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Abstract: Just as oncogene activation and tumor suppressor loss are hallmarks of tumor development,
emerging evidence indicates that tumor microenvironment-mediated changes in glycosylation play a
crucial functional role in tumor progression and metastasis. Hypoxia and inflammatory events regulate
protein glycosylation in tumor cells and associated stromal cells in the tumor microenvironment,
which facilitates tumor progression and also modulates a patient’s response to anti-cancer therapeutics.
In this review, we highlight the impact of altered glycosylation on angiogenic signaling and endothelial
cell adhesion, and the critical consequences of these changes in tumor behavior.

Keywords: glycosylation; tumor microenvironment; angiogenesis; metastasis; N-glycosylation;
O-glycosylation; glycosaminoglycans; endothelial; hypoxia; inflammation

1. Introduction

A thin layer of endothelial cells lines the interior surfaces of blood and lymphatic vessels, releases
signals that control vascular relaxation and contraction, secretes factors that regulate blood clotting,
and plays an important role in immune function and platelet adhesion. The relationship between
tumor cells and endothelial cells is complex. To sustain rapid cellular proliferation and a high
metabolic rate, solid tumors develop a vascular network that fulfills tumors’ need for nutrients and
oxygen and also aids in the removal of metabolic waste products [1]. In rapidly growing tumors,
an angiogenic switch, often triggered by hypoxia-induced expression of vascular endothelial growth
factor (VEGF) and other angiogenesis-inducing molecules, causes normally quiescent endothelial cells
to proliferate and sprout [2–6]. In the tumor microenvironment (TME), dysregulation of angiogenic
signals contributes to the development of hyper-permeable and highly heterogeneous blood vessels,
and also aids in entry of tumor cells into (intravasation) and out of (extravasation) the blood stream via
trans-endothelial migration [7]. Tumor-associated endothelial cells often exhibit decreased adhesion
between neighboring cells and with the extracellular matrix, with profound consequences relevant
to the development and treatment of cancer. Consequently, abnormally organized and leaky tumor
blood vessels contribute to tumor angiogenesis, inflammatory cell infiltration, metastasis, and the
development of resistance to chemotherapeutic agents in tumors of diverse origin [2,7–13].

Key instigators of angiogenic signaling, e.g., vascular endothelial growth factor receptor-2
(VEGFR-2), fibroblast growth factor receptor-1 (FGFR-1), Notch and Tie receptors, and critical
endothelial adhesion molecules including vascular endothelial cadherin (VE-cadherin, also called
cadherin-5), integrins, and immunoglobulin-like cell adhesion molecules (Ig-CAMs), are highly
glycosylated. Global changes in glycosylation of these receptors and others could have wide-ranging
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consequences for their biological activity and interactions with other molecules [14]. The discovery
that galectins, which bind β-galactoside sugars on glycoproteins, bind specific glycosylated forms
of VEGFR-2, trigger receptor activation, and mediate resistance to anti-VEGF therapies used to treat
cancer, represents a major shift in understanding and targeting VEGFR-2 signaling in cancer and
other angiogenesis-associated diseases [15,16]. In addition, enzymatic removal or mutation of specific
VEGFR-2 glycosylation sites amplifies ligand-dependent VEGFR-2 activation and signaling [17],
indicating that angiogenic signaling of VEGFR-2 also is affected by changes in glycosylation
independently of galectins.

Changes in glycosylation promoted by hypoxia, the shunting of glycolytic intermediates into glycan
synthesis via the hexosamine biosynthesis pathway (HBP), and pro-inflammatory cytokines, have the
potential to alter core physiologic characteristics of endothelial cells and contribute to dysregulation
of endothelial signaling (Figure 1) [18–21]. There remains a critical need to understand how tumor
microenvironment-induced changes in endothelial cell glycosylation alter angiogenic signaling,
dysregulate adhesion, contribute to the formation of abnormal tumor vasculature, and promote
tumor metastasis. The goal of this review is to highlight recent developments that have advanced
our understanding of tumor microenvironment-directed changes in glycosylation that alter vascular
endothelial cell signaling and adhesion and thereby contribute to tumorigenesis.

Figure 1. Major classes of glycans and glycosaminoglycans involved in endothelial cell signaling and
adhesion. Representative glycan-binding lectins (Gal-1, Gal-3, E-selectin, P-selectin, and L-selectin),
growth factors (such as vascular endothelial growth factor, VEGF), and glycoconjugates including N-
and O-linked glycans, and glycosaminoglycans, are shown. Abbreviations: HS, heparan sulfate; CS,
chondroitin sulfate; HA, hyaluronan; GalNAc, N-acetylgalactosamine; GlcNAc, N-acetylglucosamine;
Man, mannose; Gal, galactose; Fuc, fucose; Sialic acid, N-acetylneuraminic acid; GlcA, glucuronic acid;
IdoA, iduronic acid; S, sulfate.

2. Glycoprotein and Glycosaminoglycan Synthesis and Recognition by Lectins

The luminal surface of endothelial cells contains an extensive network of membrane-bound
glycoproteins and proteoglycans, called the endothelial glycocalyx. There is an increasing awareness
that the endothelial glycocalyx plays a critical role in vascular physiology and pathology,
especially with relation to tumor angiogenesis and interactions between endothelial cells and
tumor cells that mediate trans-endothelial migration. Protein N- and O-glycosylation, as well
as glycosaminoglycan (GAG) synthesis, involve multiple enzymatic steps that occur co- and/or
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post-translationally, are influenced by enzyme and substrate levels, and result in considerable structural
diversity [22–25]. Tumor-associated endothelial cells are exposed to a hypoxic, hyper-glycolytic,
and pro-inflammatory milieu [26–28]. Endothelial cell glycosylation is supremely sensitive to
hypoxia and inflammation [29–32]. Tumor-associated endothelial cells adopt a hyper-glycolytic
metabolic state [27,33,34]. The enzyme fructose-6-phosphate-amidotransferase (GFAT) converts
fructose-6-phosphate into glucosamine-6-phosphate, and in so doing shunts glycolytic intermediates
into the HBP, linking metabolism and glycosylation [35–37]. Glucosamine-6-phosphate is the common
precursor to all amino sugars used in glycoprotein synthesis [38,39]. Ultimately, changes in endothelial
cell glycosylation alter protein interactions and function at the plasma membrane [36,37,40–43].

Protein glycosylation changes dramatically in cancer, and has been studied extensively in
tumor epithelial cells, where it regulates cellular adhesion, cell-matrix interactions, and signaling
via receptor tyrosine kinases (RTKs) [40,44–49]. In fact, ST6Gal-I, responsible for the attachment
of sialic acid to glycoproteins via 2,6-linkage, regulates transcription factors involved in stem cell
maintenance [50]. However, until recently there has been little understanding of how changes in
endothelial cell glycosylation in the tumor microenvironment influence endothelial barrier function,
adhesion, cell-matrix interactions, and cell signaling.

2.1. N-Glycosylation

N-glycosylation occurs on asparagine (N) residues within the NXS/T motif, where any amino
acid X except for proline (X , P) follows asparagine, and serine or threonine (S/T) occupy the third
position. N-glycosylation is a complex, multi-step co- and/or post-translational process that is initiated
by the transfer of N-acetyl-glucosamine-1-phosphate (GlcNAc-1-P) to a dolichol-phosphate on the
cytoplasmic face of the endoplasmic reticulum (ER) membrane by GlcNAc-1-phosphotransferase
(encoded by the human DPAGT1 gene, yeast ALG7) [23}. Notably, tunicamycin, an analog of uridine
diphosphate-N-acetylglucosamine (UDP-HexNAc), inhibits this step and has been used widely to
study N-glycosylation. After this initial step, an additional N-acetylglucosamine (GlcNAc) and five
mannose (Man) residues are added sequentially. Then, the entire dolichol-linked glycan is flipped
into the ER lumen, where four additional- Man residues and three glucose residues are added.
This precursor, assembled from 14 monosaccharides, is then transferred by multi-subunit enzyme,
oligosaccharyltransferase (OST), to an asparagine residue within the NXS/T motif. The nascent
glycoprotein next undergoes interaction with chaperones to ensure quality control. Glycoproteins
that ‘pass’ this quality control step proceed through multiple steps and are trimmed during protein
folding to remove glucose. Further trimming and processing occurs in the ER and Golgi and produces
a heterogeneous set of N-linked glycans.

2.2. Mucin-Type O-Glycosylation

Mucin-type O-glycans, also called O-GalNAc glycans, are initiated by the transfer of
N-acetylgalactosamine (GalNAc) by polypeptide GalNAc-transferases (ppGalNAcTs) to specific
Ser and Thr residues on O-glycosylated proteins. There are 20 human polypeptide GalNAc-transferase
genes. This process occurs in the Golgi apparatus. O-glycosylated regions of proteins are frequently
rich in serine, threonine and proline residues. O-glycans are commonly found on mucins, a class
of glycoproteins that may each contain hundreds of such O-glycans, but other proteins can also be
O-glycosylated, including membrane-associated glycoproteins such as P-selectin glycoprotein ligand
1 (PSGL-1). While all mucin-type O-glycans start with O-GalNAc there is considerable structural
variability. There are four common O-glycan core structures, and additional rare core structures have
also been elucidated [22].

2.3. O-GlcNAc

In contrast to the complex glycans on cell surface glycoproteins, O-linked β-N-acetylglucosamine
(O-GlcNAc) modification of Ser and Thr residues occurs on intracellular proteins and is involved
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in signaling and the regulation of enzyme activity [51]. Two key enzymes, O-GlcNAc transferase
(OGT) and O-GlcNAcase (OGA), catalyze the addition and removal of O-GlcNAc, respectively,
from intracellular proteins. O-GlcNAc modification of endothelial nitric oxide synthase (eNOS)
results in inactivation of the phosphorylated enzyme in the context of diabetes [52,53]. In addition,
elevated flux through the HBP leads to increased protein modification by O-GlcNAc and impairs
angiogenesis, potentially by inhibiting Akt signaling in endothelial cells [54]. Decreasing levels of
OGT in prostate cancer cells diminished expression of VEGF and reduced endothelial tube formation
in vitro, and regulation of this process involved FOXM1 [55].

2.4. Glycosaminoglycans

Glycosaminoglycans (GAGs) are long unbranched polysaccharides with repeating disaccharide
units that are a major component of the extracellular matrix (ECM). They undergo sulfation at distinct
positions and also undergo epimerization of uronic acid, resulting in the generation of a diverse set of
molecules with distinct physical and biological properties. With the exception of hyaluronan, GAGs are
covalently linked via serine residues to GAG-bearing proteins (proteoglycans) that reside on the cell
surface and within the ECM. Six classes of GAGs exist, including chondroitin sulfate, dermatan sulfate,
heparan sulfate, heparin, hyaluronan, and keratan sulfate. Hyaluronan (HA), a high-molecular-weight,
non-sulfated glycosaminoglycan, is synthesized at the cell surface and is subsequently incorporated
into the extracellular matrix [24,45].

2.5. Glycan-Binding Proteins

Lectins are a class of glycan-binding proteins that recognize carbohydrate substructures within
larger branched carbohydrates. Lectins are notable for their low-affinity interactions, which mediate
“rolling” in of leukocytes and cancer cells when they interact with glycans on the endothelial cell
surface. In this review, we will discuss two major classes of lectins, which are categorized by the
substructures they bind. The first, galectins, recognize glycans with exposed galactose residues [56].
The second, selectins, are a family of calcium-dependent cell adhesion molecules that recognize
sialylated, fucosylated carbohydrate ligands with low affinity [57]. Selectins are upregulated in
inflammatory conditions to recruit platelets and leukocytes to sites of injury or infection, but may also
be co-opted in the context of cancer to facilitate tumor cell adhesion to endothelial cells. In addition
to lectins, a broad array of molecules, including many growth factors, have the ability to bind with
carbohydrate moieties on glycoproteins and glycosaminoglycans, and in so doing they mediate cell–cell
and cell–matrix interactions.

The modification of membrane glycoproteins by N- and O-glycans, cytoplasmic O-glycosylation,
the production and deposition of glycosaminoglycans, and the recognition of motifs on glycoconjugates
by lectins, have been characterized extensively in the epithelial context. Next, we will discuss specific
glycoproteins that are involved in endothelial cell adhesion, and how carbohydrate modifications may
impact the function of these molecules.

3. Endothelial Cell Adhesion Molecules

Much of what is known about the impact of altered glycosylation on cell–cell and
cell–matrix adhesion is derived from studies of aberrant glycosylation in tumor cells [58–60].
For example, increased β-1,6 branching and increased sialylation on N-linked glycans that occurs
during tumorigenesis lessens cell–cell adhesion [58,61]. In contrast, knowledge of the impact of
altered glycosylation on endothelial adhesion molecules is primarily based on the interaction
of endothelial cell adhesion molecules with immune cells in the context acute inflammatory
conditions. Glycans on the surface of leukocytes, and to a lesser extent, glycans on the surface
of endothelial cells, play a crucial role in leukocyte recruitment. Glycosyltransferases, including
α1,3 fucosyltransferases, α2,3 sialyltransferases, core 2 N-acetylglucosaminlytransferases, β1,4
galactosyltransferases, and polypeptide N-acetylgalactosaminyltransferases are involved in the
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synthesis of selectin ligands that mediate leukocyte rolling by binding to selectins [62]. Major
glycoconjugates and lectins involved in endothelial cell adhesion and signaling are shown in Figure 1.

3.1. ICAM-1

Intercellular adhesion molecule 1 (ICAM-1/CD54) is involved in trans-endothelial migration of
leukocytes and serves as a ligand for integrins on leukocytes. Scott et al. (2013) showed that activated
endothelial cells expressed two forms of ICAM-1, the more abundant of which displayed N-glycans
modified with α2,6-linked sialic acids, while the less abundant form displayed primarily high-mannose
type glycans. Inhibition of α-mannosidase to force expression of high-mannose N-glycans led to
increased monocyte rolling and adhesion, as compared with ICAM-1 displaying more processed
N-glycans, suggesting that the high-mannose glycans could serve as leukocyte ligands. However,
in cells with ICAM-1 displaying high-mannose glycans, interactions with the actin cytoskeleton were
lost, suggesting that the glycosylation status and adhesion properties of ICAM-1 are modulated by
inflammation [63].

3.2. Endothelial Selectins: E-Selectin (ELAM) and P-Selectin

E-selectin is an endothelial-specific lectin that recognizes glycans containing the sialyl-Lewis x
substructure (SLex; NeuAc α2,3Gal β1,4(Fuc α1,3)-GlcNAc, its expression is activated by cytokines,
and it is involved in recruitment of neutrophils to sites of inflammation [64,65]. Aberrant expression
of glycans bearing the SLex motif in multiple types of cancer, including colon cancer [66,67] and
prostate cancer [68–70], has been implicated in facilitating tumor cell adhesion to the endothelial cells,
and facilitating tumor cell metastasis via interaction with selectins [71,72]. P-selectin is expressed in
both platelets and activated endothelial cells. In endothelial cells, P-selectin is stored in Weibel–Palade
bodies and is rapidly released and translocated to the cell surface in response to inflammation. P-selectin
glycoprotein ligand-1 (PGSL-1/CD162) is a ligand of P-selectin that is expressed on leukocytes and
contains mucin-type O-glycans. Interestingly, P-selectin deficient mice show a decreased rate of tumor
growth and decreased metastasis compared to wild-type mice [73]. This can be explained in part by the
fact that tumors frequently express glycosylated ligands with sialyl-Lewis x structures, bind platelets
and leukocytes via P-selectin, and use these interactions to initiate contact with endothelial cells at
distant sites and extravasate [74]. Some tumor cells express P-selectin and initiate this process in a
platelet-independent manner [75].

3.3. VCAM-1

Vascular cell adhesion molecule 1 (VCAM-1/CD106) is an endothelial glycoprotein, its expression
is upregulated in response to TNF-α, IL-1 and IL-4, and it is involved in leukocyte adhesion to
endothelial cells, an interaction mediated by VCAM-1 binding to α4 integrins (i.e., α4β1 and α4β7)
on leukocytes. In response to IL-1 and IL-4, α2,6-sialyltransferase (ST6Gal-I) expression is enhanced.
A decrease in α2,6-linked sialic acids increased VCAM-1-dependent adhesion, while α2,3-linked sialic
acids did not impact adhesion [76].

3.4. PECAM (CD31)

Platelet endothelial cell adhesion molecule (PECAM) is involved in cell adhesion, mechanical
stress sensing, angiogenic signaling, and also has an anti-apoptotic role [77]. It is a major component
of intercellular junctions in endothelial cells. In addition, it has been shown to have lectin-like
properties and recognize α2,6-sialic acid, and this property is involved in regulation of hemophilic
interactions [78,79]. PECAM glycans bearingα2,6-sialic acid are essential for endothelial tube formation,
and removal of these sialic acid residues disrupts endothelial tube formation [80,81]. Several N-glycans
are located at the hemophilic binding interface [82], suggesting that α2,6-sialylated glycans modulate
homophilic PECAM-dependent interactions. A decrease in α2,6-sialylation reduces the levels of
PECAM at the cell surface and increases its role in apoptosis, and may regulate interactions between
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PECAM, VEGFR2, and integrin-β3 [77,83]. Therefore, α2,6-sialylated glycans appear to be critical for
endothelial cell survival, as they stabilize membrane proteins, leading to their retention at the cell
surface and thereby impact pro-angiogenic signaling.

3.5. IGPR-1

The Ig-containing and proline-rich receptor-1(IGPR-1) is a newly identified Ig-CAM that is uniquely
expressed in human and other higher mammalians, but not in rodents [84]. IGPR-1 is expressed in
endothelial cells and regulates endothelial barrier function and angiogenesis [85]. More importantly,
IGPR-1 expression is elevated in various tumors including, colon cancer [86]. Although it is heavily
glycosylated [84], the role of glycosylation in IGPR-1 function has not been studied.

3.6. VE-Cadherin

Vascular endothelial cadherin (VE-cadherin/CD144) is an endothelial-specific adhesion molecule
that is an essential player in the formation of cell–cell endothelial adherens junctions and controls
vascular permeability. Analyses of VE-cadherin N-glycans indicate that it bears predominantly
sialylated biantennary and hybrid-type glycans, and it may also be O-manosylated [87,88].
Sialic acid-bearing glycans on VE-cadherin are likely important for maintenance of endothelial
cell adherens junctions [89].

3.7. Endomucin

Endomucin is a highly sialylated, type I O-glycosylated protein that is endothelial
specific. Endomucin is involved in angiogenesis [90], and recent evidence suggests that the
α1,3-fucosyltransferase FUT7, upregulated by IL-1β, induced monocyte-endothelial adhesion via
fucosylation of endomucin [91].

As we have noted here, several of the glycoproteins and glycan-binding proteins discussed above,
including ICAM-1, E-Selectin, P-Selectin, VCAM-1, and PECAM, are known to initiate specific adhesive
interactions only when modified (or binding to) specific glycan substructures. As a result, changes
in glycosylation alter the functions of these proteins. Below, we will discuss factors that influence
endothelial glycosylation and in so doing alter endothelial cell adhesion.

4. Factors that Influence Endothelial Glycosylation

Endothelial glycosylation is evolutionarily conserved in both developmental and inflammatory
processes. Yano et al. (2007) examined the endothelium of hagfish to understand evolutionarily-conserved
features of the endothelium using lectins LCA (Lens culinaris agglutinin) and HP (Helix pomatia) that
bind carbohydrate structures containing α-linked mannose and α-N-acetylgalactosamine respectively,
to characterize differences in glycosylation between endothelial cells in different vascular beds. Their
analyses revealed that vascular bed-associated differences in glycosylation facilitated histamine-induced
adhesion of leukocytes in capillaries and post-capillary venules but not in the aortic endothelium
or arterioles, suggesting a link between inflammation and altered glycosylation [92]. Using similar
methods, Jilani et al. (2003) demonstrated that lectin affinities differed between the vasculature of
chicken embryos at early and late stages of development, suggesting that endothelial glycosylation
plays a role in embryonic development [93]. These patterns are likely relevant to human to the biology
of human cells as well.

Inflammatory cytokines TNF-alpha and interleukin-1, and bacterial lipopolysaccharide increase
expression of ST6Gal-I and also increase the binding of lectins with affinity for sialic acid to
the endothelium. E-selectin, ICAM-1, and VCAM-1 were reported as glycoprotein substrates for
ST6Gal-I [94]. DW Scott et al. demonstrated that inflammatory stimuli including TNF-α, LPS,
and IL-1β induce changes in expression of specific endothelial glycoproteins involved in monocyte
adhesion including ICAM-1 and VCAM-1, as well as expression of enzymes involved in N-glycan
processing including α-mannosidase, which catalyzed the removal of two mannose residues from
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GlcNAcMan5GlcNAc2, the committed step in the synthesis of complex N-linked glycans [95]. These
investigators showed that endothelial responses to inflammatory stimuli vary between vascular
beds [96].

Within the tumor microenvironment, inflammatory stimuli, hypoxia, and tumor-secreted signaling
factors alter expression of endothelial cell surface carbohydrates by impacting the underlying expression
of enzymes involved in carbohydrate synthesis [16,95–97]. Table 1 shows the reported impact of
various cytokines and hypoxia on endothelial glycosylation. Pro-inflammatory signals including IFN-γ
and IL-17 increase the expression of α2,6-linked sialic acid-containing carbohydrate epitopes on the
endothelial cell surface glycoproteins. In contrast, immunosuppressive cytokines IL-10 and TGF-β1
reduce α2,6-linked sialic acid-containing carbohydrate epitopes on N-linked glycans [16]. In addition,
tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) alter endothelial surface N-glycosylation
and this correlates with increased monocyte adhesion [76,95]. Critically, immune-mediated mechanisms
that alter glycosylation and the expression of glycan-binding proteins have been shown to lead to
acquired resistance to anti-angiogenic therapies via changes in the interaction with glycan-binding
proteins [98].

Table 1. Factors that influence endothelial cell glycosylation. Pro- and anti-inflammatory actors that
have been reported to impact endothelial cell glycosylation are shown.

Factor Inflam. Source(s) Impact on Endothelial Glycosylation

TNF-α Pro macrophages, CD4+ lympho-cytes, NK
cells, neutrophils

↑ ST6Gal-I and α-mannosidase
expression [94,95]

IL-1* Pro macrophages, monocytes, fibroblasts, and
dendritic cells ↑ ST6Gal-I expression [94]

IL-1β Pro macrophages, dendritic cells ↑ α-mannosidase expression [95]

IFN-γ Pro NK, NKT cells, and CD4+ Th1 and CD8+
CTL effector T cells

↑ α2,6-linked sialic acids [16]
(presumably via ↑ ST6Gal-I expr.)

IL-17 Pro Th (CD4+) cells ↑ α2,6-linked sialic acids [16]
(presumably via ↑ ST6Gal-I expr.)

IL-10 Anti Th2, mast cells, CD4+ CD25+ Foxp3+ Treg
↓ α2,6-linked sialic acids [16]

(presumably via ↓ ST6Gal-I expr.)

TGF-β1 Anti Platelets, most leukocytes ↓ α2,6-linked sialic acids [16]
(presumably via ↓ ST6Gal-I expr.)

Hypoxia N/A N/A ↓ α2,6-linked sialic acids, ↑ β1,6 branching,
elongation of poly-LacNAc chains [16]

The impact of hypoxia on endothelial cells in the tumor microenvironment has been extensively
studied [99–101]. Hypoxia-inducible factor (HIF-1) is a heterodimeric transcription factor composed
of subunits HIF-1β/aryl hydrocarbon receptor nuclear translocator (ARNT) and either HIF-1α or
HIF-2α. Under normoxic conditions, prolyl-hydroxylase (PHD) enzymes including PHD2 hydroxylate
HIFα, leading to HIF-1 inactivation, followed by its ubiquitination by the von Hippel–Lindau tumor
suppressor (pVHL), an E3 ubiquitin ligase, and subsequent degradation [102–104]. However, under
hypoxic conditions such as those in the tumor microenvironment, PHD2, unable to bind oxygen,
no longer hydroxylates HIFα, and this results in its accumulation [105]. HIF-1α and HIF-2α regulate
different and, in some cases, opposing, sets of genes [106,107]. While there is some evidence that HIF-1
signaling alters glycosylation, the extent of its influence on endothelial glycosylation, the potential
differential roles of HIF-1α and HIF-2α, and the physiological impact of the resulting changes in
glycosylation are unclear. In addition to hypoxia, the role of metabolism in endothelial cell glycosylation
is an intriguing, though unexplored, subject. It has been reported that the glycolytic activator PFKFB3
regulates endothelial cell rearrangement during vessel sprouting, in part by reducing intercellular
adhesion [108]. The role of glycosylation in reducing intercellular adhesion should be further
investigated in this context.
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Abnormal endothelial cell glycosylation and increased expression of lectins, which bind glycan
epitopes, aid the development of resistance to anti-angiogenic cancer therapeutics [14,109]. Further
exploration should be done to understand the impact of these changes in both acute and chronic
inflammation. Hypoxia, a common feature of the tumor microenvironment, also appears to alter
endothelial cell glycosylation, leading to the production of glycoproteins bearing carbohydrate
structures with lessα2,6-linked sialic acid, greater branching ofβ1,6 N-glycan structures, and elongation
with poly-LacNAc residues [16]. Culturing endothelial cells in a tumor conditioned medium from
colon carcinoma cell line HT29 induced increased β1,6-GlcNAc branching of endothelial cell glycans,
suggesting that factors secreted by tumor cells also influence glycosylation in their environment [32].
Inflammatory cues, hypoxia, and tumor-secreted factors, by triggering changes in endothelial surface
carbohydrate structures, may alter angiogenic signaling by modifying the properties of endothelial
glycoproteins that are key mediators of signaling and adhesion. To improve our understanding of the
role these changes play in tumor progression, metastasis, and treatment, further study is required in
animal models and human tissue.

5. Glycosylation and VEGFR2 Pro-Angiogenic Signaling

Vascular endothelial growth factors (VEGFs), first identified based on their role in vascular
permeability, bind to extracellular matrix proteoglycans (specifically, heparan sulfate proteoglycans,
HSPGs), resulting in their sequestration and controlled release from the extracellular matrix in cases
of tissue damage or remodeling by matrix-metalloproteinases. Upon release, they are available
to promote angiogenesis to repair tissue, although this process is dysregulated in the tumor
microenvironment. Additional factors, including fibroblast growth factors, and angiogenic inhibitors
such as thrombospondin and platelet factor 4, also interact with and are in some instances stabilized
by HSPGs [110]. Using proximity ligation assays in primary brain endothelial cells, Xu et al. (2011)
demonstrated that heparan sulfate and VEGFR2 interact directly, and that the number of heparan
sulfate-VEGFR2 complexes increased in response to stimulation with VEGF165 and VEGF121 [111].
HSPGs also bind gremlin (Drm), and alter its activation of VEGFR2 [112].

Most endothelial surface proteins bear N- and/or O-linked glycans. Multiple adhesion molecules
bind glycoconjugates expressed on the surfaces of endothelial cells [113]. The cell-surface receptor
tyrosine kinase VEGFR2 is involved in pro-angiogenic signaling in endothelial cells and plays a critical
role in tumor angiogenesis. The extracellular domain of VEGFR2 is highly modified by N-linked
glycans [114], and glycans, especially α2,6-linked N-glycans at site N247 on Ig-like domain 3 near the
ligand binding pocket, influence ligand-dependent signaling [17]. Immune-mediated mechanisms that
alter glycosylation and influence endothelial cell signaling are implicated in acquired resistance to
anti-angiogenic therapies, highlighting the convergence of immunosuppressive and pro-angiogenic
signaling in the tumor microenvironment. Chiodelli et al. (2017) also found that VEGFR2-associated
NeuAc plays an important role in modulating VEGF/VEGFR2 interaction, pro-angiogenic activation of
endothelial cells and neovascularization [14].

Galectin-3 (Gal-3) is able to induce angiogenesis in a glycan-dependent manner by binding to
glycoproteins on the surface of endothelial cells [15]. VEGFR-2 N-glycans are involved in retention
of the receptor at the endothelial cell surface via interaction with Gal-3 [115]. Rabinovich et al.
studied anti-VEGF refractory tumors and found that glycans on the endothelial surface glycoproteins,
including VEGFR2, were remodeled to selectively bind galectin-1 (Gal-1) expressed by the tumor
cells. Endothelial cells displayed high levels of β1,6-GlcNAc-branched N-glycans and low levels of
α2,6-linked sialic acid in anti-VEGF refractory tumors compared to tumors that were sensitive to
anti-VEGF treatment. Binding of Gal-1 to VEGFR2 resulted in VEGF-independent activation of the
receptor [16]. The group also found that hypoxia upregulates expression of galectin-1 (Gal-1) via
HIF-1-dependent and -independent mechanisms. In Kaposi’s sarcoma, activation of the transcription
factor nuclear factor κB (NF-κB) by reactive oxygen species resulted in higher levels of Gal-1 expression
that promoted angiogenesis and tumorigenesis [116]. In another study by the same group, HIF-1α
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was found to increase Gal-1 expression in colorectal cancer (CRC) cells, and the group identified
two hypoxia-responsive elements upstream to the transcriptional start site of the Gal-1 gene that are
essential for HIF-1-mediated galectin-1 expression [16]. Tumor microenvironment-dependent changes
in endothelial cell glycosylation are summarized in Figure 2.

Figure 2. Tumor microenvironment-mediated changes in endothelial cell glycosylation. Endothelial
glycoproteins are shown, including integrins, receptor tyrosine kinases (RTKs), VE-cadherin, and Ig-like
cell adhesion molecules (IgCAMs). Glycans synthesized in the endoplasmic reticulum (ER) and Golgi
have the potential to alter signaling and adhesion.

6. Glycosaminoglycans in Tumor Angiogenesis and Metastasis

Within the ECM, GAGS play a role in regulating migration of endothelial cells, providing a
scaffold that guides endothelial cell tube formation, and stabilizes neovasculature. An excellent review
by Oliveira-Ferrer, et al. describes the varied roles of GAGs in metastasis [117]. Here, we will primarily
discuss the role of GAGs as they relate to endothelial cell function (or dysfunction) in cancer.

6.1. Heparan Sulfate Proteoglycans (HSPGs)

HSPGs are a well-studied group of proteins that bear long heparan sulfate chains consisting of
50–200 glucuronic acid disaccharide repeats with variable patterns of sulfation, and reside both on the
endothelial cell surface and within the extracellular matrix. HSPG modifications including sulfation
create binding sites for various ligands, including adhesive proteins, chemokines, growth factors and
growth factor-binding proteins, proteases and protease inhibitors, and morphogens [118–122]. Critically,
these interactions are sensitive to the position and linkage of sulfate modifications. Transmembrane
HSPGs including syndecans, glycpicans, and perlecan reside on the cell surface and are involved in
extracellular matrix assembly and maintenance. Both VEGFR2 and VEGF (including VEGF165 but not
VEGF121) interact with heparan sulfate, and ligand-stimulation has been reported to increase heparan
sulfate-VEGFR2 complex formation and vascular permeability [111]. VEGF HS-binding domains
encoded by exons 6 and 7 are responsible for the interaction of VEGF ligands with HS, and result in the
sequestration of VEGF in the extracellular matrix that may subsequently be released by proteases and
heparanase during ECM degradation by proteases associated with angiogenesis [123–125]. The ability
of VEGF165 to bind HS is partially controlled by its interaction with endothelial transglutaminase-2 [126].
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Additional growth factors, including PDGF-B, contain HS-interacting domains [127,128]. TGF-β
isoforms also bind HS, and HS plays a role in gradient formation of cytokines [129,130]. By regulating
heparan sulfate modifications on endothelial cells, heparan sulfatases affect tumor angiogenesis in a
number of contexts, including ovarian and breast cancer. Downregulation of endosulfatases responsible
for removal of 6-O sulfate from HS in response to hypoxia, as well as downregulation in tumor cells,
results in the presence of more highly sulfated forms of HS, thus increasing growth factor binding and
downstream signaling [131].

6.2. Chondroitin Sulfate (CS)

Chondroitin sulfate (CS), composed of repeating units of the disaccharide GalNAc-GlcA, is also
variably-sulfated in a tissue-specific manner by carbohydrate sulfotransferases. Expression of specific
sulfated forms of CS on the surface of tumor cells facilitates their interaction with platelets and
endothelial cells by creating ligands that bind P-selectin, e.g., in breast cancer [132]. Moreover,
the sulfation pattern of CS on versican appears to be critical for interaction with L-selectin, P-selectin,
and CD44, molecules involved in endothelial cell adhesion and/or tumor angiogenesis [133]. However,
the full role of such modifications in tumor angiogenesis remains to be determined.

6.3. Hyaluronan (HA)

Hyaluronan (HA) is a negatively charged, nonsulfated GAG. Unlike other GAGs, hyaluronan
(HA) is not covalently linked to a core protein. Rather, it is deposited in the extracellular matrix, where
it may interact with ECM proteins and other GAGs. In healthy tissue, the coordinated expression and
activity of HA synthases and hyaluronidases maintain a homeostasis. In tumors, higher expression
of low-molecular weight HA is often present and is associated with inflammatory conditions [134],
and contributes to tumor angiogenesis by impairing cellular adhesion [135,136]. HA also seems to
play a role in tumor-associated macrophage trafficking to tumor stroma [137].

7. Endothelial Glycosylation Regulates Tumor Cell Trans-Endothelial Migration

The binding to glycosylated epitopes on tumors by selectins (E-selectin, P-selectin) and galectins
expressed on endothelial cells, and of tumor-expressed lectins to endothelial glycans, mediates a
process of rolling followed by stable heterotypic adhesion. This process mirrors the process through
which platelets and leukocytes interact with the endothelium. The glycan-binding proteins on
endothelial cells recognize glycan substructures on platelets, leukocytes, and circulating tumor cells.
Conversely, L-selectin expressed on leukocytes (specifically, T cells) also recognizes glycan structures
on endothelial cells, allowing leukocytes to attach to specific endothelial beds, based purely on the
glycans expressed on the endothelial surface [138]. Sulfated glycans also play a role in this process
in lymphatic endothelium. There is evidence that these interactions are regulated by the spatial and
temporal expression of glycosyltransferases and sulfotransferases in endothelial cells in a bed-specific
manner, and by inflammatory signals.

Galectin-3 (Gal-3) expressed on endothelial cells is a major actor in tumor metastasis. Gal-3 is the
only human lectin of the ‘chimera’ galectin subtype. It can exist as a monomer, or form multivalent
complexes of up to five Gal-3 molecules via its non-lectin domain, allowing it to facilitate the interaction
of multiple glycoproteins. By binding T antigen on MUC-1, Gal-3 promotes adhesion of tumor cells to
the endothelium in breast and prostate cancer [139–141]. Circulating Gal-3 can also increase tumor cell
adhesion to and migration across the endothelium by interacting with MUC1 on tumor cells, leading
to exposure of additional glycosylated ligands including CD44 that bind E-selectin on endothelial
cells [142]. Under flow conditions, highly metastatic MDA-MB-435 human breast carcinoma cells that
express high levels of T antigen and Gal-3 showed increased adhesion to endothelial cells compared to
similar non-metastatic cells [143].

Glycan-mediated intravasation, rolling, and extravasation of tumor cells contribute to tumor
metastasis (Figure 3). For example, in colon and prostate cancers, glycans with the SLex motif
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(a tetra-saccharide containing both sialic acid and α1,3 linked fucose) are involved in tumor
metastasis [66,67]. Forced reduction in the expression of α1,3 fucosyltransferases reduced incidence of
prostate cancer in mice [68–70]. As previously noted, this can be explained by tumor cell adhesion
to the endothelial cells via interaction with selectins [71,72]. In patients with multiple myeloma,
high expression of ST3Gal6, which catalyzes the 2,3-linked attachment of sialic acid residues to
glycoproteins, correlates with lower overall survival. Knockdown of ST3GAL6 in multiple myeloma
cells diminished the cells’ ability to undergo trans-endothelial migration and reduced ability to roll on
P-selectin in vitro [144].

Figure 3. Glycan-mediated intravasation, rolling, and extravasation. Glycan modifications on
endothelial cells (red) alter endothelial adhesion and may contribute to endothelial permeability and
tumor cells (blue) intravasation. Circulating lectins such as Gal-3 and endothelial lectins including
E-selectin initiate rolling, adhesion, and extravasation of tumor cells to the endothelium, frequently at
distant sites. Integrins also assist in this process.

8. Toward Therapeutic Strategies that Target Endothelial Glycosylation

Several anti-cancer therapeutic strategies that target tumor vasculature have been proposed,
and include (a) the inhibition of tumor angiogenesis and (b) treatments that promote blood vessel
normalization to enhance delivery of chemotherapeutic agents and reduce metastasis [2,145–148].
In clinical trials, anti-angiogenic therapies have shown promise in patients with colorectal, lung,
breast, and other cancers, but resistance to these therapies often develops rapidly [98,145,149–151].
Additional drug targets that aid in vascular normalization are being investigated [146]. There remain
gaps in our understanding of tumor-associated endothelial cell pathobiology, including how tumor
microenvironment-induced changes in the glycosylation of endothelial adhesion and signaling
molecules contribute to altered angiogenesis. Addressing this gap in knowledge could lead to the
design and delivery of pharmacological agents that aid in normalizing blood vessels, prevent metastasis
and increase responsiveness to targeted chemotherapeutics.

A number of approaches that target protein glycosylation attempt to address this gap. Therapeutic
targeting of glycan-mediated processes has been explored, including the use of glycomimetics [152].
Partial inhibition of OST, the enzyme involved in the initiation of N-linked glycosylation, is an
approach pioneered by Contessa et al. [153,154]. Among the molecular targets of this strategy
are receptor tyrosine kinases such as EGFR, which are highly N-glycosylated. The approach is
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currently being tested in a number of pre-clinical models [155]. While it has not been tested in the
context of angiogenesis, it is notable that VEGFR2 and additional RTKs involved in pro-angiogenic
signaling are highly N-glycosylated, and therefore might also be susceptible to targeting by this drug,
potentially in combination with other approaches. Another breakthrough involves the development of
fucosyltransferases inhibitor 2-fluorofucose (2-FF) by Okeley et al. (2013) [156]. Many selectin ligands
are fucosylated, and administration of 2-FF could potentially block these interactions and attenuate
trans-endothelial migration of tumor cells. In pre-clinical models, 2-FF inhibited leukocyte-endothelium
interactions [157], inhibits liver cancer HepG2 proliferation, migration, and tumor formation [158],
and reduced fucosylated E-selectin ligand expression in human invasive ductal carcinoma [159].
Multiple fucosyltransferases in humans catalyze the attachment of fucose via specific linkages to
glycans. It is likely that the development of fucosyltransferase-specific inhibitors will ultimately be the
most successful strategy, as this will enable targeting of specific fucose linkages involved in metastasis
while minimizing off-target effects. Thioglycosides are a class of compounds that are currently being
tested as glycosylated decoys to reduce selectin-dependent leukocyte adhesion [160]. It remains to be
seen whether a similar approach might be applied in the context of cancer treatment. Additionally,
targeting selectin-mediated cell adhesion to endothelial cells may represent an opportunity to control
tumor immunity [161]. As discussed previously, heparanase is elevated in multiple types of cancer
and promotes tumor invasion, angiogenesis, and metastasis. Heparanase inhibitors that prevent the
release of heparan sulfate side chains have been tested in pre-clinical and clinical settings, and reduce
tumor metastasis by maintaining ECM integrity and partially restoring vascular function [162–165].

9. Conclusions

Tumor-associated endothelial cells are significantly influenced by signals from nearby tumor cells,
stromal cells and infiltrating immune cells. Glycans on endothelial adhesion molecules including
ICAM-1, VCAM-1, and PECAM, and glycan-binding proteins (lectins) expressed on the surfaces of
endothelial, immune, and cancer cells, alter the adhesive properties of endothelial cells and facilitate
(or disfavor) immune and tumor cell infiltration. In addition, altered endothelial cell glycosylation
in the tumor microenvironment has been shown to impact VEGFR2-mediated angiogenic signaling.
Further investigation will be needed to understand how changes in tumor-associated endothelial cell
glycosylation machinery, with cues from the tumor microenvironment, dysregulate endothelial cell
signaling and adhesion, and contribute to the formation of abnormal and leaky tumor blood vessels.
Since glycosylation is not template based, different sites within the same protein may be occupied by
different glycan structures, and a single protein may have many glycoforms with different biological
functions. Major barriers to progress in this field have included (a) the technical challenge of analyzing
glycan heterogeneity, (b) the low abundance of plasma membrane receptors and adhesion molecules,
and (c) the complexity of linking non-template-based protein glycosylation status to biological function.
Despite these challenges, significant progress has been made towards elucidating the roles of normal
and aberrant glycosylation in endothelial processes, and we further expect that advances will be made
in these areas in the years ahead. We predict that recent advances in mass spectrometry-based methods
for the characterization of glycoconjugates, in combination with gene expression analyses in model
systems and tissue, CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 gene
editing, and the application of fluorophore-conjugated lectins for live cell and tissue imaging, among
others, will enable the establishment of a clear relationship between changes in glycan structures on
the cell surface and altered endothelial function in tumor-associated endothelial cells. The knowledge
gained in this exciting and emerging field of biology can lead to development of a new class of
therapeutics to combat cancer and other diseases.
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