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Abstract: Because traditional treatment strategies for advanced gastrointestinal (GI) cancers often have
a limited therapeutic effect, immunotherapy could be a viable approach for the therapy of advanced GI
cancers, considering the recent success of immunotherapy in treating various refractory malignancies,
including the DNA mismatch repair-deficient GI cancers. However, only a subset of cancer patients
currently respond to immunotherapy. Thus, it is important to identify useful biomarkers for predicting
cancer immunotherapy response. The tumor suppressor gene ARID1A has a high mutation rate in GI
cancers and its deficiency is correlated with the microsatellite instability (MSI) genomic feature of
cancer. We investigated the correlation between ARID1A mutations and tumor immunity using three
GI cancer genomics datasets by the bioinformatic approach, and found that diverse antitumor immune
signatures were more highly enriched in ARID1A-mutated GI cancers than in ARID1A-wildtype GI
cancers. The elevated immune activity in ARID1A-mutated GI cancers was associated with the higher
tumor mutation burden and lower tumor aneuploidy level, as well as a higher proportion of MSI
cancers in this GI cancer subtype. Moreover, we found that ARID1A-mutated GI cancers more highly
expressed PD-L1 than ARID1A-wildtype GI cancers. The elevated antitumor immune signatures
and PD-L1 expression could contribute to the more active immunotherapeutic responsiveness and
better survival prognosis in ARID1A-mutated GI cancers than in ARID1A-wildtype GI cancers in
the immunotherapy setting, as evidenced in three cancer cohorts receiving immunotherapy. Thus,
the ARID1A mutation could be a useful biomarker for identifying GI cancer patients responsive
to immunotherapy.

Keywords: ARID1A mutations; gastrointestinal cancer; cancer genomics; tumor immunity; tumor
immunotherapy response

1. Introduction

Gastrointestinal (GI) cancers are prevalent and account for a large number of cancer deaths
globally [1]. Traditional treatment strategies for advanced GI cancers often have a limited therapeutic
effect [2]. With the recent success of immunotherapy in treating various refractory malignancies [3–6],
the immunotherapy strategy has become a viable approach for the therapy of advanced GI cancers [7].
A notable example is that two immune checkpoint inhibitors, pembrolizumab and nivolumab, have been
clinically used for treating DNA mismatch repair-deficient GI cancers [7]. Despite these successes
of cancer immunotherapy, a large proportion of cancer patients failed to respond to such therapy.
Abundant evidence indicates that cancer immunotherapy response is associated with certain genetic or
genomic features, such as PD-L1 expression [8], DNA mismatch repair deficiency [9], tumor mutation
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burden (TMB) [10], and tumor aneuploidy [11]. In addition, the mutation of specific genes in cancer
may have a correlation with cancer immunotherapy response, e.g., the positive correlation of TP53 and
KRAS mutations with immunotherapy response in lung cancer [12].

ARID1A (AT-rich interaction domain 1A) is a component of the ATP-dependent chromatin
remodeling complex SNF/SWI which is involved in transcriptional activation of genes normally
repressed by chromatin. ARID1A is frequently mutated in a wide variety of cancers [13] and its mutation
is associated with a poor prognosis in certain cancers such as liver cancer [14] and breast cancer [15].
Previous studies have shown that ARID1A mutations were often mutually exclusive with TP53
mutations in cancer, indicating that ARID1A may also play an important role in tumor suppression [16].
Many studies have explored the association of ARID1A deficiency with GI cancers [17–20] and revealed
that the ARID1A loss was associated with poor prognosis in GI cancers [17,21].

A number of studies have demonstrated that ARID1A deficiency may promote antitumor immunity,
as well as PD-L1 expression [16,22,23]. The positive correlation of ARID1A deficiency with tumor
immunity has been attributed to the elevated tumor mutation load caused by the deficiency of DNA
mismatch repair that is regulated by ARID1A [16]. In this study, using three publicly available GI cancer
genomics datasets [24–26], we explored the correlation of ARID1A mutations with tumor immunity in
GI cancers by a bioinformatic approach. We confirmed that ARID1A mutations are associated with
elevated immune activity in GI cancers and demonstrated that the increased tumor mutation load
and reduced tumor aneuploidy in ARID1A-mutated GI cancers may explain the more active immune
signatures in ARID1A-mutated GI cancers versus ARID1A-wildtype GI cancers. Furthermore, we found
that ARID1A-mutated cancers likely exhibited a better survival prognosis than ARID1A-wildtype
cancers in the immunotherapy setting. The reason behind this observation could be that the elevated
immune activity and PD-L1 expression promote the immunotherapy response in ARID1A-mutated
cancers. This study is a bioinformatic analysis based on publicly available datasets, which furnishes
new insights into the association between ARID1A deficiency and antitumor immunity in GI cancers.

2. Results

2.1. ARID1A Mutations Are Associated with Elevated Immune Activity in GI Cancers

We found that diverse immune signatures (CD8+ T cells, NK cells, immune cytolytic activity,
activated CD4+ T cells, activated dendritic cells, MHC class I) consistently showed significantly higher
enrichment levels in ARID1A-mutated GI cancers than in ARID1A-wildtype GI cancers (Mann-Whitney
U test, P < 0.05) (Figure 1A). Moreover, we compared the ratios between the mean expression
levels of immune-stimulatory signature marker genes versus immune-inhibitory signature marker
genes. We found that the ratios (CD8+ T cells versus CD4+ regulatory T cells, pro-inflammatory
cytokines versus anti-inflammatory cytokines, and immune-promoting M1 macrophages versus
immune-inhibiting M2 macrophages) were significantly higher in ARID1A-mutated GI cancers than in
ARID1A-wildtype GI cancers (Mann-Whitney U test, P < 0.05) (Figure 1B). These results again suggest
that ARID1A mutations are associated with elevated immune activity in GI cancers. In addition,
we found that a number of human leukocyte antigen (HLA) genes were upregulated in ARID1A-mutated
GI cancers relative to ARID1A-wildtype GI cancers (Student’s t test, P < 0.05) (Figure 1C), suggesting
the higher immunity in ARID1A-mutated GI cancers.
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Figure 1. ARID1A-mutated gastrointestinal (GI) cancers have elevated immune activity compared to 
ARID1A-wildtype GI cancers. (A) Diverse immune signatures show significantly higher enrichment 
levels (ssGSEA scores) in ARID1A-mutated GI cancers than in ARID1A-wildtype GI cancers 
(Mann-Whitney U test, P < 0.05). (B) The ratios between immune-stimulatory signatures and 
immune-inhibitory signatures are significantly higher in ARID1A-mutated GI cancers than in 
ARID1A-wildtype GI cancers (Mann-Whitney U test P < 0.05). (C) A number of human leukocyte 

Figure 1. ARID1A-mutated gastrointestinal (GI) cancers have elevated immune activity compared
to ARID1A-wildtype GI cancers. (A) Diverse immune signatures show significantly higher
enrichment levels (ssGSEA scores) in ARID1A-mutated GI cancers than in ARID1A-wildtype GI
cancers (Mann-Whitney U test, P < 0.05). (B) The ratios between immune-stimulatory signatures
and immune-inhibitory signatures are significantly higher in ARID1A-mutated GI cancers than in
ARID1A-wildtype GI cancers (Mann-Whitney U test P < 0.05). (C) A number of human leukocyte antigen
(HLA) genes are more highly expressed in ARID1A-mutated GI cancers than in ARID1A-wildtype GI
cancers (Student’s t test, P < 0.05). (D) GSEA [27] identifies numerous immune-related KEGG [28]
pathways which are more highly enriched in ARID1A-mutated GI cancers than in ARID1A-wildtype
GI cancers. FDR: false discovery rate. * P < 0.05, ** P < 0.01, *** P < 0.001. STAD-1: The gastric cancer
genomics dataset from the Asian Cancer Research Group (ACRG) [24]. STAD-2: The gastric cancer
genomics dataset from The Cancer Genome Atlas (TCGA) [25]. COAD: The colon cancer genomics
dataset from TCGA [26]. They also apply to following figures.
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Furthermore, we found that numerous immune-related KEGG [28] pathways were significantly
upregulated in ARID1A-mutated GI cancers versus ARID1A-wildtype GI cancers by GSEA [27].
These pathways included allograft rejection, antigen processing and presentation, cytokine-cytokine
receptor interaction, cytosolic DNA-sensing, graft-versus-host disease, leishmania infection, natural
killer cell mediated cytotoxicity, NOD-like receptor signaling, RIG-I-like receptor signaling, T cell
receptor signaling, and Toll-like receptor signaling (Figure 1D). These results again demonstrate that
ARID1A mutations are associated with increased immune signatures in GI cancers.

2.2. ARID1A Mutations Are Associated with Increased TMB and Reduced Tumor Aneuploidy Levels in GI
Cancers

TMB positively correlates with tumor immune signatures and immunotherapy response [10,29],
while tumor aneuploidy levels negatively correlate with them [11]. We observed that ARID1A-mutated
GI cancers showed significantly higher TMB (defined as the total number of somatic mutations in
tumor) than ARID1A-wildtype GI cancers (Mann-Whitney U test, P < 0.001) (Figure 2A). In contrast,
ARID1A-mutated GI cancers exhibited significantly lower aneuploidy levels than ARID1A-wildtype GI
cancers (Mann-Whitney U test, P < 0.05) (Figure 2A). The significant correlations of ARID1A mutations
with TMB and tumor aneuploidy levels may explain why ARID1A-mutated GI cancers have elevated
immune activity compared to ARID1A-wildtype GI cancers.Cells 2019, 8, x FOR PEER REVIEW 5 of 14 
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with MMR protein MSH2 [16]. As a result, ARID1A deficiency may lead to impaired MMR and thus 

Figure 2. Associations among ARID1A mutations, tumor mutation burden (TMB), tumor aneuploidy
levels, and immune activity in GI cancers. (A) ARID1A-mutated GI cancers have significantly higher
TMB and lower aneuploidy levels than ARID1A-wildtype GI cancers (Mann-Whitney U test, P < 0.05).
* P < 0.05, ** P < 0.01, *** P < 0.001. (B) Logistic regression analysis shows that ARID1A mutation and
TMB are positive predictors and the aneuploidy level is a negative predictor for immune cytolytic
activity. TMB is defined as the total number of somatic mutations in tumor and tumor aneuploidy level
is defined as the tumor ploidy score assessed by ABSOLUTE [30].
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To correlate ARID1A mutation, TMB, and aneuploidy level with immune activity in GI cancers,
we built a logistic regression model with the three predictors (ARID1A mutation, TMB, and aneuploidy
level) for predicting immune cytolytic activity in GI cancers. As expected, both ARID1A mutation and
TMB were positive predictors and the aneuploidy level was a negative predictor for immune cytolytic
activity (Figure 2B). In all three GI cancer cohorts, ARID1A mutation showed a positive prediction
potential for immune cytolytic activity (β coefficient: β = 1.08, 0.64, 1.07, and P = 0.047, 0.061, 0.068 for
STAD-1, STAD-2, and COAD, respectively). These data again suggest that ARID1A mutations are
associated with increased immune signatures in GI cancers.

2.3. ARID1A Mutations Are Associated with the Microsatellite Instability (MSI) Genomic Feature of
GI Cancers

A previous study has shown that ARID1A can promote mismatch repair (MMR) by interacting
with MMR protein MSH2 [16]. As a result, ARID1A deficiency may lead to impaired MMR and thus
correlates with the MSI genomic feature of cancer [16]. Indeed, we observed a significant positive
correlation between the ARID1A mutation and the MSI genomic feature in all three GI cancer cohorts
(Fisher’s exact test, P < 0.001) (Figure 3A). Moreover, in both TCGA GI cancer cohorts, the ARID1A
mutation was significantly co-occurring with the mutation of MMR genes, including MSH2, MSH6,
MLH1, PMS2, MSH3, and MLH3 (Fisher’s exact test, P < 0.001) (Figure 3B). These results confirmed
that ARID1A deficiency is associated with the MSI genomic feature and impaired MMR in cancer [16].
As expected, MSI-high (MSI-H) GI cancers had significantly higher TMB than MSI-low (MSI-L) and
microsatellite stable (MSS) GI cancers (Mann-Whitney U test, P < 0.001) (Figure 3C). In contrast, MSI-H
GI cancers had significantly lower aneuploidy levels than MSI-L/MSS GI cancers (Mann-Whitney U
test, P < 0.001) (Figure 3C). Furthermore, we observed that MSI-H GI cancers exhibited significantly
stronger immune signatures than MSI-L/MSS GI cancers (Mann-Whitney U test, P < 0.01) (Figure 3D).
This is consistent with previous studies showing that MSI is associated with high immunogenic activity
in cancer [9]. Collectively, these data suggest that ARID1A mutations lead to MMR deficiency or MSI
thereby contributing to the elevated tumor immunity in GI cancers.

In addition, we compared the enrichment levels of immune signatures between ARID1A-mutated
and ARID1A-wildtype GI cancers within the MSI-L/MSS subtype. We found that the correlations
between ARID1A mutations and tumor immune signatures were significantly weaker in the MSI-L/MSS
subtype than in all GI cancers in STAD-2 and COAD (Supplementary Figure S1A). However, all these
immune signatures still showed significantly higher enrichment levels in ARID1A-mutated STAD-1 than
in ARID1A-wildtype STAD-1 within the MSS subtype (Mann-Whitney U test, P < 0.001) (Supplementary
Figure S1B). The immune cytolytic activity, MHC class I, and activated CD4+ T cells were more
highly enriched in ARID1A-mutated MSI-L/MSS STAD-2 than in ARID1A-wildtype MSI-L/MSS
STAD-2 (Mann-Whitney U test, P < 0.05). The ratios of pro-/anti-inflammatory cytokines and
M1/M2 macrophages were significantly higher in ARID1A-mutated MSI-L/MSS STAD-2 than in
ARID1A-wildtype MSI-L/MSS STAD-2 (Mann-Whitney U test, P < 0.05) (Supplementary Figure S1A).
These results suggest that some other factors beyond MSI could contribute to the elevated tumor
immunity in ARID1A-mutated GI cancers as well.
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Figure 3. ARID1A mutations are associated with the microsatellite instability (MSI) genomic feature of
GI cancers. (A) ARID1A-mutated GI cancers harbor a significantly higher proportion of MSI cancers
than ARID1A-wildtype GI cancers (Fisher’s exact test, P < 0.001). OR: odds ratio. (B) The ARID1A
mutation significantly co-occurs with the mutation of mismatch repair (MMR) genes (Fisher’s exact
test, P < 0.001). MUT: mutation. (C) The MSI-high (MSI-H) GI cancers have significantly higher
TMB and significantly lower aneuploidy levels than the MSI-low (MSI-L) and microsatellite stable
(MSS) GI cancers (Mann-Whitney U test, P < 0.001). (D) MSI-H GI cancers have significantly stronger
immune signatures than MSI-L/MSS GI cancers (Mann-Whitney U test, P < 0.01). * P < 0.05, ** P < 0.01,
*** P < 0.001.

2.4. ARID1A Mutations Are Associated with Elevated PD-L1 Expression in GI Cancers and Favorable Immune
Checkpoint Blockade Therapy Response in Cancer

We found that ARID1A-mutated GI cancers had significantly higher PD-L1 expression levels than
ARID1A-wildtype GI cancers (Student’s t test, P < 0.01) (Figure 4A). This is consistent with previous
studies showing that ARID1A deficiency is associated with elevated PD-L1 expression in GI cancers [23].
Furthermore, we explored the correlation between ARID1A mutations and immune checkpoint blockade
therapy response using three cancer immunotherapy (anti-PD-1/PD-L1/CTLA-4) response-associated
cohorts (Allen cohort [3], Hugo cohort [31], and Samstein cohort [32]). We compared the immunotherapy
response rates between ARID1A-mutated and ARID1A-wildtype cancers (melanoma) in the Allen
cohort and Hugo cohort and found that ARID1A-mutated cancers had higher response rates than
ARID1A-wildtype cancers (42.86% versus 25.81% in Allen cohort, and 100% versus 51.43% in Hugo
cohort) (Figure 4B). Moreover, we compared the overall survival (OS) between ARID1A-mutated and
ARID1A-wildtype cancers in the three cohorts. In the Samstein cohort (pan-cancer), ARID1A-mutated
cancers had a significantly better OS than ARID1A-wildtype cancers (log-rank test, P = 0.005) (Figure 4C).
Moreover, ARID1A-mutated GI cancers had a significantly better OS than ARID1A-wildtype GI
cancers in the Samstein cohort (log-rank test, P = 0.031) (Figure 4C). In the Allen and Hugo cohorts,
ARID1A-mutated cancers had favorable OS trends compared to ARID1A-wildtype cancers (log-rank test,
P = 0.095 and 0.333 for Allen and Hugo cohorts, respectively) (Figure 4C). Furthermore, we examined
the correlation between ARID1A mutations and OS in individual cancer types in the Samstein
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cohort and found that ARID1A mutations were associated with a better OS in head and neck cancer
(log-rank test, P = 0.01) (Supplementary Figure S2). Supplementary Figure S2 also shows that ARID1A
mutations were associated with more favorable OS trends in melanoma, lung cancer, breast cancer,
esophagogastric cancer, and colorectal cancer (log-rank test, P < 0.25). Nevertheless, the correlation
between ARID1A mutations and OS was unlikely to be significant in the three GI cancer cohorts
(STAD-1, STAD-2, and COAD) not receiving immunotherapy (Figure 4D). These data indicate that
ARID1A-mutated cancer patients respond favorably to immune checkpoint blockade therapy versus
ARID1A-wildtype cancer patients and therefore are likely to have a better OS prognosis. The more
active immunotherapeutic responsiveness in ARID1A-mutated cancer patients could be attributed to
the elevated tumor immunity and PD-L1 expression in this cancer subtype.Cells 2019, 8, x FOR PEER REVIEW 8 of 14 
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Figure 4. ARID1A mutations are associated with elevated PD-L1 expression in GI cancers and
favorable immunotherapy response in cancer. (A) ARID1A-mutated GI cancers have significantly
higher PD-L1 expression levels than ARID1A-wildtype GI cancers (Student’s t test, P < 0.01). * P < 0.05,
** P < 0.01, *** P < 0.001. (B) ARID1A mutations are associated with increased immune checkpoint
blockade therapy response rate in two melanoma cohorts (Allen cohort [3] and Hugo cohort [31]).
(C) Kaplan-Meier survival curves show that ARID1A-mutated cancers have a better overall survival
(OS) than ARID1A-wildtype cancers in the immunotherapy setting in three cohorts (Allen cohort [3],
Hugo cohort [31], and Samstein cohort [32]). (D) Kaplan-Meier survival curves show that the ARID1A
mutation exhibits no significant correlation with OS in the three GI cancer cohorts (STAD-1, STAD-2,
and COAD) untreated with immunotherapy.
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3. Discussion

Our bioinformatic analysis revealed that ARID1A mutations had a significant positive association
with tumor immunity in GI cancers. This significant association was attributed to the dysfunction of
ARID1A in regulating MMR proteins that results in deficient MMR and MSI genomic features in GI
cancers. Besides the elevated antitumor immune signatures, ARID1A-mutated GI cancers exhibited
significantly higher PD-L1 expression levels than ARID1A-wildtype GI cancers that would enhance the
immunotherapy response and accordingly result in a better survival prognosis in this cancer subtype.
Thus, the ARID1A mutation could be a predictive biomarker for the response to anti-PD-1/PD-L1
immunotherapy, as evidenced by the present and other studies [16,23,33].

Besides a number of immune-related pathways, many cancer-associated pathways were
upregulated in ARID1A-mutated GI cancers versus ARID1A-wildtype GI cancers, identified by
GSEA [27]. These cancer-associated pathways included apoptosis, cell cycle, DNA replication,
and p53 signaling. The associations between these pathways and ARID1A have been extensively
investigated [34–37]. Interestingly, all these pathways have been significantly associated with tumor
immunity [38–41]. Altogether, these data suggest the intertwined relationship between ARID1A
deficiency, ARID1A-mediated pathways, and tumor immunity.

The MSI genomic feature is a key factor responsible for the elevated immunity in ARID1A-mutated
GI cancers. However, we found that immune signature scores were still significantly higher in
ARID1A-mutated than in ARID1A-wildtype GI cancers within the MSI-L/MSS subtype (Supplementary
Figure S1). It suggests that other factors beyond MSI, such as the reduced tumor aneuploidy level and
deregulation of ARID1A-mediated pathways, may also contribute to the increased tumor immunity in
ARID1A-mutated GI cancers (Figure 5).
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Figure 5. The mechanism by which the ARID1A mutation contributes to the elevated tumor immunity
and tumor immunotherapy response, as well as favorable clinical outcomes in cancer patients receiving
anti-PD-1/PD-L1/CTLA-4 immunotherapy.

There are several limitations in this study. First, we only used publicly available datasets in this
study. The use of proprietary datasets to confirm the findings obtained from the analyses of public
datasets would improve this study. Second, although we obtained the novel finding that ARID1A
mutations had a significant negative correlation with tumor aneuploidy levels, experimental validation
could be necessary to confirm this finding from bioinformatic analysis. It would be a priority for our
future studies.
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4. Conclusions

The ARID1A mutation is associated with the elevated immune activity and PD-L1 expression in GI
cancers and could be a useful biomarker for identifying GI cancer patients responsive to immunotherapy.

5. Methods

5.1. Materials

Three GI cancer genomics datasets were utilized in this study, including STAD-1 (the gastric cancer
genomics dataset from the Asian Cancer Research Group (ACRG) [24]), STAD-2 (the gastric cancer
genomics dataset from The Cancer Genome Atlas (TCGA) [25]), and COAD (the colon cancer genomics
dataset from TCGA [26]). The STAD-1 gene expression profiling data was obtained from NCBI Gene
Expression Omnibus (GEO) (GSE62254) and its gene somatic mutation and clinical data was downloaded
from the publication [24]. The STAD-2 and COAD datasets were downloaded from the GDC data
portal (https://portal.gdc.cancer.gov/). In addition, we obtained three cancer genomics datasets
(Allen cohort [3], Hugo cohort [31], and Samstein cohort [32]) containing anti-PD-1/PD-L1/CTLA-4
immunotherapy response-associated clinical data from their associated publications.

5.2. Comparisons of Immune Signature Enrichment Levels between Two Groups of Samples

The enrichment level of an immune signature (represented by a set of marker genes) in a sample
was quantified by the single-sample gene-set enrichment analysis (ssGSEA) score [42]. A total of
six immune signatures were analyzed, including CD8+ T cells, NK cells, immune cytolytic activity,
activated CD4+ T cells, activated dendritic cells, and MHC class I. Their marker genes were obtained
from two publications [43,44]. We compared the enrichment levels of immune signatures between
two groups of samples using the Mann-Whitney U test. We also compared the ratios between
immune-stimulatory signatures and immune-inhibitory signatures (CD8+/CD4+ regulatory T cells,
pro-/anti-inflammatory cytokines, and M1/M2 macrophages) between two groups of samples on
the basis of the mean expression levels of immune-stimulatory/inhibitory signature marker genes.
The marker genes of all these immune signatures are listed in Supplementary Table S1. We performed
these analyses in R programming environment (R package “GSVA” for calculating ssGSEA scores and
R function “wilcox.test" for performing the Mann-Whitney U test).

5.3. Gene-Set Enrichment Analysis

Based on the three GI cancer gene expression profiling datasets (STAD-1, STAD-2, and COAD),
we used GSEA [27] to identify three sets of KEGG [28] pathways that were significantly upregulated
in ARID1A-mutated GI cancers relative to ARID1A-wildtype GI cancers using a threshold of FDR <

0.05. The pathways common in all three pathway sets were defined as the significantly upregulated
pathways in ARID1A-mutated GI cancers versus ARID1A-wildtype GI cancers.

5.4. Evaluation of Tumor Aneuploidy Levels

For each tumor sample, we used the ABSOLUTE algorithm [30] to calculate its ploidy score that
represented the tumor aneuploidy level.

5.5. Prediction of Tumor Immune Activity Using ARID1A Mutation, TMB, and Tumor Aneuploidy Level

We used logistic regression to assess the contributions of ARID1A mutation, TMB, and tumor
aneuploidy levels in predicting tumor immune activity. The three predictors ARID1A mutation
(mutated or wildtype), TMB (defined as the total somatic mutation count in tumor), and tumor
aneuploidy level (defined as the tumor ploidy score generated by ABSOLUTE [30]) were binary,
discrete, and continuous variables, respectively. The tumor immune cytolytic activity (high (upper
third) versus low (bottom third)) was predicted. We performed the logistic regression analysis in the

https://portal.gdc.cancer.gov/
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R programming environment using the R function “glm” to fit the binary model. We calculated the
standardized regression coefficients (β values) using the function “lm.beta” in R package “QuantPsyc”.

5.6. Survival Analyses

We compared OS between ARID1A-mutated and ARID1A-wildtype cancers in the three GI cancer
datasets and the three cancer immunotherapy response-associated datasets. Kaplan-Meier survival
curves were used to show the survival differences and the log-rank test was used to evaluate the
significance of survival time differences. We performed the survival analyses using R programming
function “survfit” in “survival” package.

Supplementary Materials: Supplementary materials are available online http://www.mdpi.com/2073-4409/8/7/
678/s1.
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ARID1A AT-rich interaction domain 1A
ATP Adenosine triphosphate
COAD Colon adenocarcinoma
CTLA4 Cytotoxic T-lymphocyte-associated protein 4
FDR False discovery rate
GDC Genomic Data Commons
GEO Gene Expression Omnibus
GSEA Gene-Set Enrichment Analysis
GI Gastrointestinal
HLA Human leukocyte antigen
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OS Overall survival
PD-1 Programmed cell death protein 1
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