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Abstract: The establishment of prothrombotic states during cancer progression is well reported
but the precise mechanisms underlying this process remain elusive. A number of studies have
implicated the presence of the clotting initiator protein, tissue factor (TF), in circulating tumor-derived
extracellular vesicles (EVs) with thrombotic manifestations in certain cancer types. Tumor cells,
as well as tumor-derived EVs, may activate and promote platelet aggregation by TF-dependent and
independent pathways. Cancer cells and their secreted EVs may also facilitate the formation of
neutrophil extracellular traps (NETs), which may contribute to thrombus development. Alternatively,
the presence of polyphosphate (polyP) in tumor-derived EVs may promote thrombosis through a
TF-independent route. We conclude that the contribution of EVs to cancer coagulopathy is quite
complex, in which one or more mechanisms may take place in a certain cancer type. In this context,
strategies that could attenuate the crosstalk between the proposed pro-hemostatic routes could
potentially reduce cancer-associated thrombosis.
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1. Introduction

The occurrence of prothrombotic events such as deep vein thrombosis, venous thromboembolism
(VTE) and stroke may greatly vary across different cancer types. It is estimated that one out of five cancer
patients will develop this co-morbidity during the tumor progression. Indeed, there is a significantly
increased risk of thromboembolism in cancer patients as compared to the general population [1,2].
This correlation, independently noted by Dr. Jean-Baptiste Bouillaud and Dr. Armand Trousseau in the
19th century, has been well reported [3,4]. Clinical risk factors for thrombotic complications include a
wide range of factors such as patient-related, cancer-related and treatment-related risk factors [5,6].

Cancer-associated thrombosis is a multi-factorial process that has been associated with several
mechanisms [7,8]. The involvement of extracellular vesicles (EVs) in this process has been proposed.
According to the 2018 guideline of the International Society for Extracellular Vesicles (ISEV), EVs can
be defined as “the generic term for naturally released particles from the cell that are delimited
by a lipid bilayer and cannot replicate” [9–11]. Whenever possible, the nomenclature of the EVs
follows the updated guidelines of the ISEV to ensure correct scientific disclosure [10]. EVs have
been extensively associated with intercellular communication in both physiological and pathological
situations, including thrombosis and cancer. Tumor-secreted EVs are able to achieve systemic circulation
in animal models [12,13], as well as in patients [14–16]. These vesicles carry genetic material, as well
as other macromolecules derived from the tumor, modulating biological responses in the host [17].
The two major populations of EVs released by tumor cells are microvesicles and exosomes [9,10,18].
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Microvesicles (ectosomes/ microparticles) are lipid bilayer-enclosed sacs (100 to 1000 nm of diameter)
released from the plasma membrane to the extracellular milieu [9,10,18]. Under physiological conditions,
several cell types are able to release microvesicles, however, the malignant transformation stimulates
the release of these EVs [12,19]. Exosomes differ from microvesicles by their size (30 to 100 nm),
formation process (endosomal origin) and protein content [9,10,18]. As seen with tumor cells, cancer
cell-derived EVs may expose procoagulant phospholipids such as phosphatidylserine, which constitute
a suitable platform for the assembly of the blood coagulation complexes [20,21]. However, other
EV-related prothrombotic mechanisms have been recently proposed and will be discussed here.

2. Tissue Factor-Bearing EVs in Cancer-Associated Thrombosis

Tissue factor (TF/F3 gene) is a 47-kDa transmembrane protein that initiates the extrinsic pathway
of coagulation upon binding to circulating factor VII/VIIa (FVII/ FVIIa/ F7 gene). The binary TF/FVIIa
complex further activates FIX (F9 gene) and FX (F10 gene) into their active forms leading to thrombin
(F2 gene) production, which culminates with fibrin generation [22]. The presence of TF in blood as
an exposed component of EVs derived from vascular cells, and later on tumor cells, rapidly leads
to the proposal that the TF plasma levels would directly reflect the prothrombotic state of cancer
patients. Most of the studies were initially performed with EVs in the microvesicle-size range. Indeed,
several studies demonstrated that EVs isolated from cultured cells expose TF to similar extents as
observed in the producing cells [23]. Malignant transformation appears as a major trigger not only
for increased cellular vesiculation, but also for coagulopathy [24,25]. Indeed, cancer driver mutations
and the overactivation of signaling pathways increase the expression of TF in tumor cells [26–28],
as well as trigger the emission of TF-bearing EVs [29]. Other cancer-related phenomena, such as the
epithelial-mesenchymal transition (EMT), may also promote the release of EVs containing TF [29].

Mouse models have been widely used to study mechanisms involved in cancer-associated
thrombosis, although it is known that clotting parameters may vary across different animal species
and mouse strains [30–32]. In this context, most of the studies that evaluated the effects of TF+

EVs on cancer-associated thrombosis employing mouse models were performed using pancreatic
cancer cells [31,33], as this cancer type presents the highest incidence of VTE in cancer patients [1].
Mouse models employing either the orthotopic or the ectopic pancreatic cancer cell implantation
have consistently demonstrated the establishment of prothrombotic states [13,34–38]. EVs derived
from the murine Panc02 cancer cell line promote increased thrombus formation (induced by FeCl3 or
laser-induced injury) in a TF-dependent pathway and accumulate in the injury area [35]. Interestingly,
a recent report showed that the intravenous administration of TF+ EVs derived from pancreatic cancer
cells induces deep vein thrombosis in mice. In this model, TF on pancreatic tumor-derived EVs must
cooperate with host TF to evoke a prothrombotic state in the animals [39].

Additional studies employing Lewis lung carcinoma and melanoma cell lines have been performed
using mouse models. These studies have demonstrated the establishment of TF+ EV-dependent
prothrombotic states [12,35]. Our group showed that melanoma-derived EVs display greater
procoagulant activity and higher levels of TF as compared to melanocyte-derived EVs. By using an
arterial thrombosis model, we observed that the intravenous administration of melanoma EVs, unlike
melanocyte EVs, accelerate thrombus formation in naïve mice. This effect was dependent on the
presence of TF since active site-blocked FVIIa (which works as an antagonist of FVIIa/TF complex)
completely abolished the thrombogenicity of these vesicles [12]. Remarkably, tumor-bearing mice
exhibit a high level of TF+ melanoma-derived EVs in plasma [12].

Several studies have tried to correlate the presence of circulating TF+ EVs and the occurrence
of VTE in cancer patients. It is important to emphasize that different parameters have been used
in these studies, including the evaluation of TF antigen levels (flow cytometry, impedance-based
flow cytometry or ELISA) and/or the evaluation of TF activity (FXa generation or fibrin generation
test) [40]. These parameters have distinct sensibilities and consequently diverse outcomes. In this
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context, TF activity assays have been considered as a more attractive option to evaluate this association,
as they exhibit higher sensibility.

Increased TF antigen levels were initially identified in EVs isolated from plasma samples
derived from advanced colorectal cancer patients [14]. Further studies demonstrated the elevation of
circulating TF+ EVs in other tumor types including pancreatic, lung, ovarian, colorectal, and breast
cancers [15,41,42]. A positive correlation between TF+ EVs and VTE in pancreatic cancer patients
was demonstrated in other studies [43–45]. On the other hand, contradictory results are reported
for the positive association between TF+ EVs and VTE occurrence in breast cancer patients [43,46].
Other findings failed in revealing an association between TF+ EVs with VTE in soft tissue sarcoma
patients [47], as well as in non-Hodgkin lymphoma, colorectal, breast, stomach, lung and pancreatic
cancers [48]. Additional reports did not show an association between the TF activity levels in EVs
and VTE in multiple myeloma [49], ovarian carcinoma [50,51], small cell lung cancer [52], and gastric,
colorectal and brain tumors [53]. However, in multiple myeloma patients with VTE after chemotherapy,
it was observed that higher levels of TF activity occured in comparison with patients that did not
develop thrombosis [49]. The compilation of the studies that evaluated TF+ EVs and occurrence of
VTE is shown in Table 1.

Table 1. Clinical studies associating tissue factor (TF)-containing extracellular vesicles and
venous thromboembolism.

Cancer Type TF Measurement VTE

Pancreatic, non–small cell lung, ovarian, colorectal
and breast [15,41,42] TF antigen (IFC) Yes

Colon, lung, bladder, pancreatic, prostate, rectal, bile
duct, brain, cholangio, liver, lymphoma, renal cell,

testis and other types of cancer [15,41,42]
TF activity (FXa generation assay) Yes

Gastrointestinal, lung, pancreatic, prostatic, breast,
liver, uterine and brain [15,41,42] TF antigen (FACS) Yes

Pancreatic [43–45] TF activity (FXa generation assay),
TF antigen (FACS or ELISA) Yes

Breast [43,46] TF activity (FXa generation assay),
TF antigen (FACS) Yes/ No

Soft tissue sarcoma [47] TF antigen (FACS) No

Non-Hodgkin lymphoma, colorectal, breast, stomach,
lung and pancreatic [48]

TF antigen (ELISA), TF activity
(FXa generation assay) No

Multiple myelomas [49] TF activity (FXa generation assay) No

Ovarian [50,51] TF antigen (ELISA), TF activity
(FXa generation assay or FGT) No

Small cell lung cancer [52] TF activity (FXa generation assay) No

Gastric, colorectal and brain [53] TF activity (FXa generation assay) No

TF, tissue factor; IFC, Impedance-based flow cytometry; FACS, fluorescence-activated cell sorting; ELISA,
enzyme-linked immunosorbent assay; FGT, fibrin generation test.

Conflicting outcomes from studies that tried to correlate TF + EVs in plasma from cancer patients
and occurrence of VTE are possibly due to the use of different techniques for TF measurement (antigen
or activity), EVs purification methods, the sensibility of antibodies and distinct assays. In the last years,
a great effort from ISEV to establish guidelines for studies with EVs has been done [10]. Additionally, some
groups are developing new activity assays for TF+ detection in plasma-derived EVs [54]. These efforts
are crucial for a better understanding of the role of TF+ EVs and cancer-associated thrombosis.

3. Platelets in Cancer-Associated Thrombosis

Platelets are fragments (2–4 µm in diameter) extruded from bone marrow megakaryocytes
and released into the bloodstream. Under physiological conditions, the platelet concentration in
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humans ranged from 150 to 350 × 103/µL. Platelets are key players in hemostasis since they detect
endothelial injury through several receptors [55]. In the basal state, platelets circulate without forming
adhesions with the endothelium. In the presence of a vascular lesion, the platelet glycoproteins
GPVI and GPIb-V-IX bind to the collagen from the subendothelial matrix and to the von Willebrand
factor, respectively. These interactions mediate platelet activation and adhesion to the site of vascular
damage. Upon activation, platelets change their morphology, degranulate and release agonists, such
as adenosine diphosphate (ADP) and thromboxane A2 (TXA2). These events contribute to further
platelet aggregation [55,56]. Cancer may influence the platelet count, physiology and activation state.

One of the risk factors for VTE is the elevated platelet count [5,57,58]. The Vienna Cancer and
Thrombosis Study (CATS) showed that thrombocytosis was an independent risk factor for VTE in
cancer patients. Patients with platelet count ≥ 443 × 103/µL were 3.5 times more likely to develop
VTE as compared to the group with counts below the designated cut-off [59]. Other studies have also
shown that patients with malignant neoplasms, including gastrointestinal, endometrial, pancreatic,
and colorectal cancers, develop thrombocytosis [60–63]. The mechanisms involved in tumor-induced
thrombocytosis are still not fully understood. One of the possible mechanisms described in the
literature is that tumor cells may produce and secrete humoral factors that influence platelet production
through an endocrine activity in the megakaryopoiesis. These factors comprise vascular endothelial
growth factor (VEGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte
colony-stimulating factor (G-CSF), interleukin-6 (IL-6), thrombopoietin (TPO), and basic fibroblast
growth factor (b-FGF) [64–67].

An important study, which included 619 patients with ovarian cancer, showed that thrombocytosis
was associated with tumor progression and poor survival. In this study, paraneoplastic thrombocytosis
was mediated by TPO and IL-6 [68]. Treatment with an anti-IL-6 neutralizing antibody reduced the
number of platelets in tumor-bearing mice as well as in patients with ovarian cancer. In addition, IL-6
blockade in combination with paclitaxel had a synergistic effect on reducing tumor growth in murine
models of epithelial ovarian cancer [68]. The use of an antiplatelet antibody significantly reduced
platelet counts as well as tumor growth in vivo, inducing tumor necrosis [68]. These results suggest
positive crosstalk between tumor cells and platelets, which contributes to the aggressive behavior of
ovarian cancer. Cancer-associated thrombocytosis also has a negative prognostic value in other types
of cancer [69,70].

In addition to thrombocytosis, tumor cells may activate platelets by direct interaction or indirectly
via EVs or secreted soluble factors [71]. Indeed, it was shown that circulating platelets of cancer patients
express high levels of P-selectin, a marker of platelet activation [72]. Platelet function largely depends
on integrin signaling, including α2β1, α5β1, α6β1, αIIbβ3 and αvβ3 [73]. Tumor cell-induced platelet
aggregation can occur through the binding of the platelet αIIbβ3 integrin to the αvβ3 integrin of tumor
cells via proteins containing the RGD motif, such as fibronectin and fibrinogen [74,75]. Platelet α6β1
integrin has also been shown to be capable of binding to tumor cells, inducing platelet activation [76].

Tumor cells can activate platelets through the production/secretion of soluble factors, such as
ADP, TXA2, thrombin, cathepsins and matrix metalloproteinases (MMPs) [71]. Platelets express
two ADP-activated G protein-coupled receptors (GPCRs), P2Y1 and P2Y12. Tumor cells have been
described to release ADP in the extracellular environment, thus contributing to platelet activation/

aggregation [77,78]. TXA2 is a platelet agonist, and its receptor is also a GPCR expressed on
platelets. Several neoplasms, including lung, bladder, colorectal, prostate and thyroid tumors, exhibit
overexpression of the thromboxane synthase enzyme, which catalyzes the conversion of prostaglandin
H2 into TXA2 [79–83], suggesting a possible mechanism of thromboxane secretion. Indeed, it has
been shown that pharmacological inhibition of tumor-derived TXA2 synthesis suppresses platelet
aggregation in vitro [84].

Thrombin is a serine protease that amplifies the coagulation cascade, activating several zymogens,
and converting soluble fibrinogen into insoluble strands of fibrin, which stabilize the platelet plug
in clot formation [22]. Thrombin is the most potent physiological activator of platelets. One class



Cells 2019, 8, 716 5 of 18

of GPCRs typically activated by proteolysis are the protease-activated receptors (PARs) and several
proteases, in addition to thrombin, are capable of activating PARs [85]. It was shown that colon
cancer cells may trigger human platelet activation in a manner that is dependent on the cancer cell TF
expression, thrombin generation and activation of PAR-4 on platelets, inducing thrombus formation
in vitro under flow [86]. Cathepsin K has also been shown to activate human platelets through a PAR-3
and -4 dependent mechanism [87]. Data from the literature show that cathepsin K is expressed in
several types of cancer [88]. Other tumor-derived cathepsins were shown to aggregate platelets [89].
Recently, Sebastiano and colleagues have described a novel mechanism regulating platelet activation,
which involves the binding of tumor-derived MMP-2 to the αIIbβ3 integrin of the platelet. Then,
this metalloproteinase cleaves and activates PAR-1, inducing a pre-activated state in the platelet [90].
In addition to MMP-2, other metalloproteinases are involved in platelet biology [91].

In 2006, the C-type lectin-like receptor 2 (CLEC-2) was described as a novel platelet-receptor [92].
So far, the only ligand described for the CLEC-2 receptor is podoplanin. Podoplanin is a membrane
glycoprotein expressed on the surface of several tumor cells [93,94]. In glioblastoma models, platelet
aggregation in vitro appears to be dependent on podoplanin expression [95]. In addition, podoplanin
overexpression in tumor samples from glioma patients was associated with intravascular platelet
aggregates and increased risk of VTE [95]. A recent study has shown that intravenous inoculation
of B16-F10 melanoma cells expressing podoplanin induced thrombus formation in the lungs of mice.
The formation of the pulmonary thrombi was significantly reduced in mice that were previously
treated with a monoclonal antibody against CLEC-2 [96]. Remarkably, tumor-derived microvesicles
expressing podoplanin have been observed in the plasma of patients with pancreatic and colorectal
cancer [97]. Therefore, the podoplanin-CLEC-2 axis may play an important role in platelet aggregation
induced by tumor cells and, consequently, in the cancer-associated thrombosis.

We recently described that EVs (mostly in the exosome size-range) derived from MDA-MB-231
cells, an invasive and mesenchymal-like breast cancer cell line, showed higher TF protein levels than
EVs derived from MCF-7, a non-aggressive and epithelial breast cancer cell line [98]. Accordingly,
TF-dependent platelet aggregation was induced by MDA-MB-231 EVs, but not by MCF-7 EVs in
platelet-rich plasma, since the coagulation cascade triggered by TF generates thrombin, a potent
platelet agonist [98]. Interestingly, the interaction between MDA-MB-231 EVs and washed platelets
(plasma free condition) also induced P-selectin exposure on the platelet surface, as well as platelet
aggregation, suggesting a TF-independent mechanism [98]. Thomas and colleagues also showed
that lung and pancreatic cancer cells-derived microvesicles aggregate platelets via a TF-dependent
mechanism. Mice infused with these EVs exhibit reduced tail bleeding time and the establishment of a
prothrombotic state [35]. In addition, Geddings and colleagues showed that microvesicles derived
from pancreatic cancer cells mediate the activation/aggregation of human platelets in vitro in a manner
dependent on TF and thrombin [13]. Moreover, injection of tumor EVs triggered platelet activation
in vivo and increased venous thrombosis in a TF-dependent manner in mice [13]. They have also found
that thrombosis induced by TF-expressing microvesicles was reduced in PAR-4 knockout mice or in
clopidogrel-treated mice (an antiplatelet drug), corroborating the biological role of the platelets in this
model [13]. These results suggest that the platelet activation mediated by TF-expressing microvesicles
is necessary for the development of thrombosis in tumor-bearing mice in determined contexts.

If on the one hand EVs derived from tumor cells activate platelets, on the other hand, it has been
shown that activated platelets are fundamental for the accumulation of these vesicles at the site of
thrombosis. This mechanism is dependent on the presence of P-selectin glycoprotein ligand 1 (PSGL-1)
and integrins on the EVs membrane. Treatment with a P-selectin blocking antibody, RGD peptide
(a competitive inhibitor of the integrin-ligand interactions), clopidogrel or depletion of circulating
platelets prevented the accumulation of tumor-derived microvesicles at the site of injury, reducing the
incidence of thrombotic events in the animal models [35,99]. Figure 1 depicts the proposed interaction
between soluble factors/EVs derived from tumor cells and platelets.
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Figure 1. Pro-hemostatic interactions between tumor cell-derived soluble factors/extracellular vesicles
(EVs) and platelets. Tumor-derived EVs and/or tumor-derived soluble factors (such as adenosine
diphosphate, thromboxane A2, and others) interact with platelets promoting their activation. Platelet
activation accounts for integrin αIIbβ3 exposure and further interaction with fibrinogen, thus enabling
platelet aggregation. In addition, platelet activation promotes P-selectin exposure which serves as a
ligand for P-selectin glycoprotein ligand 1 (PSGL1)-containing EVs. EVs interaction with platelets favor
their accumulation at the site of thrombotic injury. Together, both processes favor thrombus formation.
Servier Medical Art, https://smart.servier.com/, was used to create this figure, licensed under a Creative
Commons Attribution 3.0 Unported License.

4. Neutrophils and NETs in Cancer-Associated Thrombosis

Several recent reports have demonstrated that immune cells play a significant role in thrombus
initiation and development [100]. In this context, as seen with platelets, elevated leukocyte/white blood
cell (WBC) counts have been associated with the increased risk of thrombosis in cancer patients [57,101].
The Tromsø study reported that cancer patients presented with high WBC counts before the diagnosis
had a 2.4-fold increased risk in developing VTE as compared to those that presented normal WBC counts.
Interestingly, increased WBC counts were not predictive for VTE in a non-cancer population [102].
On the other hand, a recent study showed that persistent neutrophilia was associated with VTE in
patients that did not present malignancies or infections [103]. In this study, persistent neutrophilia was
defined as an elevated absolute neutrophil count in at least three blood exams with a minimum of two
months apart. The association of VTE with the neutrophil to lymphocyte ratio (NLR), as well as the
platelet to lymphocyte ratio (PLR), have been evaluated in cancer patients, with conflicting results.
Ferroni and colleagues showed that patients with solid tumors had a 2-fold and 3-fold higher risk to
develop VTE upon high NLR or PLR, respectively [104]. More recently, a study that evaluated 486
non-cancer patients with VTE showed that high NLR or PLR was not associated with an increased risk
of VTE or cerebral vein thrombosis [105]. Another recent study with gastric cancer patients failed in
showing NLR or PLR as predictors for VTE [106].

Among immune cells, neutrophils seem to be particularly important in cancer-associated
thrombosis. Neutrophils represent 50% to 70% of all leukocytes, being the most abundant immune
cell population in humans. It has long been demonstrated the presence of adherent leukocytes in the
initiation areas of the thrombus [107]. In addition, the histological analyses of human venous thrombi
demonstrate the presence of neutrophils, platelets and fibrin layers [107,108]. Studies employing
thrombosis models in mice have demonstrated that neutrophils play a major role in the initial steps
of thrombus development, being the first cells to accumulate in the injured vessel [109,110]. In this
context, neutrophil depletion reduces thrombus formation in a murine flow restriction model of
thrombosis [111].

Neutrophil-dependent prothrombotic mechanisms are largely associated with the formation of
neutrophil extracellular traps (NETs) [112]. NETs comprise a molecular trap formed by DNA, histones,
and several additional proteins including some derived from the neutrophil granules [113]. These
structures were first described as a defense mechanism against microbes [114]. It is well-established
that NETs are present in both arterial and venous thrombi, either in human or in mice [111,115–117].

https://smart.servier.com/
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The importance of NETs on thrombus formation has been proposed based on the antithrombotic effects
of molecules that target enzymes required for NETs formation, such as elastase and PAD4 [118,119] or
agents that destroy NETs, such as recombinant DNase [111,120].

NETs may induce platelet activation and aggregation, processes that have been associated with
histone-dependent and -independent pathways [121,122]. Histone-dependent platelet activation is
mediated by toll-like receptors 2 and 4 (TLR2 and TLR4) [123]. Interestingly, activated platelets
may promote NETs formation [124,125] thus promoting a vicious cycle that propagates thrombus
formation [111]. Platelet-derived high mobility group box 1 (HMGB1) induces NETs formation [126]
and impacts venous thrombus formation in mice [127]. In this context, NETs formation was recently
associated with the increased platelet aggregation in a murine tumor model [128].

Increased plasma levels of NETs formation markers, such as citrullinated histone H3 (H3cit),
cell-free DNA and nucleosomes, have been recently associated with the increased risk of arterial
and venous thrombosis in cancer patients [129,130]. Thalin and colleagues showed that patients with
advanced cancer present increased levels of H3cit in plasma, correlating with a 2-fold increased
risk for short-term mortality [131]. Increased NETs formation markers have been also identified in
hepatocellular carcinoma as thrombotic risk factors [132]. In another study, the increased plasma
levels of H3Cit and cell-free DNA were associated with higher mortality in patients with cancer
but no correlation with arterial thromboembolism has been observed [133]. Tumor-bearing mice
also exhibit increased levels of systemic NETs formation. The murine breast cancer model, 4T1,
dramatically increase neutrophil counts, NETs formation markers and rely on the establishment of a
prothrombotic state [120,134]. Nude mice bearing human pancreatic tumors also exhibit increased
venous thrombus formation along with elevation of systemic NETs formation [38]. Remarkably,
treatment with recombinant DNase abolishes the prothrombotic state in breast and pancreas tumor
models [38,120].

A number of factors may induce NETs formation such as interleukin-8, lipopolysaccharide (LPS),
interleukin-1β (IL-1β), G-CSF and others [135–137]. In addition, direct exposure of neutrophils to
tumor cells [136,138] or tumor cell conditioned medium may elicit NETs formation [139]. G-CSF is
a cytokine that has been strongly correlated with cancer-associated neutrophilia [134]. In addition,
G-CSF induces NETs release in vitro [136] and in vivo [140]. We have recently demonstrated that
tumor-derived EVs induce NETs formation in naïve mice previously treated with G-CSG [120]. In this
context, increased G-CSF levels parallel with thrombotic manifestations in human cancer patients [129]
and in tumor-bearing mice [38]. Therefore, it is proposed that G-CSF prime the neutrophils towards
NETs formation and establishment of several NETs-dependent pro-tumoral effects [141,142].

The ability of NETs to entrap circulating tumor cells has been proposed as a pro-metastatic effect
in different murine tumor models [136,143]. The additional ability of NETs to entrap tumor-derived
procoagulant EVs has been observed in murine breast cancer [120] and pancreatic carcinoma [36].
This process may contribute to amplifying the establishment of prothrombotic states. Figure 2 depicts
the proposed interaction between soluble factors/EVs derived from tumor cells and neutrophils.
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colony-stimulating factor (G-CSF) and other cytokines) interact with neutrophils promoting the 
neutrophil extracellular trap (NET) formation process (NETosis). NETs act as scaffolds for the 
binding of procoagulant tumor-derived EVs, therefore, amplifying thrombus formation. NETs may 
also entrap tumor cells, thus favoring metastasis. Servier Medical Art, https://smart.servier.com/, was 
used to create this figure, licensed under a Creative Commons Attribution 3.0 Unported License. 

5. Polyphosphate-Bearing EVs 

In addition to the extrinsic pathway of coagulation, which is initiated upon exposure of TF to 
blood, fibrin formation might be triggered upon activation of FXII (F12 gene) into FXIIa by 
negatively charged surfaces such as those provided by polyphosphate (polyP) [22]. Activation of 
FXIIa leads to activation of FXI (F11 gene) into FXIa and further reactions culminate with thrombin 
formation and fibrinogen cleavage into fibrin. Platelets may secrete procoagulant polyP thus 
eliciting the contact pathway [144]. PolyP is a linear polymer composed of orthophosphate units that 
naturally occurs in different length forms varying from a few phosphate units to several thousand. 
Recently, Nickel and co-workers demonstrated that prostate-cancer derived cells might secrete 
long-chain polyP into EVs, thus eliciting blood coagulation [145]. Experiments performed with 
plasma clearly demonstrated that polyP-bearing EVs activate FXII into FXIIa in vitro. Fluorescence 
microscopy further demonstrated that EVs derived from the prostate cancer cell line, PC3, expose 
procoagulant polyP forms in their surface. Remarkably, the authors demonstrated that infusion of 
PC3-derived EVs promote thromboembolism in wild type but not in FXII or FXI knockout mice 
[145]. Alternatively, blocking of polyP/FXII pathway with a specific antibody, 3F7, provided 
protection from thromboembolism while not promoting bleeding in mice [146]. Therefore, it has 
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Figure 2. Pro-hemostatic interactions between tumor cell-derived soluble factors/EVs and neutrophils.
Tumor-derived EVs and/or tumor/host-derived soluble factors (such as granulocyte colony-stimulating
factor (G-CSF) and other cytokines) interact with neutrophils promoting the neutrophil extracellular trap
(NET) formation process (NETosis). NETs act as scaffolds for the binding of procoagulant tumor-derived
EVs, therefore, amplifying thrombus formation. NETs may also entrap tumor cells, thus favoring
metastasis. Servier Medical Art, https://smart.servier.com/, was used to create this figure, licensed
under a Creative Commons Attribution 3.0 Unported License.

5. Polyphosphate-Bearing EVs

In addition to the extrinsic pathway of coagulation, which is initiated upon exposure of TF to blood,
fibrin formation might be triggered upon activation of FXII (F12 gene) into FXIIa by negatively charged
surfaces such as those provided by polyphosphate (polyP) [22]. Activation of FXIIa leads to activation
of FXI (F11 gene) into FXIa and further reactions culminate with thrombin formation and fibrinogen
cleavage into fibrin. Platelets may secrete procoagulant polyP thus eliciting the contact pathway [144].
PolyP is a linear polymer composed of orthophosphate units that naturally occurs in different length
forms varying from a few phosphate units to several thousand. Recently, Nickel and co-workers
demonstrated that prostate-cancer derived cells might secrete long-chain polyP into EVs, thus eliciting
blood coagulation [145]. Experiments performed with plasma clearly demonstrated that polyP-bearing
EVs activate FXII into FXIIa in vitro. Fluorescence microscopy further demonstrated that EVs derived
from the prostate cancer cell line, PC3, expose procoagulant polyP forms in their surface. Remarkably,
the authors demonstrated that infusion of PC3-derived EVs promote thromboembolism in wild type
but not in FXII or FXI knockout mice [145]. Alternatively, blocking of polyP/FXII pathway with a
specific antibody, 3F7, provided protection from thromboembolism while not promoting bleeding
in mice [146]. Therefore, it has been proposed that targeting the polyP/FXII axis could attenuate
cancer-associated thrombosis in determined contexts [147].

6. Concluding Remarks

A number of prothrombotic mechanisms have been proposed to explain cancer-associated
thrombosis. Some of these mechanisms rely on complex interactions between tumor-derived EVs and
vascular cells or with components of the hemostatic system. Initiation of the extrinsic pathway of
coagulation by TF+ EVs or initiation of the contact pathway by polyP+ EVs may predominate in certain
cancer types (Figure 3). In addition, the interaction of tumor-derived EVs with platelets (promoting
platelet activation and/or platelet aggregation) or neutrophils (facilitating NETs release) may provide
additional positive feedback for the establishment of prothrombotic states (Figure 3). The compilation of
the EVs molecules with prothrombotic potential is shown in Table 2. The complexity of the pathogenesis
of cancer-associated thrombosis is nicely demonstrated there: one or more mechanisms may take place
in a certain cancer type, but not all the proposed mechanisms will simultaneously account for the
establishment of the prothrombotic state. This scenario certainly difficult the prediction of thrombotic
manifestations, as well as therapeutic interventions. In this context, strategies that could attenuate the
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crosstalk between platelets and NETs formation [148,149] could potentially reduce cancer-associated
thrombosis. Additional crosstalk between the mechanisms herein discussed may also reveal potential
targets for intervention (Figure 3).
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Figure 3. Possible crosstalk between the proposed mechanisms for tumor-derived EVs in cancer-
associated thrombosis. Tumor-derived TF + EVs initiate the extrinsic pathway of coagulation. TF is a
high-affinity receptor for coagulation factor VII/VIIa (FVII/FVIIa), culminating in the activation of the
factors X (FX) into factor Xa (FXa). In turn, FXa mediates the proteolytic conversion of prothrombin
to thrombin, a serine protease that amplifies the coagulation cascade and generates fibrin, which
stabilizes the platelet plug in clot formation. Further thrombin generation accounts for an indirect
mechanism for platelet activation/aggregation. EVs may elicit direct platelet activation/aggregation.
Tumor-derived polyP+ EVs initiate the contact pathway of coagulation, mediating the activation of
factor XII (FXII) into factor XIIa (FXIIa) by negatively charged surfaces such as those provided by polyP.
Further reactions of the contact pathway also culminate with thrombin formation, fibrinogen cleavage
into fibrin and platelet activation. Interaction of neutrophils with tumor-derived EVs may support NETs
release thus eliciting several NETs-dependent prothrombotic mechanisms. NETs provide additional
surfaces that support the contact pathway activation. In addition, crosstalk between platelets and NETs
may play an important role in the establishment of cancer-associated thrombosis. Servier Medical
Art, https://smart.servier.com/, was used to create this figure, licensed under a Creative Commons
Attribution 3.0 Unported License.
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Table 2. EVs-derived molecules and their possible prothrombotic roles.

EVs-Linked Molecules Suggested Effect

TF Activation of the extrinsic pathway, fibrin generation, and platelet activation/aggregation
in a thrombin-dependent manner

Podoplanin Platelet aggregation

PSGL-1 Accumulation of the EVs at the site of thrombosis through binding to platelets via P-selectin

Integrins Accumulation of the EVs at the site of thrombosis through binding to platelets

Unknown Neutrophil activation and NETs release

Unknown Binding to NETs

PolyP Activation of the contact pathway, fibrin generation, and platelet activation/aggregation in
a thrombin-dependent manner

EVs, extracellular vesicles; TF, tissue factor; PSGL-1, P-selectin glycoprotein ligand-1; PolyP, polyphosphate; NETs,
neutrophil extracellular traps.
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