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Abstract: Identifying novel indications for approved drugs can accelerate drug development and 
reduce research costs. Most previous studies used shallow models for prioritizing the potential 
drug-related diseases and failed to deeply integrate the paths between drugs and diseases which 
may contain additional association information. A deep-learning-based method for predicting 
drug–disease associations by integrating useful information is needed. We proposed a novel 
method based on a convolutional neural network (CNN) and bidirectional long short-term memory 
(BiLSTM)—CBPred—for predicting drug-related diseases. Our method deeply integrates 
similarities and associations between drugs and diseases, and paths among drug-disease pairs. The 
CNN-based framework focuses on learning the original representation of a drug-disease pair from 
their similarities and associations. As the drug-disease association possibility also depends on the 
multiple paths between them, the BiLSTM-based framework mainly learns the path representation 
of the drug-disease pair. In addition, considering that different paths have discriminate 
contributions to the association prediction, an attention mechanism at path level is constructed. Our 
method, CBPred, showed better performance and retrieved more real associations in the front of the 
results, which is more important for biologists. Case studies further confirmed that CBPred can 
discover potential drug-disease associations. 

Keywords: drug repositioning; convolutional neural network; drug research and development; 
bidirectional long short-term memory; attention mechanism at path level 

 

1. Introduction 

The research and development (R&D) stage of producing a novel drug is a time-consuming, 
complex, and costly process that normally lasts for more than ten years and costs approximately 1 
billion dollars [1–4]. Simultaneously, there is a large gap between the high investment in R&D and 
the number of new drugs finally approved [5–7]. Because approved drugs have undergone the 
necessary clinical trials, their safety has been evaluated, identifying new indications for these drugs, 
(i.e., drug repositioning), which can effectively reduce the time and costs for drug-related R&D [5,8,9]. 

Network-based approaches have been widely used to study biological and medical associations 
[10,11]. Computational prediction of the associations between drugs and diseases can identify 
candidates for further wet-lab validation [12,13]. Several methods are used to predict and prioritize 
drug-associated diseases, which can generally be divided into two categories. Methods in the first 
category capture network topology information using a diffusion algorithm and then provide 
association scores for candidate diseases [14–17]. Wang et al. [16] identified candidate diseases using 
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an iterative update algorithm based on the guilt-by-association principle. Luo et al. [15] established a 
drug network and disease network and calculated association scores by random walk of the two 
networks. Liu et al. [14] integrated the two networks as a drug–disease network and applied a random 
walk method to the network. These methods inferred candidates with edges weighted by similarities 
and associations among nodes in the network. However, a major limitation to these approaches is 
that they only consider the topological information of the network while ignoring original 
information at the nodes.  

Methods in the second category mainly integrate the heterogeneous similarities of drugs or 
diseases through matrix factorization and projection [1,18]. A method developed by Liang et al. [1] 
works by minimizing the loss of the prediction matrix from the original association matrix from 
various perspectives. Zhang et al. [18] considered the biological background using the similarities of 
drugs and diseases as a constraint for low-dimensional matrices during prediction. However, in these 
methods, low-frequency effective information may be missed during the projection process. 
Additionally, the final prediction matrix only fits the original association from the mathematical layer 
and does not learn the deep representation among nodes. 

The above two types of shallow methods have limited representation for complex biological data 
and lack the ability to learn essential features from sparsely known drug–disease associations (ratio 
of known associations to unknown associations was approximately 1 to 169 in our study) [19]. Series 
literatures found that deep learning methods are well suited for modeling complex biological data to 
support drug discovery [20–22]. In this study, we present CBPred, a novel method for predicting the 
potential drug–disease associations. First, we constructed a drug–disease heterogeneous network 
based on the similarities and known associations between nodes. Next, we proposed a novel two-
way deep learning structure, a convolutional neural network (CNN), and bidirectional long short-
term memory (BiLSTM)—named CBPred—for predicting and prioritizing candidate diseases of 
drugs. The original information and topological information among nodes were integrated using the 
CNN and BiLSTM to obtain deep representations and provide candidate diseases. An attention 
mechanism was introduced to improve the performance of our model because the contribution of 
different types of information to the drug–disease associations are different. 

This novel method can deeply explore the original and topological representation of similarities 
between nodes, i.e., drugs and diseases, and known associations among two nodes. When we applied 
this method to various well-characterized drugs, CBPred recommended candidate diseases for 
treatment with the drugs with high accuracy. Case studies of five drugs, ciprofloxacin, ceftriaxone, 
ofloxacin, ampicillin, and levofloxacin, also demonstrated the ability of our method to recognize 
potential associations between drugs and diseases. 

2. Materials and Methods 

Our primary aim was to predict and prioritize novel association scores between drugs and 
diseases. We first constructed a drug–disease heterogeneous network via various connections among 
nodes, i.e., similarities and associations. To comprehensively consider original information and 
topological information of the drug–disease pair, we designed a novel prediction model based on the 
CNN module and BiLSTM module. Finally, we obtained association score between a drug 𝑟௜ and 
disease 𝑑௝. A higher score indicated a greater likelihood that 𝑟௜ was involved in the disease process 
of 𝑑௝. 

2.1. Dataset 

Drug–disease associations were obtained from a previous study [23], consisting of 763 drugs 
and 681 diseases. The drug–disease association data were originally extracted from the Unified 
Medical Language System [24]. There were 3051 known drug–disease associations. The chemical 
fingerprints for drug similarity calculations were extracted from PubChem [25]. Additionally, we 
used the method developed by Wang et al. [26] to construct directed acyclic graphs of the diseases 
using standard Medical Subject Headings disease terms. 
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2.2. Construction of a Drug–Disease Network 

A two-layer heterogeneous drug–disease network, DrDisNet, was constructed based on the 
similarities and associations of drugs and diseases, which consisted of a drug network (DrNet) and 
disease network (DisNet) as well as the edge (i.e., association between drugs and diseases) among 
the two networks. 

2.2.1. Drug Network Construction 

To measure the drug similarities for constructing the drug network (DrNet), we used the method 
developed by Liang et al. [1] to calculate the cosine similarity of the chemical substructure vector 
among the drugs. The chemical substructure vector of a drug is an 869-dimensional binary vector. 
The presence or absence of each chemical substructure of a drug is encoded as 1 or 0. When the drug 
similarity was greater than 0, we added an edge to connect the two drug nodes in DrNet; the weight 
of the edges reflected the similarity between the drugs (Figure 1). DrNet can be represented by matrix 

r dN N
ij

× = ∈ R R R   where 𝑁௥ is the number of drugs and 𝑹௜௝ is the similarity of drugs 𝑟௜ and 𝑟௝ 

in the range 0 to 1. An 𝑹௜௝ closer to 1 indicates greater similarity between 𝑟௜ and 𝑟௝. 𝑹௜௝ is calculated 
as follows: 𝑹௜௝  =  𝒄௜ ∙ 𝒄௝‖𝒄௜‖ฮ𝒄௝ฮ (1) 

where 𝒄௜ and 𝒄௝ are the chemical substructure vectors of 𝑟௜ and 𝑟௝, respectively, and ‖∙‖ indicates 
the magnitude of vector. 
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Figure 1. Construction of drug-disease heterogeneous network DrDisNet. R and D are the similarity 
matrix of drugs and diseases, respectively. A is the association matrix between drugs and diseases, 
while AT is the transpose of A. 

2.2.2. Disease Network Construction 

Disease similarities play an important role in disease network construction. Wang et al. [26] used 
the MeSH disease term for each disease to calculate their respective semantic values. Next, semantic 
similarity was calculated from the semantic values of any two diseases. A larger number of common 
annotation terms among the two diseases indicated higher semantic similarity. 

DisNet consisted of all pairs of diseases with similarity values greater than 0. The weight of any 
edge in the network was set to the similarity among the diseases to which the edge was connected. 
Matrix d dN N×∈D R   denotes DisNet where 𝑫௜௝ is the similarity between diseases 𝑑௜ and 𝑑௝ and 𝑁ௗ is the number of diseases.  
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2.2.3. Edges between DrNet and DisNet 

We considered the known associations between drugs and diseases as the edges that connected 
the corresponding nodes in DrNet and DisNet. The edge set was represented as  A ∈ R୒౨×୒ౚ, where 
each row represented a drug and each column represented a disease. 𝑨௜௝ is 1 when drug 𝑟௜ has a 
known association with 𝑑௝, while it is 0 when an association is not observed between 𝑟௜ and 𝑑௝. 

Finally, the heterogeneous drug–disease network DrDisNet was constructed by connecting 
DrNet and DisNet via known drug–disease associations (Figure 1). To concisely illustrate the 
subsequent methods, we assumed that 𝑁௥ = 5 and 𝑁ௗ = 4. 

2.3. Prediction Model Based on CNN and BiLSTM Module 

We propose a novel prediction model based on CNN and BiLSTM—named as CBPred—which 
is shown in Figure 2. The convolution module on the left part of CBPred was introduced to learn the 
association representation from the perspective of the original features of a node pair (𝑟௜,  𝑑௝) . 
Additionally, because the path from 𝑟௜ to 𝑑௝ also responds to the associated tendency between 𝑟௜ 
and 𝑑௝, a BiLSTM module on the right part was used to integrate topological information into the 
path representation. 
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Figure 2. Construction of the framework based on the convolutional neural network and bidirectional 
long short-term memory for learning the original and path representations. 

2.3.1. Embedding Layer 

Feature matrix of drug and disease for the CNN module. Normally, if the similarity of a drug 
is more consistent with the association of a disease, the more likely it is that they are associated and 
vice versa. Therefore, we spliced up and down the similarities between the drug nodes and 
associations between drug and disease nodes, as shown on the left side of the feature matrix. 

We use drug 𝑟ଵ and disease 𝑑ସ as an example to illustrate the integration process (Figure 3). 
The first row of the drug similarity matrix 𝑹 indicates the similarity to other drugs with 𝑟ଵ, and the 
fourth of the 𝑨୘ expresses the association drugs with 𝑑ସ. Because 𝑟ଵ is similar to 𝑟ସ and 𝑟ହ, 𝑟ଷ and 𝑟ହ are also both related to 𝑑ସ. Thus, 𝑟ଵ is likely to be involved in the disease process of 𝑑ସ. 

Similarly, if the relationship of 𝑟ଵ and 𝑑ସ are more consistent with each disease, they will show 
a higher propensity for association. 𝑟ଵ is associated with 𝑑ଶ  and 𝑑ଷ, while 𝑑ସ is similar to 𝑑ଵ 𝑎𝑛𝑑 𝑑ଷ, 
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and thus, 𝑟ଵ may associate with 𝑑ସ. Based on this information, we integrated the first row of 𝑨 and 
the fourth row of 𝑫, as shown in the right part of the feature matrix. The final integration result is 
represented by the feature matrix ( )2 r dN +N×∈F R . Furthermore, the first and second rows of 𝑭 are 
feature embedding of the drug and disease, respectively. 
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Figure 3. Integration process of drug and disease nodes to construct the feature matrix in the CNN 
module of our model and path set in the BiLSTM module of our model. 

Path sequence features for the BiLSTM module. It is well known that if two drugs are very 
similar, they are likely involved in a similar disease process. For example, for the path, 𝑟ଵ–𝑟ହ–𝑑ସ, 𝑟ଵ 
is similar to 𝑟ହ, and 𝑟ହ is associated with 𝑑ସ, indicating an association between 𝑟ଵ and 𝑑ସ. Based on 
similar logic, we can obtain the following path: Because 𝑑ଷ is similar to 𝑑ସ and 𝑟ଵ is associated with 𝑑ଷ, 𝑑ସ may be treated by 𝑟ଵ. Thus, there is a second path, 𝑟ଵ–𝑑ଷ–𝑑ସ. Finally, we enumerate the path 
from the starting point 𝑟௦  to the end of 𝑑௧  in the network to obtain the path set P(ୱ,୲) ∈R୒౦౗౪౞ ×ଵ × (୒౨ ା ୒ౚ), where 𝑁௣௔௧௛ is the number of paths between nodes 𝑟௦ and 𝑑௧, and the i-th path 
sequence in the 𝑷(௦,௧) defined as 𝒑௜. 𝑷(ଵ,ସ) is inputted into the bidirectional LSTM module as the 
path feature of the pair (𝑟ଵ, 𝑑ସ) to learn the representation at the path level. 

2.3.2. Convolutional Module on the Left 

The feature matrix  𝑭  is fed into the convolutional module to learn a latent original 
representation of node pair (𝑟ଵ, 𝑑ସ) (Figure 4). To capture the boundary information of 𝑭, we first 
pad 𝑭 to obtain (2 2) (2 )

conv
conv conv r dp p N N× + × × + +∈P R , where 𝑝௖௢௡௩ is the number of padding layers around 𝑭. For the first convolution layer, to apply the filter operators to the feature areas of w୦ ×  w୵ , we set 

the size of filter as (w୦,  w୵ ).  
Next, we can obtain the feature map 1

(2 3) (2 1)conv conv r dh wp p N N Nconvw w× − + × × + + − + ×∈Z R in this layer, where 𝑁௖௢௡௩ is the number of filters. We used the subscript of the first element in the filter in 𝑷௖௢௡௩ as the 
filter position. For example, 𝑾௖௢௡௩(𝑖, 𝑗, 𝑘) indicates that the kth filter starts at the feature area at ith 
row and jth column in 𝑷௖௢௡௩. The area and process of convolution are defined as follows: 𝑷௖௢௡௩(𝑖, 𝑗)  =  𝑷௖௢௡௩(𝑖: 𝑖 + 𝑤௛ − 1, 𝑗: 𝑗 +  𝑤௪ −  1) (2) 𝒁ଵ(𝑖, 𝑗, 𝑘)  =   𝑔൫𝑷௖௢௡௩(𝑖, 𝑗)  ×  𝑾௖௢௡௩(𝑖, 𝑗, 𝑘) + 𝒃௖௢௡௩(𝑘)൯ (3) 𝑖 ∈ ሾ1, 2 + 2 ×  𝑝௖௢௡௩  − 𝑤௛  +  1ሿ, 𝑗 ∈ ሾ1, 𝑁௥ + 𝑁ௗ + 4 −  𝑤௪  +  1ሿ, 𝑘 ∈ ሾ1, 𝑁௖௢௡௩ሿ (4) 
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Figure 4. Learning process of the original representation of drug–disease pair by convolution and 
pooling on the left part. 

1
( , , )i j kZ  is the first convolution output in which the kth filter is sliding to the ith row and jth 

column of 𝑷௖௢௡௩. 𝑔 is a nonlinear activation function (rectified linear unit, ReLU), and 𝒃௖௢௡௩ is a bias 
vector. To integrate features and reduce parameters, we use average pooling to compress the data in 𝒁ଵ  in the pooling layer. The size of the pooling window is set to a × b, from which we obtain 

2 3 2 1

1

conv h conv r d w Nconv
p w p N N w

a b
× ×

× − + × + + − +

∈Q R . We then use 𝑸ଵ as the input to the second convolution layer, and 

obtain a similar output 
2 11 conv r d w Nconv

p N N w

b
×

× + + − +×
∈q R through the second average pooling. 𝒒  is then 

flattened to obtain an original representation of the node pair (𝑟ଵ, 𝑑ସ), denoted as 𝒗𝒏： 𝒗𝒏  =  𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝒒) (5) 

2.3.3. BiLSTM Module on the Right 

The LSTM module controls the information flow through the gate mechanism, while the BiLSTM 
module learns the context representation of the input sequence from a forward LSTM and reverse 
LSTM [27,28]. The previously obtained path set 𝑷(ଵ,ସ) was fed into the BiLSTM module on the right 
part to learn the path representation of 𝑟ଵ and 𝑑ସ (Figure 5).  

There are three gates, the forget gate 𝒇௜௝௙ , input gate 𝒊௜௝௙ , and output gate 𝒐௜௝௙ , in the forward 
LSTM unit which control how much information from path sequences should be forgotten, inputted, 
and outputted, respectively. The formulas for the three gates were defined as follows: 

⎣⎢⎢
⎡𝒇𝒊𝒋௙𝒊௜௝௙𝒐௜௝௙ ⎦⎥⎥

⎤  =  ቈ𝜎𝜎𝜎቉ ቀ𝑾𝒈𝒇 ቂ𝒉௜(௝ିଵ)௙ ⊕ 𝒙௜௝ቃ + 𝒃𝒈௙ቁ (6) 

where 𝜎 is the sigmoid activation function and ⊕ is the connection operator. The upper corner f 
indicates that this is a parameter of the forward LSTM unit; for example, 𝑾𝒈௙  and 𝒃𝒈௙ are the weight 
matrix and bias vector of the gate in the forward unit, respectively. 𝒙௜௝ represents the embedding of 
the jth node of the ith path 𝒑௜ in the path set 𝑷(ଵ,ସ). 
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Figure 5. Learning process of the path representation in the BiLSTM module. 

Forward LSTM linearly integrates the candidate state 𝒄ො௜(௝ ି ଵ)௙  of 𝒙௜(௝ ି ଵ)  with the candidate 
state 𝒄ො௜௝௙  of 𝒙௜௝ and determines how much information in the 𝒄ො௜(௝ ି ଵ)௙  should be retained by 𝒇௜௝௙  and 
how much information in the 𝒄ො௜௝௙  are accepted by 𝒊௜௝௙ . Thus, obtaining the state 𝒄௜௝௙  of the sequence 
consisting of the 1st to jth nodes in the 𝒑௜: 𝒄௜௝௙  =  𝒇௜௝௙ ⨀𝒄ො௜(௝ିଵ)௙ +  𝒊௜௝௙ ⨀𝒄ො௜௝௙  (7) 

where ⨀ is the element-wise product operator. The candidate state 𝒄ො௜௝௙  of 𝒙௜௝  is obtained by 
comprehensively considering the information from the previous node and 𝒙௜௝, defined as follows: 𝒄ො௜௝௙  =   𝑡𝑎𝑛ℎ ቀ𝑾𝒄௙ቀ𝒉௜(௝ିଵ)௙ ⊕ 𝒙௜௝ቁ  + 𝒃𝒄௙ቁ (8) 

where 𝑾𝒄௙ and 𝒃𝒄௙ are the weight matrix and bias vector of the candidate state, respectively. Finally, 
how much information in 𝒄௜௝௙  is adjusted by 𝒐௜௝௙  as the hidden state 𝒉௜௝௙  output is expressed as 
follows: 𝒉௜௝௙  =  tanh൫𝒐௜௝௙ ⨀𝒄௜௝௙ ൯ (9) 

where 𝒉௜௝௙  is a forward path representation of the 1st to jth nodes in 𝒑௜. We take the hidden state 𝒉௜௟௙  
of the last node as the representation of 𝒑௜, where l is the length of 𝒑௜. The inverted sequence 𝒑௜௕ of 𝒑௜  is then inputted into a structurally similar backward LSTM module to obtain a backward 
representation 𝒉௜௟௕  of 𝒑௜௕. The upper corner b indicates that this is a parameter of the backward LSTM 
module. Thus, the path representation of the ith path in the bidirectional LSTM module is given by 
the following formula: 𝒉௜  =  𝒉௜௟௙ ⊕ 𝒉௜௟௕ . (10) 

2.3.4. Attention Mechanism at Path Level 

From the perspective of 𝑷(ଵ,ସ), not all paths equally contributed to the association prediction of 𝑟ଵ and 𝑑ସ. An attention mechanism at the path level was introduced to extract paths important in the 
association between the drug and disease [29]. This yields: 𝒖௜  =  tanh൫𝑾௣𝒉௜ + 𝒃௣൯ (11) 

𝛼௜  =  𝑒𝑥𝑝൫𝒖௜𝒖௣୘൯∑ 𝑒𝑥𝑝൫𝒖௝𝒖௣୘൯௝  (12) 
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𝒗𝒑  =  ෍ 𝛼௜𝒉௜𝒊  (13) 

where 𝒖௜ is a hidden representation of 𝒉௜. The path level context vector 𝒖௣ attempts to generalize 
the path strongly contributing to the association between r1 and d4 from 𝑷(ଵ,ସ) , while 𝒖௣୘  is the 
transpose of 𝒖௣ . Next, we measured the importance of 𝒑௜  in 𝑷(ଵ,ସ)  by comparing the similarity 
between 𝒖௜  and 𝒖௣ , and obtained the attention weight α୧ through the softmax function. 𝒗𝒑 is a 
path vector, which is a weighted sum of all information from path set 𝑷(ଵ,ସ) based on the attention 
weights and path representations. 

2.3.5. Combined Strategy 

The original representation 𝒗௡ and path representation 𝒗௣ are both high-level representations 
of 𝑟ଵ and 𝑑ସ and can be used as features for association classification. Thus, we projected the two 
representations 𝒗௡ and 𝒗௣ into the association distribution of C classes via the SoftMax layer while 
choosing the cross-entropy loss to evaluate the error between the known association distribution and 
prediction distribution: 𝒔௡  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾௡𝒗௡  +  𝒃௡) (14) 

𝑙𝑜𝑠𝑠௡  =  − ෍ ෍ 𝒑௖௚(𝑡)஼
௖ ୀ ଴௧∈் × log(𝒔௡(𝑡)) (15) 

𝒔௣  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥൫𝑾௣𝒗௣ + 𝒃௣൯ (16) 

𝑙𝑜𝑠𝑠௣  =  − ෍ ෍ 𝒑௖௚(𝑡)஼
௖ ୀ ଴௧∈் × log(𝒔௣(𝑡)) (17) 

where 𝑡 is the node pair in the training set 𝑇, 𝒑௖௚(𝑡) is the one hot embedding of 𝑡, and 𝒔௡(𝑡) and 𝒔௣(𝑡) are the predicted scores of 𝑡 from the CNN and BiLSTM modules, respectively. We designed 
a combined strategy for the model to make full use of the original representation 𝒗௡  and path 
representation 𝒗௣. We used the Adam optimization algorithm to optimize the objective function [30]. 
Let λ be a hyperparameter to control the contribution of the original representations and path 
representations of the node pairs for the final predicted score. 𝒔 =  𝜆𝒔௡ + (1 − 𝜆)𝒔௣ (18) 

3. Experimental Evaluation and Discussion 

3.1. Evaluation Metrics 

We performed 5 fold cross-validation 20 times to evaluate the performance of our prediction 
method and the corresponding results were averaged [31,32]. First, known associated drug–disease 
pairs were divided randomly into five subsets and treated as positive samples. The remaining pairs 
were considered negative samples. Because the number of positive samples was much smaller than 
the number of negative samples in our dataset (approximately 1 to 169), we sampled a matching 
number of non-associating pairs randomly and divided them into five subsets to reduce the impact 
of class imbalance in predicting the results. Particularly, in each fold cross-validation, we used four 
positive and negative subsets as the training set for model training and the remaining positive 
samples as the testing set for performance evaluation. Finally, a higher rank for the positive samples 
indicated better the prediction performance of the method. 

A disease with a score higher than the threshold θ indicates that it is identified as a positive 
sample and vice versa. Thus, the TPRs (true-positive rates) and FPRs (false-positive rates) under 
various θ can be calculated as follows: 
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𝑇𝑃𝑅 =   𝑇𝑃𝑇𝑃 +  𝐹𝑁 ,     𝐹𝑃𝑅 =    𝐹𝑃𝑇𝑁 +  𝐹𝑃 (19) 

where TP (true-positive) and TN (true-negative) are the number of positive and negative samples 
which were correctly identified, while FN (false-negative) and FP (false-positive) are the number of 
positive and negative samples which were misidentified [33]. The receiver operating characteristic 
(ROC) curve can be drawn according to the TPR and FPR under each θ [34].  

A ROC curve was constructed for each drug, and the area under the ROC curve (AUC) was used 
to evaluate the predictive performance of the method for the specific drug [35,36]. The average AUC 
of all drugs is considered as the comprehensive performance of the prediction model. 

However, in most cases of class imbalance, the precision–recall (P–R) curves are more 
informative than the ROC curve [37]. Precision is the proportion of true-positive samples in all 
identified positives and recall is the ratio of true-positives among the samples with known 
associations [38]. Therefore, we used the P–R curve as another measurement to evaluate the 
performance of each method. The area under the P–R curve (AUPR) is another evaluation metric that 
focuses on true-positive samples [39]. The precision rates and recall rates can be defined as follows: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   𝑇𝑃𝑇𝑃 +  𝐹𝑃 , 𝑅𝑒𝑐𝑎𝑙𝑙  =    𝑇𝑃𝑇𝑃 +  𝐹𝑁. (20) 

Additionally, biologists typically select the top part of the predictive result for further validation 
in wet-lab experiments. Thus, the recall rates of the top k candidate drug-related diseases are more 
important because they reveal the number of successfully identified positive samples. We calculated 
the recall rates of the top k candidate to demonstrate the performance of each method on the top 
rankings of the predictive result. 

3.2. Comparison with Other Methods 

To evaluate the performance of CBPred, we compared this method with a series of state-of-the-
art methods for predicting associations between drugs and diseases, including MBiRW [15], LRSSL 
[1], SCMFDD [18], and HGBI [16]. 

The hyperparameter of CBPred, λ, was selected from {0.1, 0.2, …, 0.9}. Since CBPred yielded 
better performances for both λ = 0.1 and 0.2, we chose 0.12 as the final value of λ after fine tuning. 
The learning rate was set as 0.001. For the first convolutional layer, we set the kernel size = (3, 5), out 
channel = 16, and pooling size = 2. For the second convolutional layer, kernel size = (3, 11), out channel 
= 32, and pooling size = 2. For fair comparison, the parameters in other methods were adjusted 
according to the authors’ suggestions (i.e., α = 0.3, c = −11, d = log(9999), l = r = 2 for MBiRW, μ = λ = 
0.01, γ = 2, k = 10 for LRSSL, k = 45%, μ = 1, λ = 4 for SCMFDD, and α = 0.4 for HGBI). 

As shown in Figure 6a, CBPred showed the best performance for 763 drugs (AUC = 0.955). 
Specifically, CBPred showed a 25.3% higher AUC than HGBI, 23.2% higher AUC than SCMFDD, 
12.7% higher AUC than MBiRW, and 12.4% higher AUC than LRSSL. We also show the predictive 
results of 15 well-characterized drugs in Table 1; CBPred achieved the best performance for 12 drugs. 
Both CBPred and LRSSL not only consider the nodes’ attributes based on node similarities, but also 
extract topological information of drug–disease heterogeneous networks. Thus, compared to other 
methods, CBPred and LRSSL achieved the best and second-best performances. Luo et al. constructed 
a random walk with a restart-based model, MBiRW, for predicting associations between drugs and 
diseases. It focuses on the topological information of the networks, while node attributes are ignored. 
Additionally, because the restart probability is difficult to determine, which may result in insufficient 
global topological information or excessive noise, the performance of MBiRW was worse than the 
second method, LRSSL. Zhang et al. applied a matrix factorization-based model, SCMFDD, for 
predicting novel associations, which relies on the adjacency matrices of the heterogeneous network. 
However, reducing the dimension of the feature vectors may lead to loss of the potential information. 
Thus, the performance of SCMFDD was worse than that of MBiRW but better than that of HGBI. 
Comprehensively, HGBI showed lower performance than the other methods because it was too 
dependent on the similarity of drugs and diseases 
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Figure 6. Two type of curves of CBPred and other methods for predicting performance evaluation. 
(a) Receiver operating feature characteristic (ROC) curves; (b) precision–recall (P–R) curves. 

Table 1. Prediction results of CBPred and four other methods for 15 drugs in terms of the area 
under the receiver operating characteristic curve (AUC). 

Disease Name 
AUC 

CBPred LRSSL SCMFDD HGBI MBiRW 
Ave AUC on 

763 drugs 0.955 0.831 0.723 0.702 0.828 

ampicillin 0.909 0.885 0.861 0.786 0.906 
cefepime 0.953 0.932 0.898 0.910 0.872 

cefotaxime 0.906 0.902 0.911 0.870 0.967 
cefotetan 0.889 0.892 0.897 0.908 0.866 
cefoxitin 0.913 0.911 0.899 0.909 0.907 

ceftazidime 0.940 0.925 0.939 0.924 0.916 
ceftizoxime 0.902 0.894 0.841 0.823 0.854 
ceftriaxone 0.863 0.925 0.808 0.779 0.851 

ciprofloxacin 0.917 0.893 0.810 0.790 0.844 
doxorubicin 0.921 0.749 0.361 0.486 0.918 

erythromycin 0.859 0.817 0.769 0.734 0.857 
itraconazole 0.942 0.543 0.701 0.560 0.897 
levofloxacin 0.910 0.852 0.824 0.819 0.867 
moxifloxacin 0.909 0.792 0.841 0.849 0.826 

ofloxacin 0.899 0.884 0.851 0.845 0.896 
The bold values indicate the higher AUCs.  

The precision–recall curves of each method are demonstrated in Figure 6b. The average AUPR 
of CBPred was greater than those of all the other methods (AUPR = 0.182). Our method, CBPred,  
achieved a 17.0%, 16.9%, 13.7%, and 7.5% higher AUPR than HGBI, SCMFDD, MBiRW, and LRSSL, 
respectively. As shown in Table 2, CBPred showed the best performance for 12 of the 15 well-
characterized drugs. 

Table 2. Prediction results of CBPred and four other contrast methods for 15 drugs in terms of the 
area under the precision–recall curve (AUPR). 

Disease Name AUPR 
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CBPred LRSSL SCMFDD HGBI MBiRW 
Ave AUPR on 763 drugs 0.182 0.107 0.013 0.012 0.045 

ampicillin 0.249 0.220 0.059 0.089 0.058 
cefepime 0.258 0.562 0.101 0.137 0.279 

cefotaxime 0.276 0.273 0.072 0.098 0.266 
cefotetan 0.177 0.724 0.093 0.131 0.152 
cefoxitin 0.227 0.136 0.051 0.081 0.186 

ceftazidime 0.201 0.187 0.132 0.164 0.119 
ceftizoxime 0.328 0.168 0.125 0.174 0.153 
ceftriaxone 0.269 0.138 0.081 0.101 0.123 

ciprofloxacin 0.471 0.256 0.061 0.074 0.071 
doxorubicin 0.164 0.159 0.006 0.007 0.075 

erythromycin 0.194 0.034 0.013 0.013 0.052 
itraconazole 0.334 0.057 0.008 0.006 0.097 
levofloxacin 0.263 0.512 0.086 0.111 0.177 
moxifloxacin 0.301 0.158 0.095 0.126 0.098 

ofloxacin 0.221 0.214 0.114 0.158 0.095 
The bold values indicate the higher AUPRs.  

A Wilcoxon test to evaluate the prediction results of 763 drugs revealed that CBPred significantly 
outperformed the other methods [40–42]. These results were observed using a p-value threshold of 
0.05, with CBPred showing better performance in terms of both AUCs and AUPRs (Table 3). 

Table 3. Results of Wilcoxon test on CBPred and four other contrast methods for 763 drugs. 

p-Value between CBPred 
and Another Method LRSSL SCMFDD HGBI MBiRW 

p-value of ROC curve 3.577 10-13 1.218 10-75 1.460 10-80 3.724 10-32 
p-value of P–R curve 2.591 10-15 1.122 10-76 6.075 10-80 4.577 10-38 

Among the top k-ranked drugs, a higher recall rate indicated that drug-associated diseases were 
correctly identified. Our method, CBPred, consistently outperformed the other methods under 
different k values, as shown in Figure 7, and ranked 76.38% for the top 30 drugs, 85.78% for the top 
60, and 92.54% for the top 120. Zhang’s method, SCMFDD, showed very similar results to Wang’s 
method, HGBI, for most of the recall rates, with the former ranked 27.97%, 41.75%, and 55.82% for 
the top 30, 60, and 120 drugs, respectively, while the latter ranked 25.70%, 37.39%, and 51.57%. The 
recall of LRSSL was higher than that of MBiRW before the top 120, after which it was surpassed. This 
may be because the k-nearest neighbors algorithm is utilized in the process of LRSSL, which may 
make the prediction effect too dependent on neighboring node information, causing difficulties in 
predicting isolated nodes. Luo’s method, MBiRW, captured the global information for the drug–
disease network and local topology of the node through random walk with restart algorithm, which 
showed better results than LRSSL. 

In addition, to confirm the performance of CBPred from another perspective, we constructed a 
new drug–disease network where the disease similarities are calculated using disease ontology and 
disease-related genes according to Cheng’s method [43]. The ROC and P–R curves of CBPred and 
other methods are shown in Supplementary Materials Figure S1. Our method, CBPred, still achieved 
the best performance under the new drug–disease network, which also illustrated that CBPred was 
effective when the disease ontology and disease-related genes were taken into account. 
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Figure 7. Top k recall rate of CBPred and other methods. 

3.3. Case Studies of Five Drugs 

To demonstrate the ability of CBPred to discover novel drug–disease associations, we conducted 
case studies of ciprofloxacin, ceftriaxone, ofloxacin, ampicillin, and levofloxacin and then analyzed 
their top ten candidate diseases (Table 4). 

The impacts of chemicals (i.e., drugs) on human health are presented in the Comparative 
Toxicogenomics Database (CTD). This information was manually collected and verified from 
published works. DrugBank records various attributes of the drug itself, such as associations with 
diseases. As shown in Table 3, 12 candidates are supported by direct evidence in CTD, and 9 
candidates are involved according to DrugBank. These records indicate that these candidate diseases 
are treated with the corresponding drugs. 

Clinical Trials is a database of clinical trials conducted worldwide and provides access to various 
ongoing and completed experimental information, with detailed patient descriptions and 
experimental dosing regimens and treatment outcomes. We selected only records with a status of 
“Completed” as our support material. The clinical trial results showed that our drug has a therapeutic 
relationship with the candidate disease. PubChem is a public database containing information on 
chemicals and their biological activities and is supported by the National Institutes of Health. Fifteen 
candidates were included from Clinical Trials and 11 candidates were included by PubChem. This 
demonstrated that the candidates are supported by clinical trials. 

In addition to the manually verified drug–disease associations, the CTD database also contains 
inferred associations from literature that are temporarily unconfirmed. Four candidates were 
included by the inferred part of CTD, which shows that they are likely to have associations. Direct or 
indirect descriptions of all disease candidates for five drugs were found, revealing that CBPred can 
identify drug–disease association candidates with high reliability and accuracy. 

Table 4. The top 10 candidates of 5 popular drugs supported by databases. The associations involved 
in the table are all inferred by the literature in the comparative toxicogenomic database or included 
by databases. 

 Rank Disease Name Description Rank Disease Name Description 

C
ip

ro
flo

xa
ci

n 1 Conjunctivitis, Bacterial ClinicalTrials 6 
Campylobacter 

Infections 
Drugbank 

2 Chlamydia Infections CTD 7 Neurocysticercosis Drugbank 

3 
Thrombocytopenic, 

Idiopathic 
Drugbank 8 Respiration Disorders ClinicalTrials 

4 Acanthamoeba Keratitis Drugbank 9 Anthrax CTD 



Cells 2019, 8, 705 13 of 16 

 

5 Scalp Dermatoses PubChem 10 Skin Diseases CTD 

C
ef

tr
ia

xo
ne

 

1 Panic Disorder Drugbank 6 Bacteroides Infections PubChem 

2 Respiration Disorders ClinicalTrials 7 
Bone Diseases, 

Infectious 
ClinicalTrials 

3 
Respiratory Distress 

Syndrome, Adult 
ClinicalTrials 8 Multiple Myeloma Drugbank 

4 Rickettsia Infections PubChem 9 Rectal Neoplasms 
inferred candidate 

by 2 literature 

5 
Respiratory Distress 
Syndrome, Newborn 

ClinicalTrials 10 Maxillary Sinusitis Drugbank 

O
flo

xa
ci

n 

1 Trichuriasis 
inferred candidate 

by 1 study 
6 

Pulmonary Valve 
Stenosis 

PubChem 

2 Corneal Ulcer PubChem 7 Schizophrenia CTD 

3 Nausea CTD 8 Peritonitis CTD 

4 Rectal Neoplasms ClinicalTrials 9 Mouth Diseases CTD 

5 Epididymitis Drugbank 10 Proteus Infections CTD 

A
m

pi
ci

lli
n 

1 Keratosis 
inferred candidate 

by 1 literature 
6 Pneumonia, Bacterial 

CTD, 
ClinicalTrials 

2 Bacterial Infections CTD 7 Toothache ClinicalTrials 

3 
Respiratory Syncytial 

Virus Infections 
inferred candidate 

by 1 study 
8 

Respiratory Tract 
Fistula 

PubChem 

4 
Respiratory Tract 

Diseases 
ClinicalTrials 9 Mouth Diseases ClinicalTrials 

5 Burns CTD 10 Sarcoma, Ewings PubChem 

Le
vo

flo
xa

ci
n 

1 Pneumonia, Mycoplasma ClinicalTrials 6 
Respiratory Syncytial 

Virus Infections 
CTD 

2 Rhinitis PubChem 7 Soft Tissue Infections Drugbank 

3 Bacteroides Infections PubChem 8 
Respiratory Tract 

Fistula 
PubChem 

4 Tuberculosis, Pulmonary ClinicalTrials 9 Listeriosis PubChem 

5 
Respiratory Tract 

Diseases 
ClinicalTrials 10 Mouth Diseases ClinicalTrials 

3.4. Prediction of Novel Drug–Disease Associations 

After evaluating CBPred’s prediction performance through five-fold cross-validation, case 
studies, and Wilcoxon test, we applied CBPred to all drugs. All known drug–disease associations 
were considered as the training set to train CBPred’s prediction model. Many high-confidence 
candidate diseases of drugs were obtained via CBPred and are listed in Supplementary Materials 
Table ST1. 

4. Conclusions 

A novel method based on a CNN and BiLSTM—CBPred—was developed for predicting 
potential disease indications for drugs. The CNN module of the CBPred captures complex and non-
linear relationships among drug similarities, disease similarities, and drug–disease associations 
about a drug–disease pair. The path information was deeply integrated using the BiLSTM module of 
this method. We also established an attention mechanism at the path level to discriminate the 
different contributions of the path, which enhanced the prediction performance of CBPred. The 
experimental results revealed that CBPred outperformed other state-of-the-art methods in terms of 
both AUCs and AUPRs. Case studies of five drugs confirmed the ability of CBPred to discover 
potential disease indications for drugs. Our method, CBPred, is a prioritization tool that identifies 
reliable candidate drug–disease associations for subsequent biological validation in wet-lab 
experiments. 
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Supplementary Materials: Table S1: The top 10 potential candidates for 763 drugs. Figure S1: Two type of curves 
of CBPred and other methods under a new drug–disease network. 
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