistive pulses), which reveals information regarding particle concentration within a sample [143].

3.2. Chemical, Biochemical, and Compositional Analysis

3.2.1. Immunodetection Methods

Immunodetection methods are analysis methods that rely on the recognition of a polyclonal,
or monoclonal, antibody to its antigen in the sample. Such methods are commonly employed in
biomedical research laboratories and are often used to establish the purity of isolated EVs by observing
the presence or absence of marker proteins, as well as detecting target proteins of interest.

Flow Cytometry

Flow cytometry is often considered a physical form of analysis since it allows for visual observation
of exosomes, however, it requires some knowledge regarding the protein composition of the exosomal
vesicles in order for the vesicles to be detected, thus is also considered a form of compositional analysis.
While the flow cytometry technology is quickly advancing, with newer instruments having detection
limits as low as 100–200 nm, most instruments have a 300–500 nm limit of detection, which is much
larger than the size of exosomal vesicles [144,145]. The challenge of flow cytometry in the field of
EVs is that, despite the recent advances, it requires a single particle suspension which can be very
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challenging to achieve when the exosomal concentration is high, or if aggregation of exosomal vesicles
occurs during the isolation process [145]. Aggregation of vesicles results in the observation of multiple
particles at a single time which results in inaccurate data [145]. Thus, it requires the immobilization
of exosomes on the surface of beads (either by immunocapture or covalent conjugation) in order to
be observed by the flow cytometer. Once exosomes are immobilized on the surface of the beads,
the exosomal vesicles are exposed to a fluorescently conjugated antibody against an antigen that is
known/expected to be expressed on the exosomal surface [145]. The exosomal vesicles conjugated to
the beads and the fluorescent antibody can be viewed under an epifluorescent microscope (EPI) prior to
flow cytometry. Then, as the sample passes through the laser of the flow cytometer, it emits a fluorescent
signal which is detected [144,145]. Not only does this allow for high throughput analysis of exosomes,
it also allows for quantification or classification of exosomes based on the antigen expression [145].

Western Blotting

The principles behind immunoblotting, or Western blotting, involve the affinity binding of an
antigen (target proteins) and an antibody that specifically recognized the antigen. Unlike flow cytometry,
Western blotting does not allow for observation of intact vesicles, rather, the vesicles are lysed and
the proteins are denatured and reduced during the sample preparation [146]. After denaturation, the
proteins are separated by SDS-PAGE and then transferred to a nitrocellulose or polyvinylidene fluoride
(PVDF) membrane. The remaining open pores on the membrane are filled with protein (from non-fat
milk) and/or detergent and then exposed to an antibody against an antigen of interest. The antibody
ideally specifically recognizes the antigen on the surface of the membrane. The membrane is then
exposed to a secondary antibody, which is an antibody against the species of the initial (primary)
antibody used to recognize the antigen. The secondary antibody is detected due to its fluorescent
tag, or by the horseradish peroxidase/alkaline phosphatase group coupled to the secondary antibody.
The Western blotting methodology is among the most commonly used analysis methods for analysis of
exosomes due to its ease of use, wide accessibility, and the ability to detect exosomal surface proteins
and internal proteins. The primary pitfall, however, is that it is not well multiplexed and the specificity
and reproducibility are limited by the quality of the antibody used. The lack of multiplicity results
in the use of a large amount of exosomal protein used to gain a minimal amount of information.
Since the collection and isolation of exosomes is often a time-consuming process with low yield, more
multiplexed analysis methods would be highly beneficial.

Integrated Immuno-Isolation and Protein Analysis of Exosomes

A novel microfluidic assay has been developed that allows for not only isolation, but also for
protein analysis of exosomal vesicles. As discussed above in Section 2.5 (immuno-based microfluidic
isolation) microfluidic devices are a developing technology, which may be key to bringing exosomes
to use in the clinical setting. Many of the existing microfluidic techniques allow for detection of
exosomes using fluorescent antibodies against an antigen of interest on the surface of exosomes, this
time taking place on the surface of a chip rather than a membrane or magnetic bead. However, the
novel device described in [135] allows for isolation of the exosomal vesicles, on a microfluidic chip, but
then introduces a lysis buffer to lyse the captured exosomal vesicles. The lysate is then eluted from the
microfluidic chip, and the biomarkers of interest can be probed for, independent of whether or not the
biomarker is contained within the vesicles or on the surface of the exosomal vesicle. This allows for a
broader spectrum of antigens to be detected and allows for the development of biomarkers within
exosomes to be used rather than those only on the exosome surface.

3.2.2. Thermophoretic Profiling

This methodology is similar to the integrated immune-isolation discussed above (3.2.1 Integrated
Immuno-Isolation and Protein Analysis of Exosomes), in that it isolates, or enriches, the vesicles
while giving some compositional information at the same time. The difference in thermophoretic
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profiling compared to the integrated immune-isolation, is that is does not rely on the use of antibodies.
Instead, <1 µL of serum is diluted 10× into phosphate buffered saline (PBS) and incubated with seven
different fluorescently conjugated nucleotide aptamers, which specifically target different proteins on
the surface of exosomes in the serum [147]. The aptamer-exosome incubation takes place for 2 h at
room temperature, at which point the chamber is exposed to a 1480 nm laser for 10 min. This process
drives the exosomal vesicles to the center of the laser point, leading to accumulation of the vesicles,
which can then be investigated for presence/absence of specific proteins based on the fluorescent
detection of the EV conjugated aptamers. The authors demonstrated lack of fluorescent signal without
the laser heating, and also that free aptamers and small serum proteins could not be enriched when
exposed to the laser [147]. Such methodologies, which use very little serum, do not require any sample
pretreatment or time-consuming exosome isolation, are reliable, reproducible, specific, do not require
high technical expertise or training, and give information regarding the presence of cancer biomarkers
in the EVs within hours, are methods that could make the use of exosomes in the clinical setting
a reality.

3.2.3. Mass Spectrometry (MS)-Based Proteomic Analysis

Global Proteomic Approaches

Global proteomics is a method used to identify as many proteins as possible within a sample.
This can be done two different ways, via data dependent acquisition (DDA) or data independent
acquisition (DIA), with DDA being used more commonly than DIA [148]. In DDA experiments,
a survey MS spectrum is collected, and the most abundant ions are then selected for fragmentation
and MS/MS analysis. Thus, the data depend on the abundance of the ion in the survey MS spectrum
relative to other ions eluting at the same retention time in the same MS spectrum. The tandem MS
data are processed using software (for example Mascot) to get information on the amino acid sequence
which can then be used to identify the proteins present in a sample. In DIA experiments, ions are not
selected based on abundance for fragmentation, but rather it is an attempt to fragment and get MS/MS
data on all ions within a given mass range. In these experiments, fragmentation libraries are used
to sort the mixed MS/MS data and identify the proteins present within the sample. Both DDA and
DIA experiments can be done with top-down sample preparation and bottom-up sample preparation.
The top-down approach, which is when no proteolysis of the proteins takes place prior to MS analysis,
remains challenging from a technological perspective [149]. While advances have been made in the
ability to separate and fragment intact proteins, the bottom-up approach remains the most commonly
used sample preparation method. In the bottom-up approach, the sample is digested with a protease,
such as trypsin or pepsin, prior to MS analysis. The smaller protein fragments (peptides) produced by
the enzymes are easier to separate, ionize, and fragment for high quality MS/MS data. However, the
versatility of this technique is limited because the MS/MS data collection occurs after fragmentation by
collision induced dissociation (CID). During CID, the weakest bonds are broken first, and these bonds
are typically bonds associated with PTMs, thus making the PTM analysis of these peptides difficult.
The use of top-down approaches, however, would reveal information regarding a protein’s PTMs as
the MS/MS data are collected after electron-transfer dissociation (ETD), which causes fragmentation of
the peptide/protein backbone while leaving PTMs intact. Additionally, top-down approaches would
reveal sequence variations in proteins between the exosomes and parent cells, which may be useful in
further understanding the role of specific proteins within exosomal vesicles. Typically, global proteomic
experiments on exosomes result in several hundred to several thousand proteins identified, dependent
upon the amount of starting material used, the sample preparation method, and the algorithm used
for data analysis. The use of global proteomics in the field of exosomes is often for identification
of novel biomarkers for different cancers or diseases, but sometimes the presence of the protein (or
biomarker) is also present in exosomes from healthy tissues. Thus, it is not only important to identify
the proteins present in the exosomal vesicles, but also be able to quantify the proteins present within
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the exosomal vesicles. Protein quantification in global proteomics can be done with labeled techniques,
such as SILAC or iTRAQ, which involve the incorporation of a stable heavy isotope labeled amino
acid into the peptide of interest [150]. However, not only is this an expensive process, but the peptide
of interest may not always be known. Thus, label free techniques have been developed in order to
quantify the proteins identified in DDA or DIA experiments. The techniques rely either on the peak
area of the parent ion or the spectral count, which is the number of times a specific peptide is selected
for fragmentation in a data dependent LC-MS/MS [151]. While both of these methods require some
sort of normalization, they are now used more frequently than the labeling techniques. The use of
global proteomics in the field of EVs, and specifically exosomes, has aided, and continues to aid, in
the development of biomarkers for different diseases and cancers. Further, there is potential for this
technique to reveal the purpose and activity of different proteins in the exosomal vesicles, and how
they are similar and different to those in the parent cells, as the technology around the top-down
methodology continues to develop.

Targeted Proteomic Approaches

As opposed to global proteomics, where the goal is to identify as many proteins as possible in a
sample, targeted proteomic analysis is used to identify and quantify a predefined set of proteins in a
given sample [148]. The most common targeted proteomic approach is multiple reaction monitoring,
or MRM. Due to upper mass limitations of triple quadrupole instruments, used for MRM methods,
the bottom-up approach must be used and specific peptides for each protein of interest must be
selected prior to analysis. That is, a peptide generated by the trypsin or pepsin digestion must
be selected and be unique for the protein that is to be monitored [152,153]. Once the peptide is
selected, transitions, or fragments, of the peptide can be established and detected by the instrument.
Essentially, in the first quadrupole (Q1) of a triple quadrupole instrument, the parent ion, which is
the intact peptide selected to represent the protein of interest, is selected to pass through into the
second quadrupole (q2). All other ions are filtered out in Q1 quadrupole and do not pass into q2 [148].
Once in q2, the parent ion will be fragmented and then passed into the third quadrupole, Q3. In Q3,
a specific fragment ion is selected to reach the detector and all other fragment ions are filtered out
and do not reach the detector. By monitoring multiple unique peptides for a single protein, and
then multiple fragments for each peptide, the specificity and accuracy of the method can be greatly
enhanced. Typically, it is recommended that at least 2 unique peptides are used to monitor a specific
protein, and at least three transitions are used to monitor each peptide, thus a total of 6 signals
are used to monitor a single protein of interest. Additionally, the MRM method is extremely well
multiplexed, as long as the chromatography allows for good separation of the peptides. By monitoring
different peptides at different retention times, the MRM method can give highly sensitive, specific,
and quantitative information on hundreds of peptides in a single experiment. Absolute quantification
for proteins (via peptides) in a sample can be assessed using the MRM methodology by spiking
stable isotope labeled peptides into the sample prior to analysis. Relative quantification can be done
using simple normalization techniques, similar to the normalization done in the label free global
proteomic approaches. However, because MRM methods have lower limits of detection, greater
dynamic ranges, and increased specificity, it is the mass spectrometry proteomic approach of choice
for the rapid identification and quantification of a predetermined set of proteins in a sample [148].
In the realm of EVs, specifically exosomes, the development of MRM methods to characterize isolated
exosomes would be beneficial not only due to its multiplicity and specificity over the traditional
Western blot methodology, but also because a predefined set of proteins (exosomal marker proteins
and non exosomal marker proteins) have been described.

4. Conclusions

The uses of EVs in the clinical setting for diagnostic, prognostic, therapeutic, and drug delivery
tools has well been demonstrated and continues to be a subject of intense study simply based on the
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ever-growing literature on the topic. Each isolation and analysis method (see Figure 2 for review) has its
own set of benefits and drawbacks, and it has been demonstrated that different isolation methods used
to isolate exosomes from the same cell type results in different proteomic profiles, further complicating
the situation. Therefore, instead of focusing on establishing a set of exosomal/non exosomal marker
proteins secreted by all cell types independent of the isolation method, it may be more beneficial to
focus on the development of exosomal/non exosomal marker proteins for a given cell type, independent
of isolation method, or a set of exosomal/non exosomal marker proteins for all exosomes, regardless of
their origin, when isolated by a specific method. Regardless, it is of utmost importance to consider
and incorporate the recommendations from the Minimal Information for Studies of Extracellular
Vesicles 2018 (MISEV2018) [154] when conducting and reporting EV-related works to improve rigor
and reproducibility of identified EV markers.
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